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Abstract

Ultimately being motivated by facilitating space-variant
blind deconvolution, we present a class of linear trans-
formations, that are expressive enough for space-variant
filters, but at the same time especially designed for effi-
cient matrix-vector-multiplications. Successful results on
astronomical imaging through atmospheric turbulences and
on noisy magnetic resonance images of constantly moving
objects demonstrate the practical significance of our ap-
proach.

1. Introduction

A wide variety of image transformations, such as convo-
lution, blur, optical flow, illumination, non-rigid deforma-
tions, and many others, can be expressed (or sometimes at
least approximated) as linear transformations. Restricting
ourselves for notational simplicity to vector-valued images,
we may write a linear image transformation as a matrix-
vector-multiplication (MVM)

y = Az, 9]

where x is an input image, y is the output image, and A is
the matrix expressing the linear image transformation.

Such a linear transformation matrix is considered in the
Filter Flow framework of Seitz and Baker [25], who show
how versatile linear transformations are. In their setup they
estimate A given both = and y. Since this is a vastly under-
determined problem, they introduce a catalog of constraints
to restrict the solution space. We also focus on constraining
A, but with a different goal, specifically, to efficiently per-
form MVMs, because these are the essential operations for
blind deconvolution algorithms.

Most prominently, if we restrict A to be a convolution
matrix, then the MVM Az is equal to the space-invariant
convolution a * x for an associated point-spread function
(PSF) a. In this case, the MVMs for A and AT can be calcu-
lated rapidly using Fast Fourier Transforms (FFTs). Since
a * x is also linear in a, there exists furthermore a matrix X
such that @ * = Az = Xa. Even for X and X the cor-
responding MVMs can be performed efficiently. All these
four MVMs are particularly important for the problem of

blind deconvolution (BD) where both the PSF a, parame-
terizing the matrix A, and the true image = are unknown.
Only given the blurry image ¥, the task is to recover the
true underlying image = and possibly the PSF as well. A
common approach to this problem is an alternating least-
squares method which does require all four MVMs men-
tioned above.

Understandably,  space-invariant convolutions are
severely restrictive compared with general linear trans-
formations, which are wusually computationally pro-
hibitive [25]. Hence it is of great practical value to
introduce a class of space-variant linear transformations for
which the MVMs wrt both  and the parameters a (of the
linear transformation A) can be calculated efficiently.

Main contribution: This paper introduces and details a
framework for “Efficient Filter Flow” (EFF) that allows
rapid MVMs for A, AT, X, and X7 while simultaneously
being expressive enough to provide space-variant filtering.
Our framework enables us to tackle space-variant blind de-
convolution for multiple frames, and we demonstrate our
setup on two real-world scientific applications.

2. Related Work

Deconvolution. Removing the effects of blurring by de-
convolution is a well-studied problem. In its simplest
setup, the blur is assumed to be global and known, and
one can apply methods such as the Richardson-Lucy algo-
rithm [24, 21] to deconvolve the image. Even in this simple
case, the ill-posedness of the deconvolution problem makes
it impossible to obtain perfect solutions [12]; the difficulties
are further compounded by noise. The next step is to con-
sider blurs that are spatially-variant (though often a local-
invariance is assumed). Early relevant work includes [20],
where the authors cleanly formalize space-variant imaging
systems, and discuss basic special cases such as: piecewise
space-invariant systems and geometric distortion.

Blind-Deconvolution. More relevant to our paper is work
on blind-deconvolution. Here the blur kernel is unknown,
which dramatically complicates the deconvolution problem:;
we refer the reader to [17] for a survey. An overview and
evaluation of recently proposed and state-of-the-art decon-



