R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with Curvature Independent Rate
Jingzhao Zhang, Hongyi Zhang, Suvrit Sra. (Nov 2018)
[.bib] [arXiv]
Finite sample expressive power of small-width ReLU networks
Chulhee Yun, Suvrit Sra, Ali Jadbabaie
[.bib] [arXiv]
Random Shuffling Beats SGD after Finite Epochs
Jefferey Z. HaoChen and Suvrit Sra.
[.bib] [arXiv]
On the computation of Wasserstein barycenters of multivariate Gaussians
Suvrit Sra.
[.bib] [arXiv]
Frank-Wolfe methods for geodesically convex optimization with application to the matrix geometric mean
Melanie Weber, Suvrit Sra.
[.bib] [arXiv]
Distributional Adversarial Networks
Chengtao Li, David Alvarez-Melis, Keyulu Xu, Stefanie Jegelka, Suvrit Sra. (May 2017)
[.bib] [arXiv] [Code]@article{li2017distributional, title={Distributional Adversarial Networks}, author={Chengtao Li, David Alvarez-Melis, Keyulu Xu, Stefanie Jegelka, Suvrit Sra}, journal={arXiv preprint arXiv:1706.09549}, year={2017} }
Convex Optimization for Parallel Energy Minimization
K.S. Sesh Kumar, Álvaro J. Barbero, Suvrit Sra, Stefanie Jegelka, and Francis Bach.
[.bib] [arXiv]@Article{sesh15, author = {K.S. Sesh Kumar and \'Alvaro Barbero and Stefanie Jegelka and Suvrit Sra and Francis Bach}, title = {{Convex Optimization for Parallel Energy Minimization}}, journal = {arXiv:1503.01563}, year = {2015}, }
An Alternative to EM for Gaussian Mixture Models: Batch and Stochastic Riemannian Optimization
Reshad Hosseini, Suvrit Sra. (Feb 2019)
Accepted Mathematical Programming, Series A
[.bib] [arXiv]@Article{hoSr17, author = {Reshad Hosseini and Suvrit Sra}, title = {{An Alternative to EM for Gaussian Mixture Models: Batch and Stochastic Riemannian Optimization}}, journal = {arXiv:1706.03267}, year = {2017}, note = {{\it Preprint}} }
Small nonlinearities in activation functions create bad local minima in neural networks
Chulhee Yun, Suvrit Sra, and Ali Jadbabaie.
International Conference on Learning Representations (ICLR 2019)
[.bib] [arXiv]
Efficiently testing local optimality and escaping saddles for ReLU networks
Chulhee Yun, Suvrit Sra, and Ali Jadbabaie.
International Conference on Learning Representations (ICLR 2019)
[.bib] [arXiv]
Learning Determinantal Point Processes by Sampling Inferred Negatives
Zelda Mariet, Mike Gartrell, Suvrit Sra.
Artificial Intelligence and Statistics (AISTATS 2019)
[.bib] [arXiv]
Direct Runge-Kutta Discretization Achieves Acceleration
Jingzhao Zhang, Aryan Mokhtari, Ali Jadbabaie, and Suvrit Sra. (May 2018)
Advances in Neural Information Processing Systems (NIPS)
[.bib] [arXiv]
Exponentiated Strongly Rayleigh Measures
Zelda Mariet, Stefanie Jegelka, Suvrit Sra. (Dec 2018)
Advances in Neural Information Processing Systems (NIPS)
[.bib] [arXiv]
Modular proximal optimization with application to total variation regularization.
Álvaro J. Barbero, Suvrit Sra. submitted Nov 2013; (v2 Oct. 2014, v3 2016)
Journal of Machine Learning Research (JMLR)
[.bib] [arXiv] [.pdf]@Article{barSra14, author = {\'Alvaro J. Barbero and Suvrit Sra}, title = {{Modular proximal optimization for multidimensional total-variation regularization}}, journal = {Journal of Machine Learning Research (JMLR)}, year = {2018}, note = {\it To appear (submitted: 2014; arXiv:1411.0589)} }
New concavity and convexity results for symmetric polynomials and their ratios
Suvrit Sra. (Sep 2018)
Accepted: Linear and Multilinear Algebra
[.bib] [arXiv]
On Geodesically Convex Formulations for the Brascamp-Lieb Constant
Suvrit Sra, Nisheeth K. Vishnoi and Ozan Yıldız
21st International Conference on Approximation Algorithms for Combinatorial Optimization Problems (APPROX'2018)
[.bib] [arXiv]
An Estimate Sequence for Geodesically Convex Optimization
Hongyi Zhang, Suvrit Sra.
Conference on Learning Theory (COLT) 2018
[.bib] [arXiv]
Non-Linear Temporal Subspace Representations for Activity Recognition
Anoop Cherian, Suvrit Sra, Stephen Gould, Richard Hartley.
