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CONIC GEOMETRIC OPTIMIZATION ON THE MANIFOLD OF
POSITIVE DEFINITE MATRICES∗

SUVRIT SRA† AND RESHAD HOSSEINI‡

Abstract. We develop geometric optimization on the manifold of Hermitian positive definite
(HPD) matrices. In particular, we consider optimizing two types of cost functions: (i) geodesically
convex (g-convex) and (ii) log-nonexpansive (LN). G-convex functions are nonconvex in the usual
Euclidean sense but convex along the manifold and thus allow global optimization. LN functions
may fail to be even g-convex but still remain globally optimizable due to their special structure. We
develop theoretical tools to recognize and generate g-convex functions as well as cone theoretic fixed-
point optimization algorithms. We illustrate our techniques by applying them to maximum-likelihood
parameter estimation for elliptically contoured distributions (a rich class that substantially general-
izes the multivariate normal distribution). We compare our fixed-point algorithms with sophisticated
manifold optimization methods and obtain notable speedups.
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1. Introduction. Hermitian positive definite (HPD) matrices possess a remark-
ably rich geometry that is a cornerstone of modern convex optimization [38] and
convex geometry [9]. In particular, HPD matrices form a convex cone, the strict in-
terior of which is a differentiable Riemannian manifold which is also a prototypical
CAT(0) space (i.e., a metric space of nonpositive curvature [12]). This rich structure
enables “geometric optimization” on the set of HPD matrices—enabling us to solve
certain problems that may be nonconvex in the Euclidean sense but are convex in the
manifold sense (see section 2 or [49]) or, failing that, still have enough geometry (see
section 4) to admit efficient optimization.

This paper formally develops conic geometric optimization1 for HPD matrices.
We present key results that help us recognize geodesic convexity (g-convexity); we also
present sufficient conditions that place even several non–geodesically convex functions
within the grasp of geometric optimization.

Motivation. We begin by noting that the widely studied class of geometric pro-
grams ultimately reduces to conic geometric optimization on 1×1 HPD matrices (i.e.,
positive scalars; see Remark 2.10). Geometric programming has enjoyed great success
across a spectrum of applications—see, e.g., the survey of [11]; we hope this paper
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helps conic geometric optimization gain wider exposure.
Perhaps the best known conic geometric optimization problem is computation of

the Karcher (Fréchet) mean of a set of HPD matrices, a topic that has attracted great
attention within matrix theory [7, 48, 8, 25], computer vision [17], radar imaging [41,
Part II], and medical imaging [52, 16]; we refer the reader to the recent book [41] for
additional applications and references. Another basic geometric optimization problem
arises as a subroutine in image search and matrix clustering [18].

Conic geometric optimization problems also occur in several other areas such as
statistics (covariance shrinkage) [15], nonlinear matrix equations [31], Markov decision
processes, and more broadly in the fascinating areas of nonlinear Perron–Frobenius
theory [32].

As a concrete illustration of our ideas, we discuss the task of maximum-likelihood
estimate (mle) for elliptically contoured distributions (ECDs) [13, 21, 37]; see section
5. We use ECDs to illustrate our theory not only because of their instructive value
but also because of their importance in a variety of applications [42].

Outline. The main focus of this paper is on recognizing and constructing certain
structured nonconvex functions of HPD matrices. In particular, section 2 studies the
class of geodesically convex functions, while section 4 introduces “log-nonexpansive”
(LN) functions. We present a limited-memory BFGS algorithm in section 3, where we
also present a derivation for the parallel transport which we could not find elsewhere in
the literature. Even though manifold optimization algorithms apply to both classes of
functions, for LN functions we advance fixed-point theory and algorithms separately
in section 4. We present an application of geometric optimization in section 5, where
we consider statistical inference with ECDs. Numerical results are the subject of
section 6.

2. Geodesic convexity for HPD matrices. Geodesic convexity (g-convexity)
is a classical concept in geometry and analysis; it is used extensively in the study of
Hadamard manifolds and metric spaces of nonpositive curvature [12, 43], i.e., metric
spaces having a g-convex distance function. The concept of g-convexity has been
previously explored in nonlinear optimization [45], but its importance and applicabil-
ity in statistical applications and optimization has only recently gained more atten-
tion [49, 51]. It is worth noting that geometric programming [11] ultimately relies on
“geometric-mean” convexity [40], i.e., f(xαy1−α) ≤ [f(x)]α[f(y)]1−α, which is nothing
but logarithmic g-convexity on 1× 1 HPD matrices (positive scalars).

To introduce g-convexity on n× n HPD matrices we begin by recalling some key
definitions; see [12, 43] for extensive details.

Definition 2.1 (g-convex sets). Let M be a d-dimensional connected C2 Rie-
mannian manifold. A set X ⊂M is called geodesically convex if any two points of X
are joined by a geodesic lying in X . That is, if x, y ∈ X , then there exists a shortest
path γ : [0, 1]→ X such that γ(0) = x and γ(1) = y.

Definition 2.2 (g-convex functions). Let X ⊂M be a g-convex set. A function
φ : X → R is called geodesically convex if for any x, y ∈ X , we have the inequality

(2.1) φ(γ(t)) ≤ (1− t)φ(γ(0)) + tφ(γ(1)) = (1− t)φ(x) + tφ(y),

where γ(·) is the geodesic γ : [0, 1]→ X with γ(0) = x and γ(1) = y.

2.1. Recognizing g-convexity. Unlike scalar g-convexity, for matrices, recog-
nizing g-convexity is not so easy. Indeed, for scalars, a function f : R++ → R is
log-g-convex (and hence g-convex) if and only if log ◦f ◦ exp is convex. A similar
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characterization does not seem to exist for HPD matrices, primarily due to the non-
commutativity of matrix multiplication. We develop some theory below for helping
to recognize and construct g-convex functions.

To define g-convex functions on HPD matrices recall that Pd is a differentiable
Riemannian manifold where geodesics between points are available in closed form.
Indeed, the tangent space to Pd at any point can be identified with the set of Hermitian
matrices, and the inner product on this space leads to a Riemannian metric on Pd. At
any point A ∈ Pd, this metric is given by the differential form ds = ‖A−1/2dAA−1/2‖F;
for A,B ∈ Pd there is a unique geodesic path [6, Thm. 6.1.6]

(2.2) γ(t) = A#tB := A1/2(A−1/2BA−1/2)tA1/2, t ∈ [0, 1].

The midpoint of this path, namely, A#1/2B, is called the matrix geometric mean,
which is an object of great interest [6, 7, 25, 8]; we drop the 1/2 and denote it
simply by A#B. Starting from the geodesic (2.2), many g-convex functions can be
constructed by extending monotonic convex functions to matrices. To that end, first
recall the fundamental operator inequality [2] (where � denotes the Löwner partial
order):

(2.3) A#tB � (1− t)A+ tB.

Theorem 2.3 uses the operator inequality (2.3) to construct “tracial” g-convex func-
tions.

Theorem 2.3. Let h : R+ → R be monotonically increasing and convex; let
λ : Pn → Rn

+ denote the eigenvalue map and λ↓(·) its decreasingly sorted version.

Then,
∑k

j=1 h(λ
↓
j (·)) is g-convex for each 1 ≤ k ≤ n.

Proof. It suffices to establish midpoint convexity. Inequality (2.3) implies that

λj(A#B) ≤ λj

(
A+B

2

)
for 1 ≤ j ≤ n.

Since h is monotonic, for 1 ≤ k ≤ n it follows that

(2.4)
∑k

j=1
h(λ↓

j (A#B)) ≤
∑k

j=1
h(λ↓

j

(
A+B

2

)
).

Lidskii’s theorem [5, Thm. III.4.1] yields the majorization λ↓ (A+B
2

)
≺ λ↓(A)+λ↓(B)

2 ,
which combined with a celebrated result of [23]2 and convexity of h yields

k∑
j=1

h(λ↓
j

(
A+B

2

)
) ≤

k∑
j=1

h
(λ↓

j (A)+λ↓
j (B)

2

)
≤ 1

2

k∑
j=1

h(λ↓
j (A)) +

1
2

k∑
j=1

h(λ↓
j (B)).

Now invoke inequality (2.4) to conclude that
∑k

j=1 h(λ
↓
j (·)) is g-convex.

Example 2.4. Theorem 2.3 shows that the following functions are g-convex: (i)

φ(A) = tr(eA); (ii) φ(A) = tr(Aα) for α ≥ 1; (iii) λ↓
1(e

A); (iv) λ↓
1(A

α) for α ≥ 1.
We now construct examples of g-convex functions different from those obtained

via Theorem 2.3. Let us start with a motivating example.
Example 2.5. Let z ∈ Cd. The function φ(A) := z∗A−1z is g-convex. To prove

this claim it suffices to verify midpoint convexity: φ(A#B) ≤ 1
2φ(A) +

1
2φ(B) for

2For a more recent textbook exposition, see, e.g., [40, Thm. 1.5.4].



716 SUVRIT SRA AND RESHAD HOSSEINI

A,B ∈ Pd. Since (A#B)−1 = A−1#B−1 and A−1#B−1 � A−1+B−1

2 [6, 4.16], it
follows that φ(A#B) = z∗(A#B)−1z ≤ 1

2 (z
∗A−1z + z∗B−1z) = 1

2 (φ(A) + φ(B)).
Below we substantially generalize this example, but first we give some background.
Definition 2.6 (positive linear map). A linear map Φ from Hilbert space H1 to

a Hilbert space H2 is called positive if for 0 � A ∈ H1, Φ(A) � 0. It is called strictly
positive if Φ(A) � 0 for A � 0; finally, it is called unital if Φ(I) = I.

Lemma 2.7 (see [6, Ex. 4.1.5]). Define the parallel sum of HPD matrices A,B
as

A : B := [A−1 +B−1]−1.