volution algorithms is in [19], where Levin et al. also as-
certained that the space-invariance assumption is frequently
violated in practice. We focus on space-variant blind-
deconvolution, with emphasis on efficient computation.
Bascle et al. [4] used multiple blurred frames to gener-
ate a single deblurred image; Yuan ef al. [31] used a pair
of blurred and noisy images, though with space-invariant
kernels. Rav-Acha and Peleg [23] treat images blurred in
different directions to obtain a better estimate of the blur;
Choet al. [7] use multiple blurry images (usually two), us-
ing segmentation to isolate parts with invariant blurs. Bard-
sley et al. [3] use phase-diversity combined with the non-
blind procedure of [22] to perform space-variant blind-
deconvolution. Levin [18] segmented the image into mul-
tiple layers, assuming an invariant kernel for each layer;
Fergus et al. [9] use natural image statistics to guide the
blur estimation; Dai and Wu [8] present a method based
on alpha-matting and segmentation to recover the blur ker-
nel; Agrawal and Xu [ 1] use coded-apertures in conjunction
with the motion-from-blur method of [8]; Shan et al. [26]
use only a single image, but admit only rotational blurs;
Tai et al. [29] use a hybrid camera setup inspired by [5].
Efficient Computation: An idea key to our framework was
introduced by Stockham [28], who presented the overlap-
add (OLA) method for fast convolution and correlation. For
1D signals, such as audio, Allen [2] used OLA, aka short-
time Fourier analysis and synthesis for time-variant filter-
ing. However, he considered Az only and did not show
how to calculate ATz, which is required for deconvolution.
Neither does he show how to calculate X Ty, which is re-
quired for blind-deconvolution. For two dimensional sig-
nals, Hinman [14] generalized short-time Fourier analysis
to short-space Fourier analysis, but did not consider syn-
thesis needed for space-variant filtering. Nagy [22] does
consider synthesis, but only for rectangular and triangular
windows; he also considers A and AT only, thus non-blind.

3. Efficient Filter Flow

For simplicity we introduce our framework for vector-
valued images. The generalization to matrix-valued images
is straightforward. We quickly review space-invariant fil-
ters; this sets the notation and lays the foundation for our
framework for space-variant filters.

3.1. Space-invariant linear filters

A particularly useful subset of the linear transformations
are space-invariant filters. These filters can be represented
by a vector a (of some length k), and their operation can be
defined as a convolution of x with a,

k—1
Y = Z]‘:O a;Ti—j for 0 <1< m. (2)

The filter a is also called the point-spread function (PSF).
Recall that x is of length n and y of length m. We choose
to chop the valid part from the full convolution so that m =
n — k + 1. Since the transformation (2) is linear in x and
can be written as y = Ax for A; ;4; = a; for0 < i <m
and 0 < j < k. In other words A contains in each row a
shifted copy of a. For such a structured A, MVMs can be
performed in O(nlogn) multiplications using FFTs with
appropriate zero-padding. If the signal is much longer than
the PSF, i.e., n > k, then the MVMs can be processed
even faster by chunking the signal into patches and using
the overlap-add (OLA) method of Stockham [28]. If g is the
size of the FFT for the patches, then OLA costs O(n log q).
We explain OLA in greater detail below as it forms the basis
of our framework for efficient space-variant linear filters.

3.2. Efficient space-variant linear filters

A full-blown space-variant filter is computationally in-
feasible, while for many real-world applications space-
invariant convolutions are too restrictive. Therefore, it is
natural to seek a compromise. Our compromise is to de-
fine space-variant linear filters that can be computed almost
as efficiently as space-invariant linear filters. The key idea
behind this efficiency is to modify the overlap-add (OLA)
method to calculate space-variant linear filters.

The usual OLA method chops the image into overlap-
ping patches, damps the borders of each patch with some
windowing function, convolves each patch with the same
filter, and then adds the transformed patches to obtain the
output image. If each patch is processed with its own filter
we get a space-variant linear filter.

Formally, suppose we use p overlapping patches of an
input image x. For patch r (0 < r < p) we use the window-
ing function w(") (represented as a vector of the same length
as z) that is non-zero only for the interval of the correspond-
ing patch in z. Entry-wise multiplication of w(") with z,
sets all entries in x outside the r-th patch to zero, window-
ing the remaining entries. Denoting the p filters of length
k by a(r) (0 < r < p), our space-variant OLA (SVOLA)
filtering is

y; = Z Z ay)wz@j z;—j for 0 < i < m. 3)

For fixed patch size and fixed number of patches, the
amount of overlap and the locations of the patches can be
easily calculated. The parameters of the SVOLA filtering
are the k PSFs (9, ... ah— 1),



3.2.1 Allowable window functions

Care must be taken when choosing window functions since
they must add up to one, that is,

-1
Zp_o w =1 for0<i<m. &)
Without this property artefacts will show up in the output
image y at the overlapping areas of the patches. In prac-
tice, this property can always be enforced by normalizing
the window functions.

3.3. Efficient MVMs for SVOLA

Now that we have defined the space-variant version of
OLA, we come to the most important part: efficient imple-
mentation of the MVMs.