Computer Vision and Pattern Recognition (CVPR) 2018
[.bib] [arXiv]@Article{chSrHa18, author = {Anoop Cherian and Suvrit Sra and Stephen Gould and Richard Hartley}, title = {Non-Linear Temporal Subspace Representations for Activity Recognition}, journal = {arXiv:1803.11064}, year = {2018}, note = {{\it CVPR 2018}} }
Directional Statistics in Machine Learning: a Brief Review
Suvrit Sra.
In Applied directional statistics
[.bib] [.pdf]
Global optimality conditions for deep neural networks
Chulhee Yun, Suvrit Sra, Ali Jadbabaie.
International Conference on Learning Representations (ICLR 2018)
[.bib] [arXiv]@Article{yuSrJa17, author = {Chulhee Yun and Suvrit Sra and Ali Jadbabaie}, title = {Global optimality conditions for deep neural networks}, journal = {arXiv:1707:02444}, year = {2018}, note = {{\it ICLR 2018}} }
A Generic Approach for Escaping Saddle points
S. Reddi, M. Zaheer, S. Sra, F. Bach, B. Poczos, R. Salakhutdinov, A. Smola
Artificial Intelligence and Statistics (AISTATS 2018)
[.bib] [arXiv]
Inequalities via symmetric polynomial majorization
Suvrit Sra
Accepted to Proceedings American Mathematical Society (PAMS) (Nov 2017)
[.bib] [arXiv] [.pdf]@Article{sra15esym, author = {Suvrit Sra}, title = {Inequalities via symmetric polynomial majorization}, journal = {PAMS}, year = {2015}, note = {{\it arXiv:1509.05902}} }
Elementary Symmetric Polynomials for Optimal Experimental Design
Zelda Mariet, Suvrit Sra
Advances in Neural Information Processing Systems (NIPS) 2017
[.bib] [arXiv]
Polynomial Time Dual Volume Sampling
Chengtao Li, Stefanie Jegelka, Suvrit Sra
Advances in Neural Information Processing Systems (NIPS) 2017
[.bib] [arXiv]
Combinatorial Topic Models using Small–Variance Asymptotics.
Ke Jiang, Suvrit Sra, Brian Kulis
Artificial Intelligence and Statistics (AISTATS) 2017
[.bib] [arXiv]
Kronecker Determinantal Point Processes
Zelda Mariet, Suvrit Sra
Advances in Neural Information Processing Systems (NIPS) 2016
[.bib] [arXiv]
Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization
Sashank Reddi, Suvrit Sra, Barnabas Poczos, Alex Smola
Advances in Neural Information Processing Systems (NIPS) 2016
[.bib] [.pdf] [arXiv]
Fast stochastic optimization on Riemannian manifolds
Hongyi Zhang, Sashank Reddi, Suvrit Sra
Advances in Neural Information Processing Systems (NIPS) 2016
[.bib] [arXiv]
Fast Mixing Markov Chains for Strongly Rayleigh Measures, DPPs, and Constrained Sampling
Chengtao Li, Stefanie Jegelka, Suvrit Sra
Advances in Neural Information Processing Systems (NIPS) 2016
[.bib] [arXiv]
Stochastic Frank-Wolfe Methods for Nonconvex Optimization
Sashank Reddi, Suvrit Sra, Barnabas Poczos, Alex Smola
54th Annual Allerton Conference on Communication, Control, and Computing. Dec 2016
[.bib] [.pdf] [arXiv]
Riemannian dictionary learning and sparse coding for positive definite matrices
Anoop Cherian, Suvrit Sra
IEEE Trans. Neural Networks and Learning Systems (TNNLS) 2016.
[.bib] [.pdf] [arXiv]@Article{cheSra15, author = {Anoop Cherian and Suvrit Sra}, title = {{Riemannian Dictionary Learning and Sparse Coding for Positive Definite Matrices}}, journal = {arXiv:1507.02772}, mon = {Jul.}, year = {2015}, }
Fast incremental method for smooth nonconvex optimization
Sashank J. Reddi, Suvrit Sra, Barnabas Poczos, Alexander J. Smola
IEEE Conference on Decision and Control (CDC), Dec 2016.
[.bib] [arXiv]
Positive Definite Matrices: Data Representation and Applications to Computer Vision
Anoop Cherian, Suvrit Sra.
Book chapter in Algorithmic Advances in Riemannian Geometry and Applications, Springer, 2016.
[.bib] [.pdf]
Geometric Optimization in Machine Learning
Suvrit Sra, Reshad Hosseini
Book chapter in Algorithmic Advances in Riemannian Geometry and Applications, Springer, 2016.
[.bib] [.pdf]
First-order methods for geodesically convex optimization
Hongyi Zhang, Suvrit Sra
Conference on Learning Theory (COLT 2016)
[.bib] [.pdf] [arXiv]@Article{zhangSra16a, author = {Hongyi Zhang and Suvrit Sra}, title = {First-order methods for geodesically convex optimization}, journal = {arXiv:1602.06053}, year = {2016}, note = {{\it Preprint}} }
Stochastic variance reduction for nonconvex optimization
Sashank Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, Alexander J. Smola
International Conference on Machine Learning (ICML 2016)
[.bib] [.pdf] [arXiv]@Article{reddi2016a, author = {Sashank Reddi and Ahmed Hefny and Suvrit Sra and Barnabas Poczos and Alexander J. Smola}, title = {Stochastic variance reduction for nonconvex optimization}, journal = {arXiv:1603.xxxx}, year = {2016}, note = {{\it Preprint}} }
Geometric Mean Metric Learning.