Then, for any positive linear map Π : Pd → Pk, we have

Φ(A : B) � Φ(A) : Φ(B).

Building on Lemma 2.7, we are ready to state a key theorem that helps us recog-
nize and construct g-convex functions (see Theorem 2.14, for instance). This result is
by itself not new (e.g., it follows from the classic paper [30]); due to its key importance
we provide our own proof below for completeness.

Theorem 2.8. Let Φ : Pd → Pk be a strictly positive linear map. Then,

(2.5) Φ(A#tB) � Φ(A)#tΦ(B), t ∈ [0, 1] for A,B ∈ Pd.

Proof. The key insight of the proof is to use the integral identity [3]:

∫ 1

0

λα−1(1− λ)β−1

[λa−1 + (1− λ)b−1]α+β
dλ =

Γ(α)Γ(β)

Γ(α+ β)
aαbβ.

Using α = 1− t and β = t > 0, for C � 0 this yields the integral representation

(2.6) Ct =
Γ(1)

Γ(t)Γ(1 − t)

∫ 1

0

[
λC−1 + (1− λ)I

]−1

λt(1 − λ)1−t
dλ,

where Γ is the usual Gamma function. Since A#tB = A1/2(A−1/2BA−1/2)tA1/2,
using (2.6), we may write it as

(2.7) A#tB =
∫ 1

0

[
(1− λ)A−1 + λB−1

]−1
dμ(λ),

for a suitable measure dμ(λ). Applying the map Φ to both sides of (2.7) we obtain

Φ(A#tB) =
∫ 1

0 Φ
([
(1− λ)A−1 + λB−1

]−1)
dμ(λ)

=
∫ 1

0 Φ(Ā : B̄)dμ(λ),

where Ā = (1 − λ)−1A and B̄ = λ−1B. Using Lemma 2.7 and the linearity of Φ, we
see

∫ 1

0
Φ(Ā : B̄)dμ(λ) �

∫ 1

0

(
Φ(Ā) : Φ(B̄)

)
dμ(λ)

=
∫ 1

0

[
(1− λ)Φ(A)−1 + λΦ(B)−1

]−1
dμ(λ)

(2.7)
= Φ(A)#tΦ(B),

which completes the proof.
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A corollary of Theorem 2.8 (that subsumes Example 2.5) follows.
Corollary 2.9. Let A,B ∈ Pd, and let X ∈ Cd×k have full column rank; then

(2.8) trX∗(A#tB)X ≤ [trX∗AX ]1−t[trX∗BX ]t, t ∈ [0, 1].

Proof. Use the positive linear map A 
→ trX∗AX in Theorem 2.8.
Remark 2.10. Corollary 2.9 actually proves a result stronger than g-convexity:

it shows log-g-convexity, i.e., φ(X#Y ) ≤
√
φ(X)φ(Y ), so that logφ is g-convex. It

is easy to verify that if φ1, φ2 are log-g-convex, then both φ1φ2 and φ1 + φ2 are
log-g-convex.

We mention now another corollary to Theorem 2.8; we note in passing that it
subsumes a more complicated result of Gurvits and Samorodnitsky [22, Lem. 3.2].

Corollary 2.11. Let Ai ∈ Cd×k with k ≤ d such that rank([Ai]
m
i=1) = k; also

let B � 0. Then φ(X) := log det(B +
∑

iA
∗
iXAi) is g-convex on Pd.

Proof. By our assumption on Ai and B, the map Φ = S 
→ B +
∑

iA
∗
iXAi

is strictly positive. Theorem 2.8 implies that Φ(X#Y ) = B +
∑

i A
∗
i (X#Y )Ai �

Φ(X)#Φ(Y ). This operator inequality is stronger than what we require. Indeed,
since log det is monotonic and determinants are multiplicative, from this inequality it
follows that

φ(S#R) = log detΦ(S#R) ≤ log det(Φ(S)#Φ(R))

≤ 1
2 log detΦ(S) +

1
2 log det Φ(R) = 1

2φ(S) +
1
2φ(R).

Observe that the above result extends to φ(X) = log det
(
B +

∫∞
0

A∗
λXAλdμ(λ)

)
,

where μ is some positive measure on (0,∞).
Remark 2.12. Corollary 2.11 may come as a surprise to some readers because

log det(X) is well known to be concave (in the Euclidean sense), and yet log det(B +
A∗XA) turns out to be g-convex; moreover, log det(X) is g-linear, i.e., both g-convex
and g-concave.

Example 2.13. In [48] (see also [18, 14]) a dissimilarity function to compare a
pair of HPD matrices is studied. Specifically, for X,Y � 0, this function is called the
S-Divergence and is defined as

(2.9) S(X,Y ) := log det
(
X+Y

2

)
− 1

2 log det(X)− 1
2 log det(Y ).

Divergence (2.9) proves useful in several applications [48, 18, 14], and very recently
its joint g-convexity (in both variables) was discovered [48]. Corollary 2.11 along with
Remark 2.12 yields g-convexity of S(X,Y ) in either X or Y separately.

We are now ready to state our next key g-convexity result. A similar result was
obtained in [51]; our result is somewhat more general as it allows incorporation of
positive linear maps. Moreover, our proof technique is completely different.

Theorem 2.14. Let h : Pk → R be nondecreasing (in Löwner order) and g-
convex. Let r ∈ {±1}, and let Φ be a positive linear map. Then, φ(S) = h(Φ(Sr)) is
g-convex.

Proof. It suffices to prove midpoint g-convexity. Since r ∈ {±1}, (X#Y )r =
Xr#Y r. Thus, applying Theorem 2.8 to Φ and noting that h is nondecreasing it
follows that

(2.10) h(Φ(X#Y )r) = h(Φ(Xr#Y r)) ≤ h(Φ(Xr)#Φ(Y r)).

By assumption h is g-convex, so the last inequality in (2.10) yields

(2.11) h(Φ(Xr)#Φ(Y r)) ≤ 1
2h(Φ(X

r)) + 1
2h(Φ(Y

r)) = 1
2φ(X) + 1

2φ(Y ).
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Notice that if h is strictly g-convex, then φ(S) is also strictly g-convex.
Example 2.15. Let h = log det(X) and Φ(X) = B +

∑
i A

∗
iXAi. Then, φ(X) =

log det(B +
∑

iA
∗
iX

rAi) is g-convex. With h(X) = tr(Xα) for α ≥ 1, tr(B +∑
iA

∗
iX

rAi)
α is g-convex.

Next, Theorem 2.16 presents a method for creating essentially logarithmic versions
of our “tracial” g-convexity result Theorem 2.3.

Theorem 2.16. If f : R → R is convex, then φ(·) :=
∑k

i=1 f(logλ
↓
i (·)) is g-

convex for each 1 ≤ k ≤ n. If h : R → R is nondecreasing and convex, φ(·) =∑k
i=1 h(| logλ(·)|) is g-convex for each 1 ≤ k ≤ n.
To prove Theorem 2.16 we will need the following majorization.
Lemma 2.17. Let ≺log denote the log-majorization order; i.e., for x, y ∈ Rn

++ or-

dered nonincreasingly, we say x ≺log y if
∏n−1

i=1 xi ≤
∏n−1

i=1 yi and
∏n

i=1 xi =
∏n

i=1 yi.
Then, for A,B ∈ Pn and t ∈ [0, 1], we have the log-majorization between the eigenval-
ues:

λ(A#tB) ≺log λ(A1−tBt) ≺log λ(A1−t)λ(Bt).

Proof. The first majorization follows from a recent result of [35]. The second
follows easily from λ1(AB) ≤ σ1(AB) ≤ σ1(A)σ1(B) = λ1(A)λ1(B) (the final equality
holds since A,B ∈ Pn). Apply this inequality to the antisymmetric (Grassmann)

exterior product ∧k(AB), since σ1(∧k(AB)) =
∏k

j=1 σj(AB) (see, e.g., [5, I; IV.2]);

then we obtain λ1(∧k(AB)) ≤ σ1(∧k(AB)). Now set A ← A1−t, B ← Bt, and use
the multiplicativity ∧k(AB) = ∧kA ∧k B to complete the proof.

Proof. (See Theorem 2.16.) From Lemma 2.17 we have the majorization

λ(A#tB) ≺log λ(A1−tBt) ≺log λ(A1−t)λ(Bt);

on taking logarithms, this majorization may be written equivalently as

(2.12) log λ(A#tB) ≺ (1− t) log λ(A) + t logλ(B).

Applying a classical result of [23] on majorization under convex functions, from (2.12)
we obtain the inequality

φ(A#tB) =
∑k

i=1
f(logλi(A#tB)) ≤

∑k

i=1
f ((1 − t) logλi(A) + t logλi(B))

≤ (1 − t)
∑k

i=1
f(logλi(A)) + t

∑k

i=1
f(logλi(B))

= (1 − t)φ(A) + tφ(B).

Applying the Ky–Fan norm
∑k

i=1 σi(·), that is, the sum of top-k singular values, to
(2.12), we obtain the weak majorization (see, e.g., [5, II] for more on majorization)
(2.13)

σ(logA#tB) ≺w σ [(1− t) logλ(A) + t logλ(B)] ≺w (1 − t)σ(logA) + tσ(logB).

Since h is monotone and convex, (2.13) yields g-convexity of
∑k

i=1 h(| logλi(·)|).
Corollary 2.18. Let Φ : Rn → R+ be a symmetric gauge function (i.e., Φ is

a norm invariant to permutation and sign changes). Also, let X ∈ GLn(C). Then,
Φ(σ(log(X∗AX)) is g-convex.

Proof. Note that X∗(A#B)X = (X∗AX)#(X∗BX); now apply Theorem
2.16.