Pourya H. Zadeh, Reshad Hosseini, Suvrit Sra
International Conference on Machine Learning (ICML 2016)
[.bib] [.pdf]
Fast DPP Sampling for Nyström with Application to Kernel Methods
Chengtao Li, Stefanie Jegelka, Suvrit Sra
International Conference on Machine Learning (ICML 2016)
[.bib] [.pdf] [arXiv]
Gaussian quadrature for matrix inverse forms with applications
Chengtao Li, Suvrit Sra, Stefanie Jegelka
International Conference on Machine Learning (ICML 2016)
[.bib] [.pdf] [arXiv]
Asynchronous Parallel Block-Coordinate Frank-Wolfe
Y.-X. Wang, V. Sadhanala, W. Dai, W. Neiswanger, Suvrit Sra, E. P. Xing
International Conference on Machine Learning (ICML 2016)
[.bib] [.pdf] [arXiv]@Article{wangSaSra14, author = {Y.-X. Wang and V. Sadhanala and W. Dai and W. Neiswanger and Suvrit Sra and E. P. Xing}, title = {{Asynchronous Parallel Block-Coordinate Frank-Wolfe}}, journal = {arXiv:1409.6086}, year = {2014}, }
On the Matrix Square Root via Geometric Optimization
Suvrit Sra
Electronic Journal of Linear Algebra (ELA) (May 2016).
[.bib] [arXiv] [.pdf]@Article{sraRoot, author = {Suvrit Sra}, title = {{On the matrix square root and geometric optimization}}, journal = {arXiv:1507.08366}, year = {2015}, note = {\it Preprint} }
Entropic Metric Alignment for Correspondence Problems
Justin Solomon, Gabriel Peyré, Vladimir Kim, Suvrit Sra
ACM SIGGRAPH 2016
[.bib] [.pdf] [supplement]@Article{solomon16, author = {Justin Solomon and Gabriel Peyré and Vladimir Kim and Suvrit Sra}, title = {{Entropic Metric Alignment for Correspondence Problems}}, journal = {ACM SIGGRAPH}, year = {2016}, }
Inference and mixture modelling with the Elliptical Gamma Distribution
Reshad Hosseini, Suvrit Sra, Lucas Theis, Matthias Bethge
Computational Statistics and Data Analysis (CSDA). Feb 2016
[.bib] [arXiv]@Article{hoSra14, author = {Reshad Hosseini and Suvrit Sra and L. Theis and M. Bethge}, title = {Statistical inference with the Elliptical Gamma Distribution}, journal = {arXiv:1410.4812}, year = {2014}, note = {{\it Accepted to CSDA}}, }
Diversity Networks: Neural Network Compression Using Determinantal Point Processes
Zelda Mariet, Suvrit Sra
International Conference on Learning Representations (ICLR 2016)
[.bib] [arXiv]@Article{marietSra15b, author = {Zelda Mariet and Suvrit Sra}, title = {Diversity Networks}, journal = {arXiv:1511.05077}, year = {2015}, note = {\it Preprint} }
The sum of squared logarithms inequality in arbitrary dimensions
Lev Borisov, Patrizio Neff, Suvrit Sra, Christian Thiel
Linear Algebra and its Applications (LAA) Jan 2016.
[.bib] [arXiv]@Article{boNes15, author = {Lev Borisov and Patrizio Neff and Suvrit Sra and Christian Thiel}, title = {{The sum of squared logarithms inequality in arbitrary dimensions}}, journal = {arXiv:1508.04039}, year = {2015}, note = {\it Preprint} }
Efficient sampling for k-determinantal point processes
Chengtao Li, Stefanie Jegelka, Suvrit Sra
Artificial Intelligence and Statistics (AISTATS 2016)
[.bib] [arXiv]@Article{ctli15, author = {Chengtao Li and Stefanie Jegelka and Suvrit Sra}, title = {Efficient sampling for k-determinantal point processes}, journal = {arXiv:1509.01618}, year = {2015}, }
AdaDelay: Delay sensitive distributed stochastic convex optimization
Suvrit Sra, Adams Wei Yu, Mu Li, Alexander J. Smola
Artificial Intelligence and Statistics (AISTATS 2016)
[.bib] [arXiv]@Article{sra15.distrib, author = {Suvrit Sra and Adams Wei Yu and Mu Li and Alexander J. Smola}, title = {AdaDelay: Delay sensitive distributed stochastic convex optimization}, journal = {arXiv:1508.05003}, year = {2015}, note = {\it Preprint} }
Positive Definite Matrices and the S-Divergence
Suvrit Sra
Proceedings of the American Mathematical Society (PAMS). Oct 2015.