Example 2.19. Consider δR(A,X) := ‖log(X−1/2AX−1/2)‖F the Riemannian
distance between A,X ∈ Pd (see [6, Ch. 6]). Since ‖ logλ(X−1/2AX−1/2)‖2 =
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‖σ(logX−1/2AX−1/2)‖2, it follows from Corollary 2.18 that A 
→ δR(A,X) is g-convex
(see also [6, Cor. 6.1.11]).

This immediately shows that the computations of the Fréchet (Karcher) mean
and median of HPD matrices (also known as geometric mean and median of HPD
matrices, respectively) are g-convex optimization problems; formally, these problems
are given by

min
X�0

∑m

i=1
wiδR(X,Ai) (geometric median),

min
X�0

∑m

i=1
wiδ

2
R(X,Ai) (geometric mean),

where
∑

i wi = 1, wi ≥ 0, and Ai � 0 for 1 ≤ i ≤ m. The latter problem has received
great interest in the literature [36, 6, 7, 48, 8, 25, 41], and its optimal solution is unique
owing to the (strict) g-convexity of its objective. The former problem is less well known
but in some cases proves more favorable [4, 41]; again, despite the nonconvexity of
the objective, its g-convexity ensures that every local solution is global.

We conclude this section by using Lemma 2.17 to prove the following log-convexity
analogue to Theorem 2.16 (cf. the scalar case studied in [39, Prop. 2.4]).

Theorem 2.20. Let f(x) =
∑

j≥0 ajx
j be real analytic with aj ≥ 0 for j ≥ 0

and radius of convergence R. Then, φ(·) =
∏k

i=1 f(λi(·)) is log-g-convex on matrices
with spectrum in (0, R).

Proof. It suffices to verify that logφ(A#B) ≤ 1
2 logφ(A) +

1
2 logφ(B). Since

f ′ ≥ 0, we have

φ(A#B) =
∏k

i=1
f(λi(A#B)) ≤

∏k

i=1
f(λ

1/2
i (A)λ

1/2
i (B)) (using Lemma 2.17)

≤
∏k

i=1

√
f(λi(A))

√
f(λi(B)) (Cauchy–Schwarz on power-series of f)

=
√
φ(A)

√
φ(B).

Taking logarithms, we see that φ(·) is log-g-convex (and hence also g-convex).
Example 2.21. Some examples of f that satisfy the conditions of Theorem 2.20

are exp, sinh on (0,∞), − log(1 − x) and (1 + x)/(1 − x) on (0, 1); see [39] for more
examples.

2.2. Multivariable g-convexity. We now describe an extension of g-convexity
to multiple matrices; a two-variable version was also partially explored in [49, 51],
though under a different name. We begin our multivariable extension by recalling a
few basic properties of the Kronecker product [34].

Lemma 2.22. Let A ∈ R
m×n, B ∈ R

p×q. Then, A ⊗ B := [aijB] ∈ R
mp×nq

satisfies the following:
(i) (A⊗B)∗ = A∗ ⊗B∗.
(ii) (A⊗B)−1 = A−1 ⊗B−1.
(iii) Assuming that the respective products exist,

(2.14) (AC ⊗BD) = (A⊗B)(C ⊗D).

(iv) A⊗ (B ⊗ C) = (A⊗B)⊗ C.
(v) If A = UD1U

∗ and B = V D2V
∗, then (A⊗B) = (U ⊗V )(D1⊗D2)(U ⊗V )∗.

(vi) Let A,B � 0 and t ∈ R; then

(2.15) (A⊗B)t = At ⊗Bt.
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(vii) If A � B and C � D, then (A⊗ C) � (B ⊗D).
Proof. Identities (i)–(iii) are classic; (v) follows easily from (i) and (iv), while (vi)

and (vii) follow from (v); and (vii) is an easy exercise.
We will need the following easy but key result on tensor products of geometric

means.
Lemma 2.23. Let A,B ∈ Pd1 and C,D ∈ Pd2 . Then,

(2.16) (A#B)⊗ (C#D) = (A⊗ C)#(B ⊗D).

Proof. Denote γ(X,Y ) := (X−1/2Y X−1/2)1/2. Observe that

γ(A,B)⊗ γ(C,D) = (A−1/2BA−1/2)1/2 ⊗ (C−1/2DC−1/2)1/2

= [(A−1/2BA−1/2)⊗ (C−1/2DC−1/2)]1/2

= [(A⊗ C)−1/2(B ⊗D)(A ⊗ C)−1/2]1/2

= γ(A⊗ C,B ⊗D),

where the second equality follows from Lemma 2.22(iii), while the third follows from
Lemma 2.22(ii), (iii), and (vi). A similar manipulation then shows that

(A#B)⊗ (C#D) = (A1/2γ(A,B)A1/2)⊗ (C1/2γ(C,D)C1/2)

= (A1/2 ⊗ C1/2)(γ(A,B) ⊗ γ(C,D))(A1/2 ⊗ C1/2)

= (A⊗ C)1/2(γ(A,B)⊗ γ(C,D))(A ⊗ C)1/2

= (A⊗ C)1/2γ(A⊗ C,B ⊗D)(A⊗ C)1/2

= (A⊗ C)#(B ⊗D),

which concludes the proof.
Lemma 2.23 inductively extends to the multivariable case, so that

(2.17)
⊗m

i=1(Ai#Bi) = (
⊗m

i=1 Ai)# (
⊗m

i=1 Bi) .

Using identity (2.17), we thus obtain the following multivariate analogue to Theo-
rem 2.16.

Theorem 2.24. Let h be an increasing convex function on R+ → R. Then, the
map

∏m
i=1 trh(Xi) is jointly g-convex; i.e., tr h(

⊗m
i=1 Xi) is g-convex in its variables.

Proof. Let (A1, B1), . . . , (Am, Bm) be pairs of HPD matrices of arbitrary sizes
(such that, for each i, Ai and Bi are of the same size). Let j index the eigenvalues of
the tensor product

⊗m
i=1(Ai#Bi). Then, starting with identity (2.17), we obtain

λj [
⊗m

i=1(Ai#Bi)] = λj [(
⊗m

i=1 Ai)# (
⊗m

i=1 Bi)] ≤ 1
2λj [

⊗m
i=1 Ai +

⊗m
i=1 Bi] ,

trh (
⊗m

i=1(Ai#Bi)) =
∑
j

h (λj [
⊗m

i=1(Ai#Bi)]) ≤
∑
j

h
(
1
2λj [

⊗m
i=1 Ai +

⊗m
i=1 Bi]

)

≤ 1
2

∑
j

h(λj(
⊗m

i=1 Ai)) +
1
2

∑
j h(λj(

⊗m
i=1 Bi))

= 1
2 tr h(

⊗m
i=1 Ai) +

1
2 tr h(

⊗m
i=1 Bi)

= 1
2

m∏
i=1

trh(Ai) +
1
2

m∏
i=1

tr h(Bi),

which shows the desired multivariable g-convexity of the map tr h(
⊗m

i=1 Xi).
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Again, using (2.17) we obtain the following multivariate analogue to Theorem 2.8.
Theorem 2.25. Let (X1, Y1), . . . , (Xm, Ym) be pairs of HPD matrices of arbitrary

sizes (such that, for each i, Xi and Yi are of the same size). Let Φi : Hi → H′
i be a

positive linear map for each i, and let Φ be the positive multilinear map defined by
Φ ≡ ⊗m

i=1Ai 
→ ⊗m
i=1Φi(Ai). Then,

(2.18) Φ(⊗m
i=1(Xi#Yi)) � Φ(⊗iXi)#Φ(⊗iYi).

Proof. Expanding the definition of Φ, we have

Φ(
⊗

i(Xi#Yi)) =
⊗

iΦi(Xi#Yi) �
⊗

i[Φi(Xi)#Φi(Yi)]

=
[⊗

i Φi(Xi)
]
#
[⊗

iΦi(Yi)
]
= Φ(

⊗
i Xi)#Φ(

⊗
i Yi).

The operator inequality (2.18) then follows upon invoking Theorem 2.8 and
Lemma 2.22(viii).

Building on Theorem 2.25, we also derive a generalization to Theorem 2.14.
Theorem 2.26. Let h : ⊗iH′

i → R be nondecreasing (in Löwner order) and
g-convex. Let ri ∈ {±1}, and let Φ : ⊗iHi → ⊗iH′

i be a strictly positive multilinear
map. Then, φ(X1, . . . , Xm) = (h ◦ Φ)(

⊗
i X

ri
i ) is jointly g-convex (i.e., g-convex in

X1, . . . , Xm).
Proof. Since φ is continuous, it suffices to establish midpoint g-convexity.

(h ◦ Φ)(
⊗

i(Xi#Yi)
ri) = (h ◦ Φ)(

⊗
i(X

ri
i #Y ri

i ))

� h
(
Φ(

⊗
iX

ri
i )#Φ(

⊗
i Y

ri
i ))

� 1
2 ((h ◦ Φ)(

⊗
iX

ri
i ) + (h ◦ Φ)(

⊗
i Y

ri
i ))

= 1
2 (φ(X1, . . . , Xm) + φ(Y1, . . . , Ym)) .

Since h is nondecreasing, using Theorem 2.25 the first inequality follows. The second
one follows as h is g-convex, which completes the proof.

Using identities (2.15) and (2.17) with Lemma 2.17, we obtain the following log-
majorizations.

Proposition 2.27. Let (Ai, Bi)
m
i=1 be pairs of HPD matrices of compatible sizes.

Then,

λ(
⊗m

i=1 Ai#tBi) ≺log λ([
⊗m

i=1 Ai]
1−t[

⊗m
i=1 Bi]

t), t ∈ [0, 1],

λ([
⊗m

i=1 Ai]
1−t[

⊗m
i=1 Bi]

t) ≺log λ[
⊗m

i=1 A
1−t
i ]λ[

⊗m
i=1 B

t
i ].