[.bib] [arXiv] [.pdf]@Article{srasdiv, author = {Suvrit Sra}, title = {{Positive Definite Matrices and the S-Divergence}}, journal = {Proceedings of the American Mathematical Society}, year = {2015}, mon = {Sep} note = {arXiv:1110.1773v4} }
Matrix Manifold Optimization for Gaussian Mixtures
Reshad Hosseini, Suvrit Sra
Advances in Neural Information Processing Systems (NIPS 2015)
[.bib] [arXiv] .pdf]@Article{hoSr15b, author = {Reshad Hosseini and Suvrit Sra}, title = {{Manifold optimization for mixture modeling}}, journal = {arXiv:1506.07677}, year = {2015}, note = {\it Submitted} }
Asynchronous variance reduced stochastic gradient descent
Sashank Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, Alexander J. Smola
Advances in Neural Information Processing Systems (NIPS 2015)
[.bib] [arXiv]@Article{red15, author = {Sashank Reddy and Ahmed Hefny and Suvrit Sra and Barnabas Poczos and Alexander J. Smola}, title = {Variance reduction in stochastic gradient}, journal = {arXiv:1506.06840}, year = {2015}, }
On inequalities for normalized Schur functions
Suvrit Sra
European Journal of Combinatorics. (submitted Feb 2015; accepted May 2015)
[.bib] [arXiv] [.pdf]@Article{sra15a, author = {Suvrit Sra}, title = {{On inequalities for normalized Schur functions}}, journal = {European J. Combinatorics}, volume = {Volume 51}, year = {2016}, pages = {492-–494}, mon = jan, }
A proof of Thompson's determinantal inequality
Minghua Lin, Suvrit Sra
Mathematical Notes. (accepted Jun 2015).
[.bib] [arXiv]@Article{linSra14, author = {Minghua Lin and Suvrit Sra}, title = {{Complete strong superadditivity of generalized matrix functions}}, journal = {Mathematical Notes}, year = {2015}, }
Hlawka-Popoviciu inequalities on positive definite tensors
Wolfgang Berndt, Suvrit Sra
Linear Algebra and its Applications (accepted Feb 2015)
[.bib] [arXiv] [.pdf]@Article{berSra15, author = {Wolfgang Berndt and Suvrit Sra}, title = {{Hlawka-Popoviciu inequalities on positive definite tensors}}, journal = {Linear Algebra and its Applications}, volume = {486}, number = {1}, pages = {317--327}, year = {2015}, note = {arXiv:1411.0065} }
Large-scale randomized-coordinate descent methods with non-separable linear constraints
Sashank J. Reddi, Ahmed Hefny, Carlton Downey, Abhinava Dubey, Suvrit Sra
Uncertainty in Artificial Intelligence (UAI 2015)
[.bib] [arXiv] [.pdf]@Article{reHeSra14, author = {Sashank J. Reddi and Ahmed Hefny and Carlton Downey and Avinava Dubey and Suvrit Sra}, title = {{Large-scale randomized-coordinate descent methods with non-separable linear constraints}}, journal = {arXiv:1409.2617v3}, mon = {Oct.}, year = {2014}, }
Fixed-point algorithms for learning determinantal point processes
Zelda Mariet, Suvrit Sra
International Conference on Machine Learning (ICML 2015)
[.bib] [arXiv] [.pdf]@Inproceedings{marSra15, author = {Zelda Mariet and Suvrit Sra}, title = {{Fixed-point algorithms for learning determinantal point processes}}, booktitle = {International Conference on Machine Learning (ICML)}, mon = {Jun}, year = {2015}, }
Conic geometric optimisation on the manifold of positive definite matrices
Suvrit Sra, Reshad Hosseini
SIAM Journal on Optimization (SIOPT) (accepted Jan 2015).
[.bib] [arXiv] [.pdf]@Article{sraHo15, author = {Suvrit Sra and Reshad Hosseini}, title = {{Conic Geometric Optimization on the Manifold of Positive Definite Matrices}}, volume = {25}, number = {1}, pages = {713--739}, journal = {SIAM J. Optimization (SIOPT)}, year = {2015}, }
Data Modeling with the Elliptical Gamma Distribution
Suvrit Sra, Reshad Hosseini, Lucas Theis, Matthias Bethge
Artificial Intelligence and Statistics (AISTATS 2015)
[.bib] [arXiv] [.pdf]@InProceedings{hoSra15, author = {Reshad Hosseini and Suvrit Sra and L. Theis and M. Bethge}, title = {Statistical inference with the Elliptical Gamma Distribution}, booktitle = {Artificial Intelligence and Statistics (AISTATS)}, year = {2015}, volume = 18, }
Efficient Structured Matrix Rank Minimization
Adams Wei Yu, Wanli Ma, Yaoliang Yu, Jaime G. Carbonell, Suvrit Sra
Advances in Neural Information Processing Systems (NIPS 2014)
[.bib] [arXiv] [.pdf]@inproceedings{adams14, author = {Adams Wei Yu and Wanli Ma and Yaoliang Yu and Jaime G. Carbonell and Suvrit Sra}, title = {Efficient Structured Matrix Rank Minimization}, booktitle = {NIPS}, year = {2014}, note = {arXiv:1509.02447} }
Riemannian sparse coding for positive definite matrices
Anoop Cherian, Suvrit Sra
European Conference on Computer Vision (ECCV 2014)
[.bib] [.pdf]@inproceedings{chSra14, title={Riemannian sparse coding for positive definite matrices}, author={Anoop Cherian and Suvrit Sra}, booktitle={ECCV 2014}, pages={299--314}, year={2014}, publisher={Springer} }
Fast Newton methods for the group fused lasso
Matt Wytock, Suvrit Sra, Zico Kolter
Uncertainty in Artificial Intelligence (UAI 2014).