Proposition 2.27 grants us the following multivariate analogue to Theorem 2.16.
Theorem 2.28. If f : R → R is convex, then φ(·) :=

∑k
j=1 f(logλj(

⊗m
i=1 Xi))

is g-convex on {Xi ∈ Pn}mi=1 for each 1 ≤ k ≤ n . If h : R→ R is nondecreasing and

convex, then φ(·) =
∑k

j=1 h(| logλj(
⊗m

i=1 Xi)|) is g-convex for 1 ≤ k ≤ n.
Theorem 2.28 brings us to the end of our theoretical results on recognizing and

constructing g-convex functions. We are now ready to devote our attention to op-
timization algorithms. In particular, we first discuss manifold optimization [1] tech-
niques in section 3. Then, in section 4 we introduce a special class of functions that
overlaps with g-convex functions, but not entirely, and admits simpler “conic fixed-
point” algorithms.

3. Manifold optimization for g-convex functions. Since Pd is a smooth
manifold, we can use optimization techniques based on exploiting smooth manifold
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structure. In addition to common concepts such as tangent vectors and derivatives
along manifolds, different optimization methods need a subset of new definitions and
explicit expressions for inner products, gradients, retractions, vector transport, and
Hessians [1, 24].

Since Pd can be viewed as a submanifold of the Euclidean space R2d2

, most of the
concepts of importance to our study can be defined by using the embedding structure
of Euclidean space. The tangent space at any point is the space Hd of d×d Hermitian
matrices. The derivative of a function on the manifold in any direction in the tangent
space is simply the embedded Euclidean derivative in that direction.

For several optimization algorithms, two different inner product formulations were
tested in [25] for Pd. The authors observed that the intrinsic inner product leads to
the best convergence speed for the tested algorithms. We too observed that the
intrinsic inner product yields more than a hundred times faster convergence for our
algorithms compared to the induced inner product of Euclidean space. The intrinsic
inner product of two tangent vectors at point X on the manifold is given by

gX(η, ξ) = tr(ηX−1ξX−1), η, ξ ∈ Hd.(3.1)

This intrinsic inner product leads to geodesics of the form (2.2). Now that we have
set up an inner product tensor, we can define the gradient direction as the direction
of the maximum change. The inner product between the gradient vector and a vector
in the tangent space is equal to the gradient of the function in that direction. If
gradHf(X) = 1

2 (gradf(X)+(gradf(X))∗) is the Hermitian part of Euclidean gradient,
then the gradient in intrinsic metric is given by

gradHPDf(X) = XgradHf(X)X.

The simplest gradient descent approach, namely, steepest descent, also needs the
notion of projection of a vector in the tangent space onto a point on the manifold.
Such a projection is called retraction. If the manifold is Riemannian, a particular
retraction is the exponential map, i.e., moving along a geodesic. If the inner product
is the induced inner product of the manifold, then the retraction is normal retraction
on the Euclidean space which is obtained by summing the point on the manifold
and the vector on the tangent space. The intrinsic inner product of (3.1) of the
Riemannian manifold leads to the following exponential map:

RHPD
X (ξ) = X1/2 exp(X−1/2ξX−1/2)X1/2, ξ ∈ Hd.(3.2)

From a numerical perspective, our experiments revealed that the following equivalent
representation of the retraction (3.2) gives the best computational speed:

(3.3) RHPD
X (ξ) = X exp(X−1ξ), ξ ∈ Hd.

Definitions of the gradient and retraction suffice for implementing steepest descent
on Pd. For approaches such as conjugate gradients or quasi-Newton methods, we need
to relate the tangent vector at one point to the tangent vector at another point, i.e.,
we need to define vector transport. A special case of vector transport on a Riemannian
manifold is parallel transport: for the induced Euclidean metric, parallel transport is
simply the identity map. In order to compute the parallel transport one first needs to
compute the Levi-Civita connection. This connection is a way to compute directional
derivatives of vector fields. It is a map from the Cartesian product of tangent bundles
to the tangent bundle:

∇ : TM× TM→ TM,
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where TM is the tangent bundle of manifoldM (i.e., the space of smooth vector fields
onM). It can be verified that for the intrinsic metric (3.1) the following connection
satisfies all the needed properties (see, e.g., [25]):

∇HPD
ζX ξX = Dξ(X)[ζX ]− 1

2 (ζXX−1ξX + ξXX−1ζX),

where Dξ(X) denotes the classical Fréchet derivative of ξ(X). ξX and ζX are vector
fields on the manifold Hd. Subindex X is used to discriminate a vector field from a
tangent vector.

Consider P (t), a vector field along the geodesic curve γ(t). Parallel transport
along a curve is given by the differential equation

DtP (t) = ∇γ̇(t)P (t) = 0 s.t. P (0) = η.

For the intrinsic metric, the above equation becomes

Ṗ (t)− 1
2 (γ̇(t)X

−1
t P (t) + P (t)X−1

t γ̇(t)) = 0.

The geodesic passing through γ(0) = X with γ̇ = ξ is given by

γ(t) = X1/2 exp(tX−1/2ξX−1/2)X1/2.

For t = 1 we get the retraction (3.2). It can be shown that along the geodesic curve
the following equation gives the parallel transport:

P (t) = X1/2 exp(t 12X
−1/2ξX−1/2)X−1/2ηX−1/2 exp(t 12X

−1/2ξX−1/2)X1/2.

Thus, parallel transport for the intrinsic inner product is given by

T HPD
X,Y (η) = X1/2(X−1/2Y X−1/2)1/2X−1/2ηX−1/2(X−1/2Y X−1/2)1/2X1/2.

It is important to note that this parallel transport can be written in a compact form
that is also computationally more advantageous, namely,

(3.4) T HPD
X,Y (η) = EηE∗, where E = (Y X−1)1/2.

We are now ready to describe a quasi-Newton method on Pd. Different algorithms
such as conjugate-gradient, BFGS, and trust-region methods for the Riemannian man-
ifold Pd are explained in [25]. Here we only provide details for a limited memory
version of Riemannian BFGS (RBFGS). The RBFGS algorithm for general retraction
and vector transport was originally explained in [44], and the proof of convergence
appeared in [46], although for a slightly different version. It was proved that for
g-convex functions and with line-search that satisfies Wolfe conditions, the RBFGS
algorithm has a (local) superlinear convergence rate. The RBFGS algorithm can be
transformed into a limited-memory L-RBFGS algorithm by unrolling the update step
of the approximate Hessian computation as shown in Algorithm 1. As may be appar-
ent from the algorithm, parallel transport and its inverse can be the computational
bottlenecks. One possible speedup is to store the matrix E and its inverse in (3.4).

4. Geometric optimization for log-nonexpansive functions. Though man-
ifold optimization is powerful and widely applicable (see, e.g., the excellent tool-
box [10]), for a special class of geometric optimization problems we may be able
to circumvent its heavy machinery in favor of potentially much simpler algorithms.



724 SUVRIT SRA AND RESHAD HOSSEINI

Algorithm 1 L-RBFGS.

Given: Riemannian manifold M with Riemannian metric g; vector transport T
onM with associated retraction R; initial value X0; a smooth function f
Set initial Hdiag = 1/

√
gX0(gradf(X0), gradf(X0))

for k = 0, 1, . . . do
Obtain descent direction ξk by unrolling the RBFGS method

ξk ← HessMul(−gradf(Xk), k)
Use line-search to find α s.t. f(RXk

(αξk)) is sufficiently smaller than f(Xk)
Calculate Xk+1 = RXk

(αξk)
Define Sk = TXk,Xk+1

(αξk)
Define Yk = gradf(Xk+1)− TXk,Xk+1

(gradf(Xk))
Update Hdiag = gXk+1

(Sk, Yk)/gXk+1
(Yk, Yk)

Store Yk; Sk; gXk+1
(Sk, Yk); gXk+1

(Sk, Sk)/gXk+1
(Sk, Yk); Hdiag

end for
return Xk

function HessMul(P, k)
if k > 0 then

Pk = P − gXk+1
(Sk,Pk+1)

gXk+1
(Yk,Sk)

Yk

P̂ = T −1
Xk,Xk+1

HessMul(TXk,Xk+1
Pk, k − 1)

return P̂ − gXk+1
(Yk,P̂ )

gXk+1
(Yk,Sk)

Sk +
gXk+1

(Sk,Sk)

gXk+1
(Yk,Sk)

P

else
return HdiagP

end if
end function

This motivation underlies the material developed in this section, where ultimately
our goal is to obtain fixed-point iterations by viewing Pd as a convex cone instead of
a Riemannian manifold. This viewpoint is grounded in nonlinear Perron–Frobenius
theory [32], and it proves to be of practical value for our application in section 5.
Notably, for certain problems we can obtain globally optimal solutions even without
g-convexity. We believe the general conic optimization theory developed in this section
may be of wider interest.

Consider thus the minimization problem

(4.1) minS�0 Φ(S),

where Φ is a continuously differentiable real-valued function on Pd. Since the con-
straint set {S � 0} is an open subset of a Euclidean space, the first-order optimality
condition for (4.1) is similar to that of unconstrained optimization. A point S∗ is a
candidate local minimum of Φ only if its gradient at this point is zero, that is,

(4.2) ∇Φ(S∗) = 0.

The nonlinear (matrix) equation (4.2) could be solved using numerical techniques
such as Newton’s method. However, such approaches can be computationally more
demanding than the original optimization problem, especially because they involve
the (inverse of) the second derivative ∇2Φ at each iteration. We propose exploiting a
fixed-point iteration that offers a simpler method for solving (4.2). More importantly,
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the fixed-point technique allows one to show that under certain conditions the solution
to (4.2) is unique and therefore potentially a global minimum (essentially, if the global
minimum is attained, then it must be this unique stationary point).