[.bib] [.pdf]@inproceedings{wytock, title={Fast Newton methods for the group fused lasso}, author={Matt Wytock and Suvrit Sra and Zico J. Kolter}, booktitle={Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence}, year={2014} }
Efficient nearest neighbors via robust sparse hashing
Anoop Cherian, Suvrit Sra, Vassilios Morellas, and Nikos Papanikolopoulos
IEEE Transactions on Image Processing, 23(8); 2014.
[.bib] [arXiv] [.pdf]@article{chSra14b, title={Efficient nearest neighbors via robust sparse hashing}, author={Anoop Cherian and Suvrit Sra and Vassilios Morellas and Nikolaos Papanikolopoulos}, journal={IEEE Transactions on Image Processing}, volume={23}, number={8}, pages={3646--3655}, year={2014}, publisher={IEEE} }
Randomized Nonlinear Component Analysis
David Lopez-Paz, Suvrit Sra, Alexander J. Smola, Zoubin Ghahramani, and Bernhard Schölkopf
International Conference on Machine Learning (ICML 2014)
[.bib] [arXiv]@Inproceedings{lopez, title={{Randomized Nonlinear Component Analysis}}, author={David Lopez-Paz and Suvrit Sra and Alex Smola and Zoubin Ghahramani and Bernhard Schoelkopf}, booktitle={Proceedings of the 31st International Conference on Machine Learning (ICML-14)}, pages={1359--1367}, year={2014} }
Towards stochastic alternating direction method of multipliers
Samaneh Azadi and Suvrit Sra
International Conference on Machine Learning (ICML 2014)
[.bib] [.pdf]@inproceedings{azadi, title={Towards an optimal stochastic alternating direction method of multipliers}, author={Samaneh Azadi and Suvrit Sra}, booktitle={Proceedings of the 31st International Conference on Machine Learning (ICML-14)}, pages={620--628}, year={2014} }
Nonconvex proximal splitting: batch and incremental algorithms
Suvrit Sra
Invited book chapter: Regularization, Optimization, Kernels, and Support Vector Machines. (eds: J. A.K. Suykens, M. Signoretto, A. Argyriou. Mar 2014.
[.bib] [.pdf] [arXiv] [MPI-TR]@InCollection{sra.ncprox, author = {Suvrit Sra}, title = {Nonconvex proximal splitting: batch and incremental algorithms}, booktitle = {Regularization, Optimization, Kernels, and Support Vector Machines}, publisher = {Cambridge University Press}, month = mar, year = 2014, editor = {J. A. K. Suykens and M. Signoretto and A. Argyriou}, }
Tractable large-scale optimization in machine learning
Suvrit Sra
Invited book chapter: Tractability Practical Approaches to Hard Problems. (eds: L. Bordeaux, Y. Hamadi, P. Kohli); Aug 2013.
[.bib] [.pdf]@InCollection{sra.optml, author = {Suvrit Sra}, title = {Tractable Large-Scale Optimization in Machine Learning}, booktitle = {Advances in Tractability}, publisher = {Cambridge University Press}, month = dec, year = 2013, editor = {L. Bordeaux and Y. Hamadi and P. Kohli and R. Mateescu}, note = {29 pages}, }
Geometric optimisation on positive definite matrices with application to elliptically contoured distributions
Suvrit Sra and Reshad Hosseini
Advances in Neural Information Processing Systems (NIPS 2013)
[.bib] [arXiv] [.pdf]@InProceedings{sraHo13, author = {Suvrit Sra and Reshad Hosseini}, title = {{Geometric optimisation on positive definite matrices with application to elliptically contoured distributions}}, booktitle = {Advances in Neural Information Processing Systems (NIPS)}, year = 2013, month = dec, }
Reflection methods for user-friendly submodular optimization
Stefanie Jegelka, Francis Bach, and Suvrit Sra
Advances in Neural Information Processing Systems (NIPS 2013)
[.bib] [arXiv] [.pdf]@inproceedings{jeg13, title={Reflection methods for user-friendly submodular optimization}, author={Stefanie Jegelka and Francis Bach and Suvrit Sra}, booktitle={Advances in Neural Information Processing Systems}, pages={1313--1321}, year={2013} }
Correlation matrix nearness and completion under observation uncertainty
Carlos M. Alaiz, Francesco Dinuzzo, and Suvrit Sra
IMA Journal of Numerical Analysis Oct 2013.
[.bib] [.pdf] [preprint]@Article{carlos, author = {Carlos M. Ala\'iz and Francesco Dinuzzo and Suvrit Sra}, title = {Correlation matrix nearness and completion under observation uncertainty}, journal = {IMA Journal of Numerical Analysis}, year = {2013}, month = {Oct.}, note = {16 pages}, }
Jensen-Bregman LogDet Divergence for Efficient Similarity Computations on Positive Definite Tensors
Anoop Cherian, Suvrit Sra, Arindam Banerjee, and Nikos Papanikolopoulos
IEEE Transactions Pattern Analysis and Machine Intelligence (TPAMI) Dec. 2012.
[.bib] [.pdf]@Article{chSra.pami, author = {Anoop Cherian and Suvrit Sra and Arindam Banerjee and Nikolaos Papanikolopoulos}, title = {{Jensen-Bregman LogDet Divergence with Application to Efficient Similarity Search for Covariance Matrices}}, journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, year = 2012, month = {Dec.}, note = {14 pages}, }
A new metric on the manifold of kernel matrices with application to matrix geometric means
Suvrit Sra
Advances of Neural Information Processing Systems (NIPS 2012)
[.bib] [.pdf]@inproceedings{sra12.nips, title={A new metric on the manifold of kernel matrices with application to matrix geometric means}, author={Suvrit Sra}, booktitle={Advances in Neural Information Processing Systems}, pages={144--152}, year={2012} }
Scalable nonconvex inexact proximal splitting
Suvrit Sra
Advances of Neural Information Processing Systems (NIPS 2012)
[.bib] [.pdf]
The multivariate Watson distribution: Maximum-likelihood estimation and other aspects
Suvrit Sra, Dmitrii B. Karp
Journal of Multivariate Analysis (accepted 2012)
[.bib] [arXiv] [.pdf] [.pdf]
Explicit eigenvalues of certain scaled trigonometric matrices
Suvrit Sra
Linear Algebra and its Applications (accepted Jul 2012)
[.bib] [arXiv] [.pdf]
Fast projection onto mixed-norm balls with applications
Suvrit Sra
Data Minining and Knowledge Discovery. 2012
[.bib] [arXiv] [.pdf]
A non-monotonic method for large-scale non-negative least squares
Dongmin Kim, Suvrit Sra, Inderjit S. Dhillon
Optimization Methods and Software (accepted: Dec. 2011)
[.bib] [.pdf]
Efficient Similarity Search for Covariance Matrices via the Jensen-Bregman LogDet Divergence
Anoop Cherian, Suvrit Sra, Arindam Banerjee, and Nikos Papanikolopoulos
International Conference on Computer Vision (ICCV) (2011)
[.bib] [.pdf]; [Bugfix .pdf]
Generalized Dictionary Learning for Symmetric Positive Definite Matrices with Application to Nearest Neighbor Retrieval
Suvrit Sra, Anoop Cherian
European Conf. on Machine Learning (ECML) (2011)
[.bib] [.pdf]
Fast projections onto L1,q-norm balls for grouped feature selection
Suvrit Sra
European Conference on Machine Learning (ECML 2011). Best Paper Runner Up
[.bib] [.pdf]
Fast Newton-type Methods for Total-Variation with Applications
Álvaro J. Barbero, Suvrit Sra
International Conference on Machine Learning (ICML 2011)
[.bib] [.pdf]
A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of I_s(x)
Suvrit Sra
Computational Statistics 2011.
[.bib] [.pdf]
Optimization for Machine Learning
Suvrit Sra, Sebastian Nowozin, Stephen J. Wright
MIT Press, 2011.
[MIT Press] [Amazon] [Barnes and Noble]
Projected Newton-type methods in machine learning
Mark Schmidt, Dongmin Kim, Suvrit Sra
In: "Optimization for Machine Learning": MIT Press, 2011.