Assume therefore that (4.2) is rewritten as the fixed-point equation

(4.3) S∗ = G(S∗).

Then, a fixed point of the map G : Pd → Pd is a potential solution (since it is a
stationary point) to the minimization problem (4.1). The natural question is how to
find such a fixed point and, starting with a feasible S0 � 0, whether it suffices to
perform the Picard iteration

(4.4) Sk+1 ← G(Sk), k = 0, 1, . . . .

Iteration (4.4) is (usually) not a fixed-point iteration when cast in a normed vector
space; the conic geometry of Pd alluded to previously suggests that it might be better
to analyze the iteration using a non-vectorial metric.

We provide below a class of sufficient conditions ensuring convergence of (4.4).
Therein, the correct metric space in which to study convergence is neither the Eu-
clidean (or Banach) space Rn nor the Riemannian manifold Pd with distance (5.5).
Instead, a conic metric proves more suitable, namely, the Thompson part metric, an
object of great interest in nonlinear Perron–Frobenius theory [32, 31].

Our sufficient conditions stem from the following key definition.
Definition 4.1 (log-nonexpansive). Let f : (0,∞) → (0,∞). We say f is

log-nonexpansive (LN) on a compact interval I ⊂ (0,∞) if there exists a constant
0 ≤ q ≤ 1 such that

(4.5) | log f(t)− log f(s)| ≤ q| log t− log s| ∀s, t ∈ I.

If q < 1, we say f is q-log-contractive. If for every s �= t it holds that

| log f(t)− log f(s)| < | log t− log s| ∀s, t s �= t,

we say f is log-contractive.
We use LN functions in a concrete optimization task in section 4.2. The proofs

therein rely on core properties of the Thompson metric and contraction maps in the
associated metric space; we cover requisite background in section 4.1. The content of
section 4.1 is of independent interest as the theorems therein provide techniques for
establishing contractivity (or nonexpansivity) of nonlinear maps from Pd to Pk.

4.1. Thompson metric and contractive maps. On Pd, the Thompson metric
is defined as (cf. δR which uses ‖·‖F)

(4.6) δT (X,Y ) := ‖log(Y −1/2XY −1/2)‖,

where ‖·‖ is the usual operator norm (largest singular value), and log is the matrix
logarithm. Let us recall some core (known) properties of (4.6); for details please
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see [31, 32, 33].
Proposition 4.2. Unless noted otherwise, all matrices are assumed to be HPD.

δT (X
−1, Y −1) = δT (X,Y ),(4.7a)

δT (B
∗XB,B∗Y B) = δT (X,Y ), B ∈ GLn(C),(4.7b)

δT (X
t, Y t) ≤ |t|δT (X,Y ) for t ∈ [−1, 1],(4.7c)

δT

(∑
i
wiXi,

∑
i
wiYi

)
≤ max

1≤i≤m
δT (Xi, Yi), wi ≥ 0, w �= 0,(4.7d)

δT (X +A, Y +A) ≤ α

α+ β
δT (X,Y ), A � 0,(4.7e)

where α = max {‖X‖, ‖Y ‖} and β = λmin(A).
We now prove a powerful refinement to (4.7b), which shows contraction under

“compression.”
Theorem 4.3. Let X ∈ Cd×p, where p ≤ d have full column rank. Let A, B ∈ Pd.

Then,

(4.8) δT (X
∗AX,X∗BX) ≤ δT (A,B).

Proof. Let AC = X∗AX and BC = X∗BX denote the “compressions” of A and
B, respectively; these compressions are invertible since X is assumed to have full
column rank. The largest generalized eigenvalue of the pencil (A,B) is given by

(4.9) λ1(A,B) := λ1(A
−1B) = max

x 
=0

x∗Bx

x∗Ax
.

Starting with (4.9) we have the following relations:

λ1(A
−1B) = λ1(A

−1/2BA−1/2) = max
x 
=0

x∗A−1/2BA−1/2x

x∗x

= max
w 
=0

w∗Bw

(A1/2w)∗(A1/2w)
= max

w 
=0

w∗Bw

w∗Aw

≥ max
w=Xp,p
=0

w∗Bw

w∗Aw
= max

p
=0

p∗X∗BXp

p∗X∗AXp

= max
p
=0

p∗BCp

p∗ACp
= λ1(A

−1
C BC) = λ1(A

−1/2
C BA

−1/2
C ).

Similarly, we can show that λ1(B
−1A) = λ1(B

−1/2AB−1/2) ≥ λ1(B
−1/2
C ACB

−1/2
C ).

Since A, B and the matrices AC , BC are all positive, we may conclude

(4.10) max
{
logλ1(A

−1
U BU ), logλ1(B

−1
U AU )

}
≤ max

{
λ1(A

−1B), logλ1(B
−1A)

}
,

which is nothing but the desired claim δT (X
∗AX,X∗BX) ≤ δT (A,B).

Theorem 4.3 can be extended to encompass more general “compression” maps,
namely, to those defined by operator monotone functions, a class that enjoys great
importance in matrix theory; see, e.g., [5, Ch. V] and [6].

Theorem 4.4. Let f be an operator monotone (i.e., if X � Y , then f(X) �
f(Y )) function on (0,∞) such that f(0) ≥ 0. Then,

(4.11) δT (f(X), f(Y )) ≤ δT (X,Y ), X, Y ∈ Pd.
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Proof. If f is operator monotone with f(0) ≥ 0, then it admits the integral
representation [5, (V.53)]

(4.12) f(t) = γ + βt+

∫ ∞

0

λt

λ+ t
dμ(λ),

where γ = f(0), β ≥ 0, and dμ(t) is a nonnegative measure. Using (4.12) we get

f(A) = γI + βA +

∫ ∞

0

(λA)(λI +A)−1dμ(λ) =: γI + βA+M(A).

Similarly, we obtain f(B) = γI + βB +M(B). Now, consider at first

δT (M(A),M(B)) = δT (
∫
λA(λI +A)−1dμ(t),

∫
λA(λI +A)−1dμ(t))

≤ max
λ

δT (λA(λI +A)−1, λB(λI +B)−1)

≤ max
λ

δT ((λA
−1 + I)−1, (λB−1 + I)−1)

= max
λ

δT (I + λA−1, I + λB−1)

≤ max
λ

ᾱ

ᾱ+ 1
δT (λA

−1, λB−1), ᾱ := max{‖A−1‖, ‖B−1‖},

=
ᾱ

ᾱ+ 1
δT (A,B) < δT (A,B).

Next, defining α := max{‖βA +M(A)‖, ‖βB +M(B)‖}, we can use the above con-
traction to help prove contraction for the map f as follows:

δT (f(A), f(B)) = δT (γI + βA+M(A), γI + βB +M(B))

≤ α

α+ γ
δT (βA+M(A), βB +M(B))

≤ α

α+ γ
max {δT (βA, βB), δT (M(A),M(B))}

≤ α

α+ γ
δT (A,B).

Moreover, for A �= B the inequality is strict if f(0) > 0.
Example 4.5. Let X ∈ Cd×k, and let f = tr for t ∈ (0,∞) and r ∈ (0, 1). Then,

δT ((X
∗AX)r, (X∗BX)r) ≤ δT (A,B) ∀A,B ∈ Pd,

δT (X
∗ArX,X∗BrX) ≤ δT (A,B) ∀A,B ∈ Pd.

Theorem 4.3 and Theorem 4.4 together yield the following general result.
Corollary 4.6. Let Φ : Pd → Pk (k ≤ d) and Ψ : Pk → Pr (r ≤ k) be completely

positive (see, e.g., [6, Ch. 3]) maps. Then,

δT (f(Φ(X)), f(Φ(Y ))) ≤ δT (X,Y ), X, Y ∈ Pd,(4.13)

δT (Ψ(f(X)),Ψ(f(Y ))) ≤ δT (X,Y ), X, Y ∈ Pk.(4.14)

Proof. We prove (4.13); the proof of (4.14) is similar and hence is omitted. From
Theorem 4.4 it follows that δT (f(Φ(X)), f(Φ(Y ))) ≤ δT (Φ(X),Φ(Y )). Since Φ is
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completely positive, it follows from a result of [19] and [29] that there exist matrices
Vj ∈ Cd×k, 1 ≤ j ≤ dk, such that

Φ(X) =
∑nk

i=1
V ∗
j XVj, X ∈ Pd.

Theorem 4.3 and property (4.7d) imply that δT (Φ(X),Φ(Y )) ≤ δT (X,Y ), which
proves (4.13).

4.1.1. Thompson log-nonexpansive maps. Let G be a map from X ⊆ Pd →
X . Analogous to (4.5), we say G is (Thompson) log-nonexpansive if

δT (G(X),G(Y )) ≤ δT (X,Y ) ∀X,Y ∈ X ;

the map is called log-contractive if the inequality is strict. We present now a key result
that justifies our nomenclature and the analogy to (4.5): it shows that the sum of
a log-contractive map and an LN map is log-contractive. This behavior is a striking
feature of the nonpositive curvature of Pd; such a result does not hold in normed
vector spaces.

Theorem 4.7. Let G be an LN map and F be a log-contractive map. Then, their
sum G + F is log-contractive.

Proof. We start by writing the Thompson metric in an alternative form [32]:

(4.15) δT (A,B) = max{logW (A/B), logW (B/A)},

where W (A/B) := inf{λ > 0, A � λB}. Let λ = exp(δT (X,Y )); then it follows that
X � λY . Since G is nonexpansive in δT , using (4.15) it further follows that

G(X) � λG(Y ),

and F is log-contractive map; we obtain the inequality

F(X) ≺ λtF(Y ), where t ≤ 1.