[.bib] [.pdf]
Online Multi-frame Blind Deconvolution with Super-resolution and Saturation Correction
Michael Hirsch, Stefan Harmeling, Suvrit Sra, Bernhard Schölkopf
Astronomy & Astrophysics Feb (2011)
[.bib] [.pdf]
Denoising sparse noise via online dictionary learning
Anoop Cherian, Suvrit Sra, Nikos Papanikolopoulos
IEEE Conference on Speech Acoustics and Signal Processing (ICASSP 2011)
[.bib] [.pdf]
Sparse inverse covariance estimation using an adaptive gradient method
Suvrit Sra and Dongmin Kim
[.bib] [arXiv]
Tackling box-constrained convex optimization via a new projected quasi-Newton approach
Dongmin Kim, Suvrit Sra, Inderjit S. Dhillon
SIAM Journal on Scientific Computing (SISC). Oct 2010
[.bib] [.pdf
A scalable trust-region algorithm with application to mixed-norm regression
Dongmin Kim, Suvrit Sra, Inderjit S. Dhillon
Interational Conference on Machine Learning (ICML 2010)
[.bib] [.pdf]
Multiframe Blind Deconvolution, Super-Resolution, and Saturation Correction via Incremental EM
Stefan Harmeling, Suvrit Sra, Michael Hirsch, Bernhard Schölkopf
IEEE International Conference on Image Processing (ICIP 2010)
[.bib] [.pdf]
Efficient Filter Flow for Space-Variant Multiframe Blind Deconvolution
Michael Hirsch, Suvrit Sra, Bernhard Schölkopf, Stefan Harmeling
IEEE Conference Computer Vision & Pattern Recognition (CVPR 2010)
[.bib] [.pdf]
Sparse nonnegative matrix approximation: new formulations and algorithms
Rashish Tandon and Suvrit Sra
MPI Technical Report #193. Sep 2010
[.bib] [.pdf]
Fast algorithms for total-variation based optimization
Alvaro J. Barbero and Suvrit Sra
MPI Technical Report #194. Aug 2010
[.bib] [.pdf]
Generalized proximity and projection with norms and mixed-norms
Suvrit Sra
MPI Technical Report #192. May 2010
[.bib] [.pdf]
Efficient Filter Flow for Space-Variant Multiframe Blind Deconvolution
Michael Hirsch, Suvrit Sra, Bernhard Schölkopf and Stefan Harmeling
MPI Technical Report #188 Nov 2009
[.bib] [.pdf]
Text Clustering with Mixture of von Mises-Fisher Distributions
Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, Suvrit Sra
In: "Text Mining: Theory, Applications, and Visualization" eds. A. N. Srivastava and M. Sahami, CRC Press. 2009.
[.bib] [.pdf]
Approximation Algorithms for Tensor clustering
Stefanie Jegelka, Suvrit Sra, Arindam Banerjee
Algorithmic Learning Theory (ALT 2009).
[.bib] [arXiv]
Online Blind Deconvolution for Astronomy
Stefan Harmeling, Michael Hirsch, Suvrit Sra, Bernhard Schölkopf
IEEE Interational Conferemce on Computational Photography (ICCP 2009)
[.bib] [.pdf]
A new non-monotonic algorithm for PET image reconstruction
Suvrit Sra, Dongmin Kim, Inderjit S. Dhillon, Bernhard Schölkopf
IEEE Nuclear Science Symposium / Medical Imaging Conf. (NSS/MIC 2009)
[.bib] [Conference Record M03-2: ]
Scalable Semidefinite Programming using Convex Perturbations
Brian Kulis, Suvrit Sra, Inderjit S. Dhillon
Artificial Intelligence and Statistics (AISTATS 2009)
[.bib] [.pdf]
Block-Iterative Algorithms for Non-negative Matrix Approximation
Suvrit Sra
IEEE International Conference on Data Mining (ICDM 2008)
[.bib] [.pdf]
The Metric Nearness Problem
Justin Brickell, Inderjit S. Dhillon, Suvrit Sra, Joel A. Tropp
>SIAM Journal on Matrix Analysis and Applications (SIMAX). 30(1). pp. 375--396 (2008).
SIAM Outstanding Paper Prize 2011 -- across SIAM Journals in the three years 2008--2010
[.bib] [.pdf]
Approximation Algorithms for Bregman Clustering Co-clustering and Tensor Clustering
Suvrit Sra, Stefanie Jegelka, and Arindam Banerjee
MPI Technical Report #177 2008.
[.bib] [.pdf]
Block iterative algorithms for non-negative matrix approximation
Suvrit Sra
MPI Technical Report #176 2008
[.bib] [.pdf]
Non-monotonic Poisson Likelihood Maximization
Suvrit Sra, Dongmin Kim, and Bernhard Schölkopf
MPI Technical Report #170. Jun 2008
[.bib] [.pdf]
A New Non-monotonic Gradient Projection Method for the Non-negative Least Squares Problem
Dongmin Kim, Suvrit Sra, and Inderjit S. Dhillon
Computer Sciences, University of Texas at Austin, TR-08-28.
[.bib] [.pdf]
Matrix Nearness Problems in Data Mining
Suvrit Sra
Ph.D. Thesis. University of Texas at Austin. Aug. 2007
Thesis: .pdf [.bib] [arXiv] [.pdf]
Information-theoretic Metric Learning
Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, Inderjit S. Dhillon
International Conference on Machine Learning (ICML) 2007.; (Best Student Paper)
Paper: .pdf [.bib] [arXiv] [.pdf]
Fast Newton-type Methods for the Least Squares Nonnegative Matrix Approximation Problem
Dongmin Kim, Suvrit Sra, Inderjit S. Dhillon
SIAM International Conference on Data Mining (SDM) 2007; Best of SDM 2007 papers
Paper: .pdf [.bib] [arXiv] [.pdf]
Fast Projection-Based Methods for the Least Squares Nonnegative Matrix Approximation Problem
Dongmin Kim, Suvrit Sra, Inderjit S. Dhillon
in Statistical Analysis and Data Mining vol. 1 pp. 38-51 (2007);
[.pdf]; [author PDF] [.bib]
Scalable Semidefinite Programming using Convex Perturbations
Brian Kulis, Suvrit Sra, Stefanie Jegelka, and Inderjit S. Dhillon
Comp. Sci., Univ. of Texas at Austin, TR-07-47, Sep. 2007;
Paper: .pdf [.bib] [arXiv] [.pdf]
A New Projected Quasi-Newton Approach for solving the Nonnegative Least-Squares Problem
Dongmin Kim, Suvrit Sra, and Inderjit S. Dhillon
Comp. Sci., Univ. of Texas at Austin, TR-06-54, May 2007;
Paper: .pdf [.bib] [arXiv] [.pdf]
Modeling data using directional distributions: Part II
Suvrit Sra, Prateek Jain, and Inderjit S. Dhillon
Comp. Sci., Univ. of Texas at Austin, TR-07-05, Feb. 2007;
Paper: .pdf [.bib] [arXiv] [.pdf]
Information-theoretic Metric Learning
Jason V. Davis, Brian Kulis, Suvrit Sra, and Inderjit S. Dhillon
NIPS 2006 Workshop on learning to compare examples, Dec. 2006;
Paper: .pdf [.bib] [arXiv] [.pdf]
Incremental Aspect Models for Mining Document Streams
Arun Surendran, Suvrit Sra
in Principles and Practice of Knowledge Discovery in Databases (PKDD) 2006;
Paper: [.pdf [.bib] [arXiv] [.pdf]
Efficient Large Scale Linear Programming Support Vector Machines
Suvrit Sra
in European Conference on Machine Learning (ECML) 2006.;
Paper: [.pdf [.bib] [arXiv] [.pdf]
Row-action Methods for Compressed Sensing
Suvrit Sra, Joel A. Tropp
in International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2006.;
Paper: [.pdf [.bib] [arXiv] [.pdf]
Clustering on the Unit Hypersphere using von Mises-Fisher Distributions
Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, Suvrit Sra
in Journal of Machine Learning Research (JMLR) vol. 6 pp. 1345-1382 (2005);
Paper: [.pdf [.bib] [arXiv] [.pdf]
Generalized Nonnegative Matrix Approximations with Bregman Divergences
Inderjit S. Dhillon, Suvrit Sra
in Advances Neural Information Processing Systems (NIPS) 2005.;
Paper: [.pdf [.bib] [arXiv] [.pdf]
Minimum Sum Squared Residue based Co-clustering of Gene Expression data
Hyuk Cho, Inderjit S. Dhillon, Yuqiang Guan, Suvrit Sra
in SIAM International Conference on Data Mining (SDM) 2004;
Paper: [.pdf [.bib] [arXiv] [.pdf]
Triangle Fixing Algorithms for the Metric Nearness Problem
Inderjit S. Dhillon, Suvrit Sra, J. A. Tropp
Advances in Neural Information Processing Systems (NIPS) 2004;
Paper: [.pdf [.bib] [arXiv] [.pdf]
Generative Model-Based Clustering of Directional Data
Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, Suvrit Sra
International Conference on Knowledge Discovery and Data Mining (KDD) 2003.;
Paper: [.pdf [.bib] [arXiv] [.pdf]
Nonnegative Matrix Approximation: Algorithms and Applications
Suvrit Sra and Inderjit S. Dhillon
Comp. Sci., Univ. of Texas at Austin TR-06-27, Jun 2006;
Paper: .pdf [.bib] [arXiv] [.pdf]
Generalized Nonnegative Matrix Approximations using Bregman Divergences
Inderjit S. Dhillon and Suvrit Sra
Comp. Sci., Univ. of Texas at Austin TR-05-31, Jun 2005;
Paper: .pdf [.bib] [arXiv] [.pdf]
Triangle Fixing Algorithms for the Metric Nearness Problem
Inderjit S. Dhillon, Suvrit Sra, and Joel A. Tropp
Comp. Sci., Univ. of Texas at Austin TR-04-22, Jun 2004;
Paper: .pdf [.bib] [arXiv] [.pdf]
The Metric Nearness Problem with Applications
Inderjit S. Dhillon, Suvrit Sra, and Joel A. Tropp
Comp. Sci., Univ. of Texas at Austin TR-03-23, July 2003;
Paper: .ps.gz [.bib] [arXiv] [.pdf]
Expectation Maximization for Clustering on Hyperspheres
Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, and Suvrit Sra
Comp. Sci., Univ. of Texas at Austin TR-03-07, Feb. 2003;
Paper: .ps.gz [.bib] [arXiv] [.pdf]
Modeling Data using Directional Distributions
Inderjit S. Dhillon and Suvrit Sra
Comp. Sci., Univ. of Texas at Austin TR-03-06, Jan. 2003;
Paper: .ps.gz [.bib] [arXiv] [.pdf]
@Article{sraDiag, author = {Suvrit Sra}, title = {{Explicit diagonalization of an anti-triangular Ces\'aro matrix}}, journal = {arXiv:1411.4107}, mon = {Nov.}, year = {2014}, }