Write H := G + F ; then, we have the following inequalities:

H(X) ≺ λH(Y ) + (λt − λ)F(Y ),

H(Y )−1/2H(X)H(Y )−1/2 ≺ λI + (λt − λ)H(Y )−1/2F(Y )H(Y )−1/2,

H(Y )−1/2H(X)H(Y )−1/2 ≺ λI + (λt − λ)λmin(H(Y )−1/2F(Y )H(Y )−1/2)I.

As λmax(H(Y )−1/2H(X)H(Y )−1/2) > λmax(H(X)−1/2H(Y )H(X)−1/2), using (4.15)
we obtain
(4.16)
δT (H(X),H(Y )) < δT (X,Y ) + log

(
1 + λmin(H(Y )−1/2F(Y )H(Y )−1/2)

[
λt−1 − 1

])
.

We also have the following eigenvalue inequality:

(4.17) λmin(H(Y )−1/2F(Y )H(Y )−1/2) ≤ λmin(F(Y ))

λmax(G(Y )) + λmin(F(Y ))
.

Combining inequalities (4.16) and (4.17), we see that
(4.18)

δT (H(X),H(Y )) < δT (X,Y )+ log
(
1+ λmin(F(Y ))

λmax(G(Y ))+λmin(F(Y ))

[
exp(δT (X,Y ))t−1− 1

])
.
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Similarly, since λmax

(
H(Y )−1/2H(X)H(Y )−1/2

)
< λmax

(
H(X)−1/2H(Y )H(X)−1/2

)
,

we also obtain the bound (notice that we now have F(X) instead of F(Y ))
(4.19)

δT (H(X),H(Y )) < δT (X,Y )+ log
(
1+ λmin(F(X))

λmax(G(X))+λmin(F(X))

[
exp(δT (X,Y ))t−1− 1

])
.

Combining (4.18) and (4.19) into a single inequality, we get

δT (H(X),H(Y ))

< δT (X,Y ) + log
(
1 + λmin(F(X),F(Y ))

λmax(G(X),G(Y ))+λmin(F(X),F(Y ))

[
exp(δT (X,Y ))t−1 − 1

])
.

As the second term is ≤ 0, the inequality is strict, proving log-contractivity ofH.
Using log-contractivity, we can finally state our main result for this section.
Theorem 4.8. If G is log-contractive and (4.3) has a solution, then this solution

is unique and iteration (4.4) converges to it.
Proof. If (4.22) has a solution, then from a theorem of [20] it follows that the

log-contractive map G yields iterates that stay within a compact set and converge to a
unique fixed point of G. This fixed point is positive definite by construction (starting
from a positive definite matrix, none of the operations in (4.22) violates positivity).
Thus, the unique solution is positive definite.

4.2. Example of LN optimization. To illustrate how to exploit LN functions
for optimization, let us consider the following minimization problem:

(4.20) minS�0 Φ(S) := 1
2n log det(S)−

∑
i
logϕ(xT

i S
−1xi),

which arises in maximum-likelihood estimation of ECDs (see section 5 for further
examples and details) and also M-estimation of the scatter matrix [27].

The first-order necessary optimality condition for (4.20) stipulates that a candi-
date solution S � 0 must satisfy

(4.21)
∂Φ(S)

∂S
= 0 ⇐⇒ 1

2nS
−1 +

n∑
i=1

ϕ′(xT
i S

−1xi)

ϕ(xT
i S

−1xi)
S−1xix

T
i S

−1 = 0.

Defining h ≡ −ϕ′/ϕ, (4.21) may be rewritten more compactly in matrix notation as
the equation

(4.22) S = 2
n

∑n

i=1
xih(x

T
i S

−1xi)x
T
i = 2

nXh(DS)X
T ,

where h(DS) := Diag(h(xT
i S

−1xi)), and X = [x1, . . . , xm]. We then solve the non-
linear equation (4.22) via a fixed-point iteration. Introducing the nonlinear map
G : Pd → Pd that maps S to the right-hand side of (4.22), we use fixed-point itera-
tion (4.4) to find the solution. In order to show that the Picard iteration converges
(to the unique fixed point), it is enough to show that G is log-contractive (see Theo-
rem 4.8). The following proposition gives a sufficient condition on h, under which the
map is log-contractive.

Proposition 4.9. Let h be LN. Then, the map G in (4.4) is LN. Moreover, if h
is log-contractive, then G is log-contractive.

Proof. Let S,R � 0 be arbitrary. Then, we have the following chain of inequalities:

δT (G(S),G(R)) = δT
(
2
nXh(DS)X

T , 2
nXh(DR)X

T
)

≤ δT
(
h(DS), h(DR)

)
≤ max

1≤i≤n
δT

(
h(xT

i S
−1xi), h(x

T
i R

−1xi)
)

≤ max
1≤i≤n

δT
(
xT
i S

−1xi, x
T
i R

−1xi

)
≤ δT

(
S−1, R−1

)
= δT (S,R).
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The first inequality follows from (4.7b) and Theorem 4.3; the second inequality follows
since h(DS) and h(DR) are diagonal; the third follows from (4.7d); and the fourth
follows from another application of Theorem 4.3, while the final equality is via (4.7a).
This proves log-nonexpansivity (i.e., nonexpansivity in δT ). If in addition h is log-
contractive and S �= R, then the second inequality above is strict; that is,

δT (G(S),G(R)) < δT (S,R) ∀S,R and S �= R.

If h is merely LN (not log-contractive), it is still possible to show uniqueness
of (4.22) up to a constant. Our proof depends on the compression property of δT
proved in Theorem 4.3.

Theorem 4.10. Let the data X = {x1, . . . , xn} span the whole space. If h is LN,
and S1 �= S2 are solutions to (4.22), then iteration (4.4) converges to a solution, and
S1 ∝ S2.

Proof. Without loss of generality, assume that S1 = I. Let S2 �= cI. Theorem 4.3
implies that

δT
(
xih(x

T
i S

−1
2 xi)x

T
i , xih(x

T
i S

−1
1 xi)xi

)
≤ δT

(
h(xT

i S
−1
2 xi), h(x

T
i xi)

)
≤ δT

(
xT
i S

−1
2 xi, x

T
i xi

)
=

∣∣∣log xT
i S−1

2 xi

xT
i xi

∣∣∣ .
As per assumption, the data span the whole space. Since S2 �= cI, we can find x1

such that ∣∣∣log xT
1 S−1

2 x1

xT
1 x1

∣∣∣ < δT (S2, I).

Therefore, we obtain the following inequality for point x1:

(4.23) δT
(
x1h(x

T
i S

−1
2 x1)x

T
1 , x1h(x

T
1 S

−1
1 x1)x1

)
< δT (S2, S1).

Using Proposition 4.9 and invoking Theorem 4.7, it then follows that

δT (G(S2),G(S1)) < δT (S2, S1).

But this means that S2 cannot be a solution to (4.22), which is a contradiction.
Therefore, S2 ∝ S1.

4.2.1. Computational efficiency. So far we have not addressed computational
efficacy of the fixed-point algorithm. The rate of convergence depends heavily on the
contraction factor, and, as we will see in the experiments, without further care one
obtains poor contraction factors that can lead to a very slow convergence. We briefly
discuss below a useful speedup technique that seems to have a dramatic impact on
the empirical convergence speed (see Figure 2).

At the fixed point S∗ we have G(S∗) = S∗, or equivalently for a new mapM we
have

M(S∗) := S∗−1/2G(S∗)S∗−1/2 = I.

Therefore, one way to analyze the convergence behavior is to assess how fastM(Sk)
converges to identity. Using the theory developed beforehand, it is easy to show that

δT (M(Sk+1), I) ≤ ηδT (M(Sk), I),
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where η is the contraction factor between Sk and Sk+1, so that

δT (G(Sk+1),G(Sk)) < ηδT (Sk+1, Sk).

To increase the convergence speed we may replace Sk+1 by its scaled version αkSk+1

such that

δT (M(αkSk+1), I) ≤ δT (M(Sk+1), I).

One can do a search to find a good αk. Clearly, the sequence Sk+1 = αkG(Sk)
converges at a faster pace. We will see in the numerical results section that scaling
with αk has a remarkable effect on the convergence speed. An intuitive reason why
this happens is that the additional scaling factor can resolve the problematic cases
where the contraction factor becomes small. These problematic cases are those where
both the smallest and the largest eigenvalues of M(Sk) become smaller (or larger)
than one, whereby the contraction factor (for G) becomes small, which may lead to a
very slow convergence. The scaling factor, however, makes the smallest eigenvalues of
M(Sk) always smaller and its largest eigenvalue larger than one. One way to avoid
the search is to choose αk such that trace(M(Sk+1)) = d—though with a small caveat:
empirically this simple choice of αk works very well, but our convergence proof no
longer holds. Extending our convergence theory to incorporate this specific choice of
scaling αk is a part of our future work. In all simulations in the result section, αk is
selected by ensuring trace(M(Sk+1)) = d.

5. Application to elliptically contoured distributions. In this section we
present details for a concrete application of conic geometric optimization: mle for
ECDs [13, 21, 37]. We use ECDs as a platform for illustrating geometric optimization
because ECDs are widely important (see, e.g., the survey [42]) and are instructive in
illustrating our theory.

First, we give some basics. If an ECD has density on R
d, it assumes the form3

(5.1) ∀ x ∈ R
d, Eϕ(x;S) ∝ det(S)−1/2ϕ(xTS−1x),

where S ∈ Pd is the scatter matrix and ϕ : R→ R++ is the density generating function
(dgf). If the ECD has finite covariance, then the scatter matrix is proportional to the
covariance matrix [13].

Example 5.1. Let ϕ(t) = e−t/2; then (5.1) reduces to the multivariate Gaussian
density. For

(5.2) ϕ(t) = tα−d/2 exp
(
−(t/b)β

)
,

where α, b, β > 0 are fixed, density (5.1) yields the rich class called Kotz-type dis-
tributions that have powerful modeling abilities [26, section 3.2]; they include as
special cases multivariate power exponentials, elliptical gamma, and multivariate W-
distributions, for instance. Other examples include multivariate student-t, multivari-
ate logistic, and Weibull dgfs (see section 5.2).

5.1. Maximum likelihood parameter estimation. Let (x1, . . . , xn) be i.i.d.
samples from an ECD Eϕ(S). Ignoring constants, the log-likelihood is

(5.3) L(x1, . . . , xn;S) = − 1
2n log detS +

∑n

i=1
logϕ(xT

i S
−1xi).

3For simplicity we describe only mean zero families; the extension to the general case is easy.
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To compute an mle we equivalently consider the minimization problem (4.20), which
we restate here for convenience:

(5.4) minS�0 Φ(S) := 1
2n log det(S)−

∑
i
logϕ(xT

i S
−1xi).

Unfortunately, (5.4) is in general very difficult: Φ may be nonconvex and may have
multiple local minima (observe that log det(S) is concave in S and we are minimizing).
Since statistical estimation relies on having access to globally optimal estimates, it
is important to be able to solve (5.4) globally. These difficulties notwithstanding,
using our theory we identify a rich class of ECDs for which we can solve (5.4) globally.
Some examples are already known [42, 27, 51], but our techniques yield results that are
strictly more general: they subsume previous examples while advancing the broader
idea of geometric optimization over HPD matrices.

Building on sections 2 and 4, we divide our study into the following three classes
of dgfs:

(i) Geodesically convex (g-convex): This class contains functions for which the
negative log-likelihood Φ(S) is g-convex. Some members of this class have
been previously studied (though sometimes without recognizing or directly
exploiting g-convexity).

(ii) Log-nonexpansive (LN): This is a new class introduced in this paper. It
exploits the “nonpositive curvature” property of the HPD manifold. To the
best of our knowledge, this class of ECDs was beyond the grasp of previous
methods [51, 27, 49]. The iterative algorithm for finding the global minimum
of the objective is similar to that of the class LC.

(iii) Log-convex (LC): We cover this class for completeness; it covers the case of
log-convex ϕ but leads to nonconvex Φ (due to the − logϕ term). However,
the structure of the problem is such that one can derive an efficient algorithm
for finding a local minumum of the objective function.

As illustrated in Figure 1, these classes can overlap. When a function is in the overlap
between LC and GC, one can be sure that the iterative algorithm derived for class
LN will converge to a unique minimum. Table 1 summarizes the applicability of
fixed-point or manifold optimization methods on different classes of dgfs.

ϕ ↓

ϕ ∈ C1

GC

LN

LC

Fig. 1. Overview of dgf classes for nonincreasing ϕ.

5.2. mle for distributions in class g-convex. If the log-likelihood is strictly
g-convex, then (5.4) cannot have multiple solutions. Moreover, for any local opti-
mization method that ensures a local solution to (5.4), g-convexity ensures that this
solution is globally optimal.
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Table 1

Applicability of the different algorithms: Yes means a preferred algorithm; Can� denotes ap-
plicability on a case-by-case basis; and Can signifies possible applicability of method.

Problem class Manifold opt. Fixed-point
GC Yes Can�

LN Can Yes
LC Can Yes

First we state a corollary of Theorem 2.14 that helps us recognize g-convexity
of ECDs. We remark that a result equivalent to Corollary 5.2 was also recently
discovered in [51]. Theorem 2.14 is more general and uses a completely different
argument founded on matrix-theoretic results.

Corollary 5.2. Let h : R++ → R be g-convex (i.e., h(x1−λyλ) ≤ (1− λ)h(x) +
λh(y)). If h is nondecreasing, then for r ∈ {±1}, φ : Pd → R : S 
→

∑
i h(x

T
i S

rxi)±
log det(S) is g-convex. Furthermore, if h is strictly g-convex, then φ is also strictly
g-convex.

Proof. The proof is immediate from Theorem 2.14 since xT
i S

rxi is a positive
linear map.

For reference, we summarize several examples of strictly g-convex ECDs in Corol-
lary 5.3.

Corollary 5.3. The negative log-likelihood (5.4) is strictly g-convex for the
following distributions: (i) Kotz with α ≤ d

2 (its special cases include Gaussian, multi-
variate power exponential, multivariate W-distribution with shape parameter smaller
than one, and elliptical gamma with shape parameter ν ≤ d

2 ); (ii) multivariate-t; (iii)
multivariate Pearson type II with positive shape parameter; and (iv) elliptical multi-
variate logistic distribution.4

Even though g-convexity ensures that every local solution will be globally optimal,
we must first ensure that there exists a solution at all; that is, does (5.4) have a
solution? Answering this question is nontrivial even in special cases [27, 51]. We
provide below a fairly general result that helps establish existence.

Theorem 5.4. Let Φ(S) satisfy the following: (i) − logϕ(t) is lower semicontin-
uous (lsc) for t > 0, and (ii) Φ(S) → ∞ as ‖S‖ → ∞ or ‖S−1‖ → ∞; then Φ(S)
attains its minimum.

Proof. Consider the metric space (Pd, dR), where dR is the Riemannian distance,

(5.5) dR(A,B) = ‖log(A−1/2BA−1/2)‖F, A,B ∈ Pd.

If Φ(S) → ∞ as ‖S‖ → ∞ or as ‖S−1‖ → ∞, then Φ(S) has bounded lower-level
sets in (Pd, dR). It is a well-known result in variational analysis that an lsc function
which has bounded lower-level sets in a metric space attains its minimum [47]. Since
− logϕ(t) is lsc and log det(S−1) is continuous, Φ(S) is lsc on (Pd, dR). Therefore, it
attains its minimum.

A key consequence of this theorem is its utility is in showing existence of solutions
to (5.4) for a variety of different ECDs. We show an example application to Kotz-type
distributions [26, 28] below. For these distributions, the function Φ(S) assumes the

4The dgfs of different distributions are brought here for the reader’s convenience. Multi-
variate power exponential: φ(t) = exp(−tν/b), ν > 0. Multivariate W-distribution: φ(t) =
tν−1 exp(−tν/b), ν > 0. Elliptical gamma: φ(t) = tν−d/2 exp(−t/b), ν > 0. Multivariate t:
φ(t) = (1 + t/ν)−(ν+d)/2, ν > 0. Multivariate Pearson type II: φ(t) = (1 − t)ν , ν > −1, 0 ≤ t ≤ 1.
Elliptical multivariate logistic: φ(t) = exp(−√

t)/(1 + exp(−√
t))2.
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form

(5.6) K(S) = n
2 log det(S) + (d2 − α)

∑n

i=1
log xT

i S
−1xi +

∑n

i=1

(
xT
i S−1xi

b

)β

.

Lemma 5.5 shows that K(S)→∞ whenever ‖S−1‖ → ∞ or ‖S‖ → ∞.
Lemma 5.5. Let the data X = {x1, . . . , xn} span the whole space and for α < d

2
satisfy

(5.7)
|X ∩ L|
|X | <

dL
d− 2α

,

where L is an arbitrary subspace with dimension dL < d and |X ∩L| is the number of
datapoints that lie in the subspace L. If ‖S−1‖ → ∞ or ‖S‖ → ∞, then K(S)→∞.

Proof. If ‖S−1‖ → ∞ and since the data span the whole space, it is possible to
find a datum x1 such that t1 = xT

1 S
−1x1 →∞. Since

lim
t→∞ c1 log(t) + tc2 + c3 →∞

for constants c1, c3, and c2 > 0, it follows that K(S)→∞ whenever ‖S−1‖ → ∞.
If ‖S‖ → ∞ and ‖S−1‖ is bounded, then the third term in expression of K(S) is

bounded. Assume that dL is the number of eigenvalues of S that go to∞ and |X ∩L|
is the number of data that lie in the subspace spanned by these eigenvalues. Then in
the limit when eigenvalues of S go to ∞, K(S) converges to the following limit:

lim
λ→∞

n
2 dL logλ+ (d2 − α)|X ∩ L| logλ−1 + c.

Apparently if n
2 dL + (d2 − α)|X ∩ L| > 0, then K(S) → ∞, and the proof is com-

plete.
It is important to note that overlap condition (5.7) can be fulfilled easily by

assuming that the number of datapoints is larger than their dimensionality and that
they are noisy. Using Lemma 5.5 with Theorem 5.4, we obtain the following key result
for Kotz-type distributions.

Theorem 5.6 (mle existence). If the data samples satisfy condition (5.7), then
the log-likelihood of Kotz-type distribution has a maximizer (i.e., there exists an mle).

5.2.1. Optimization algorithm. Once existence is ensured, one may use any
local optimization method to minimize (5.4) to obtain the desired mle. For members
of the class g-convex that do not lie in class LN or class LC, we recommend invoking
the manifold optimization techniques summarized in section 3.

5.3. mle for distributions in class LN. For negative log-likelihoods (5.4)
in class LN, we can circumvent the heavy machinery of manifold optimization and
obtain simple fixed-point algorithms by appealing to the contraction results developed
in section 4. We note that some members of class g-convex may also turn out to lie
in class LN, so the discussion below also applies to them.

As an illustrative example of these results, consider the problem of finding the
minimum of negative log-likelihood solution of Kotz-type distribution (5.6). If the
corresponding nonlinear equation (4.22) with corresponding h(.) = (d2 − α)(.)−1 +
β
bβ
(.)β−1 has a positive definite solution, then it is a candidate mle; if it is unique,

then it is the desired solution to (5.6).
But how should we solve (4.22)? This is where the theory developed in section 4

comes into play. Convergence of the iteration (4.4) as applied to (4.22) can be obtained



CONIC GEOMETRIC OPTIMIZATION ON PSD MATRICES 735

from Theorem 4.10. But in the Kotz case we can actually show a stronger result that
helps ensure better geometric convergence rates for the fixed-point iteration.

Lemma 5.7. If c ≥ 0 and −1 < τ < 1, then g(x) = cx+ xτ is log-contractive.
Proof. Without loss of generality, assume t = ks with k ≥ 1. Assume that

g(t) ≥ g(s):

log g(t) = log(ct+ tτ )

= log(kcs+ kτsτ )

= log(k(cs+ sτ ) + kτsτ − ksτ )

= log k(cs+ sτ )
(
1 +

kτsτ − ksτ

k(cs+ sτ )

)

= log k + log g(s) + log
(
1 +

sτ (kτ−1 − 1)

(cs+ sτ )

)
,

| log g(t)− log g(s)| = | log t− log s|+ log
(
1 +

sτ (kτ−1 − 1)

(cs+ sτ )

)
.

Since the second term is negative, g is log-contractive. Consider the other case, g(t) ≥
g(s), that could happen only when τ ≤ 0:

log g(s) = log(cs+ sτ )

= log(ct/k + k|τ |tτ )

= log(k(ct+ tτ ) + k|τ |tτ + ct/k − ckt− ktτ )

= log k(ct+ tτ )
(
1 +

k|τ |tτ + ct/k − ckt− ktτ

k(ct+ tτ )

)

= log k + log g(t) + log
(
1 +

ct
(
k−2 − 1

)
+ tτ (k|τ |−1 − 1)

(ct+ tτ )

)
,

| log g(t)− log g(s)| = | log t− log s|+ log
(
1 +

ct
(

1
k2 − 1

)
+ tτ (k|τ |−1 − 1)

(ct+ tτ )

)
.

In this case, the second term is also negative. Therefore, h is log-contractive.

We assume that τ = β − 1 and c = bβ(d/2−α)
β ; knowing that h(.) = g(βb−β(.))

has the same contraction factor as g(.), we infer from Lemma 5.7 that h in the
iteration (4.22) for the Kotz-type distributions with 0 < β < 2 and α ≤ d

2 is log-
contractive. Based on Theorem 5.6, K(S) has at least one minimum. Thus, using
Theorem 4.8, we have the following main convergence result.

Theorem 5.8. If the data samples satisfy (5.7), then iteration (4.22) for Kotz-
type distributions with 0 < β < 2 and α ≤ d

2 converges to a unique fixed point.

5.4. mle for distributions in class LC. For completeness, we briefly mention
class LC here, which is perhaps one of the most studied classes of ECDs, at least
from an algorithmic point of view [27]. Therefore, we only discuss it summarily and
present our new results.

For the class LC, we assume that the dgf ϕ is log-convex. Without the assumptions
that are typically made in the literature, it can be that neither the GC nor the LN
analysis applies to class LC. However, the optimization problem still has structure
that allows simple and efficient algorithms. Specifically, here the objective function
Φ(S) can be written as a difference of two convex functions by introducing the variable
P = S−1, wherewith we have Φ(P ) = −an log det(P )−

∑
i logϕ(x

T
i Pxi).
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To this representation of Φ we may now apply the convex-concave procedure
(CCCP) [50] to search for a locally optimal point. The method operates as follows:

P k+1 ← argmin
P�0

−n
2 log det(P ) + tr

(
P
∑

i
h(xT

i P
kxi)xix

T
i

)
,

which yields the update

(5.8) P k+1 =
(

2
n

∑
i
h(xT

i P
kxi)xix

T
i

)−1

.

Because P k+1 is constructed using the CCCP procedure, it can be shown that
the sequence

{
Φ(P k)

}
is monotonically decreasing. Furthermore, since we assumed

h to be nonnegative, the iteration stays within the positive semidefinite cone. If the
cost function goes to infinity whenever the covariance matrix is singular, then using
Theorem 5.4 we can conclude that iteration converges to a positive definite matrix.
Thus, we can state the following key result for class LC.

Theorem 5.9 (convergence). Assume that Φ(P ) goes to infinity whenever P
reaches the boundary of Pd, i.e., ‖P‖ → ∞ ∨ ‖P−1‖ → ∞ =⇒ Φ(P ) → ∞. Fur-
thermore if − logϕ is concave and h is nonnegative, then each step of the iterative
algorithm given in (5.8) decreases the cost function, and furthermore it converges to
a positive definite solution.

A similar theorem, but under stricter conditions, was established in [27]. Knowing
that the iterative algorithm in (5.8) is the same as (4.22) and using Theorem 5.9 with
the existence result of Theorem 5.6 and the uniqueness result of Corollary 5.3, we can
state the following theorem for Kotz-type distributions (cf. Theorem 5.8).

Theorem 5.10. If the data samples satisfy condition (5.7), then iteration (4.22)
for Kotz-type distributions with β ≥ 1 and α ≤ d

2 converges to a unique fixed point.
Theorems 5.10 and 5.8 together show that the iteration (4.22) for Kotz-type

distributions with α ≤ d
2 and regardless of the value of β always converges to the

unique mle whenever it exists.

6. Numerical results. We briefly illustrate the numerical performance of our
fixed-point iteration. The key message here is that our fixed-point iterations solve
nonconvex problems that are further complicated by a positive definiteness constraint.
But by construction the fixed-point iterations satisfy the constraint, so no extra eigen-
value computation is needed, which can provide substantial computational savings. In
contrast, a general nonlinear solver must perform constrained optimization, which may
be unduly expensive.

We show two experiments (Figures 2 and 3) to demonstrate the scalability of
the fixed-point iteration with increasing dimensionality of the input matrix and for
varying β parameter of the Kotz distribution which influences convergence rate of
our fixed-point iteration. For all simulations, we sampled 10,000 datapoints from
the Kotz-type distribution with given α and β parameters and a random covariance
matrix.

We note that the problems are nonconvex with an open set as a constraint—
this precludes direct application of semidefinite programming or approaches such as
gradient-projection (projection requires closed sets). We also tried interior-point meth-
ods, but we did not include them in the comparisons because of their extremely slow
convergence speed on this problem. So we choose to show the result of (Riemannian)
manifold optimization techniques [1].



CONIC GEOMETRIC OPTIMIZATION ON PSD MATRICES 737

We compare our fixed-point iteration against four different manifold optimization
methods: (i) steepest descent (SD); (ii) conjugate gradients (CG); (iii) trust-region
(TR); and (iv) limited-memory RBFGS (denoted as LBFGS below), which implements
Algorithm 1. All methods are implemented in MATLAB (including the fixed-point
iteration); for manifold optimization we extend the Manopt toolbox [10] to support
the HPD manifold5 as well as Algorithm 1.

From Figure 2 we see that the basic fixed-point algorithm (FP) does not perform
better than SD, the simplest manifold optimization method. Moreover, even when
FP performs better than CG, TR, or LBFGS (Figure 3), it seems to closely follow
SD. However, the scaling idea introduced in section 4.2 leads to a fixed-point method
(FP2) that outperforms all other methods, both with increasing dimensionality and
varying β. The scale is chosen by ensuring trace(M(Sk+1)) = d.

These results merely indicate that the fixed-point approach can be competitive. A
more thorough experimental study to assess our algorithms remains to be undertaken.
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Fig. 2. Comparison of the running times of the fixed-point iterations and four different manifold
optimization techniques to maximize a Kotz-likelihood with β = 0.5 and α = 1 (see text for details).
FP denotes normal fixed-point iteration, and FP2 is the fixed-point iteration with scaling factor.
Manifold optimization methods are steepest descent (SD), conjugate gradient (CG), limited-memory
RBFGS (LBFGS), and trust-region (TR) . The plots show (from left to right) running times for
estimating S ∈ Pd for d ∈ {4, 16, 64}.

−1.5 −0.9 −0.3 0.3 0.9 1.5 
 −5 

 −3 

 −1 

 1  

3.01

5.01

log Running time (seconds) 

lo
g 

Φ
(S

)−
Φ

(S
m

in
) 

FP

L
B

F
G

S

C
G

S
DT

R

F
P

2

−1.4 −1.04 −0.68 −0.32 0.04  0.4 
 −5  

−2.94

−0.87

1.19 

3.24 

5.31 

log Running time (seconds) 

lo
g 

Φ
(S

)−
Φ

(S
m

in
) FP

LB
FG

S

CG
SD

TR

F
P

2

−1.3 −0.96 −0.62 −0.28 0.06  0.4 
 −5  

−2.8 

−0.59

 1.6 

3.81 

6.01 

log Running time (seconds) 

lo
g 

Φ
(S

)−
Φ

(S
m

in
) 

F
P

LB
FG

S

C
GS
D

TR

F
P

2

Fig. 3. In the Kotz-type distribution, when β gets close to zero or 2 or when α gets close to
zero, the contraction factor becomes smaller, which can impact the convergence rate. This figure
shows running time variance for Kotz-type distributions with d = 16 and α = 2β for different values
of β ∈ {0.1, 1, 1.7}.

7. Conclusion. We studied geometric optimization for minimizing certain non-
convex functions over the set of positive definite matrices. We showed key results
that help us recognize geodesic convexity; we also introduced a new class of log-
nonexpansive functions which contains functions that need not be geodesically convex

5The newest version of the Manopt toolbox ships with an implementation of the HPD manifold,
but we use our own implementation as it includes some utilities specific to LBFGS.
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but can still be optimized efficiently. Key to our ideas was a construction of fixed-point
iterations in a suitable metric space on positive definite matrices.

Additionally, we developed and applied our results in the context of maximum
likelihood estimation for elliptically contoured distributions, covering instances sub-
stantially beyond the state-of-the-art. We believe that the general geometric opti-
mization techniques that we developed in this paper will prove to be of wider use and
interest beyond our motivating examples and applications. Moreover, developing a
more extensive geometric optimization numerical package is an ongoing project.
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