Since x appears only linearly in Eq. (3), we can write it
as y = Ax. The filter matrix A is given by

-1
A= Zi:o A Diag(w(r)), 5)

where A(") is the matrix corresponding to the convolution
a™ (0 < r < p), and Diag(v) is a diagonal matrix that has
vector v along its diagonal. However, this representation
does not describe how MVMs with A, nor with AT, can be
efficiently computed. For that we equivalently express A as
the following sum of a product of matrices

p—1
y=2, y_ C} F" Diag(FZ,a!")FC, Diag(w™) z. (6)
r=0

A

Equation (6) looks complicated, but is simple to understand.
Here are the details: (i) C). is a matrix that chops the r-th
patch from a vector of length n; (ii) Z, is a zero-padding
matrix that appends zeros to a(") such that its size matches
the patch size; (iii) F' is the Discrete Fourier Transform
(DFT) matrix (implemented by FFT); (iv) F H is the Hermi-
tian of the the DFT matrix (implemented by inverse FFT);
and (v) Z, is the zero-padding matrix that prepends zeros
to a vector such that its size matches the size of the vector
resulting from the summation.

The proof that A in Eq. (5) is the same as in Eq. (6) fol-
lows directly from the FFT implementation of convolution.
Reading (6) from right to left this expression succinctly de-
scribes the steps needed to efficiently compute Ax. We can
also read off AT as

p—1
AT =" Diag(w'”)C] F Diag(FZ,a")FC, Z, (7)
r=0
p—1 -
= Diag(w™)C] F"Diag(F Z,a")FC,Z,, (8)
r=0

where A is the component-wise complex conjugate of A.
Eqn. (8) follows from (7) because A is a real valued matrix,
whereby A = A. Reading (8) from right to left describes
the steps needed to efficiently calculate MVM for AT. In
words, we perform steps similar to SVOLA on y but with
windowing at the end instead of the beginning, and with
complex conjugation of the FFT of the PSFs, resulting in
calculating patch-wise correlations instead of convolutions.

For non-blind deconvolution case with a space-variant
filter A, efficient MVMs with A and AT suffice. But for
blind deconvolution we need more. Since Eq. (3) is also
linear in the k PSFs, we next define a matrix X such that
y = Ax = Xa, where a denotes the stacked sequence of
PSFs a(®) ... a(P~1). Now we rewrite (6) using D(v)w =
D(w)v and some matrix B, that chops the r-th PSF from
the vector a,

p—1
y=2, Z CI FM Diag(FC, Diag(w'")2) FZ, B, a. (9)
r=0

X

This expression is not needed for implementing X a since
we already know how to compute Az = Xa quickly, but
it allows us to derive an algorithm for efficient MVM with
X T simply by taking the transpose of the expression for X,

p—1

X'=Y " BZ]F" Diag(FC, Diag(w")z)FC, Z,, (10)
r=0
p—1

= B z] F'Diag(FC, Diag(w(")x) FC,Z,, (11)
r=0

where we again used X = X, as X is real. In words, the
algorithm implied by (11) for X Tv consists of splitting v
into patches, correlating them with the patches from z, and
finally summing up the results.

3.4. Computational complexity

The computational complexity of SVOLA-based MVMs
for A, AT, X, and X7 is the same as the OLA method for
space-invariant filtering which is about O(n log ¢), where ¢
is the size of the FFT for the patches. Thus we see that the
SVOLA is as efficient as the space-invariant filtering. Since
the PSFs a(") are much smaller than the input image x, the
memory requirement for storing the space-variant filter is
much less than O(mn) needed by a general linear transfor-
mation. We note, however, that estimating the parameters
for SVOLA-based transformations (e.g., in blind deconvo-
lution), is usually more costly, since the number of parame-
ters increases with the number of patches, while for space-
invariant filters, only a single filter needs to estimated.



3.5. Expressivity

Obviously, a space-invariant filter represented by a PSF
a is a special case of the SVOLA filtering. When all PSFs
al”) = a, using (4), we see that (3) reduces to (2).

At the other extreme, SVOLA filtering can implement
any linear transformation A. To do so, we need m image
patches, one for each row of A. Then, we set all win-
dow functions to constant 1/m, and the PSFs character-
izing the SVOLA filtering to the rows of A. This case is
degenerate as patches overlap completely and PSFs, as long
as the signal, are only evaluated once. But it shows that
SVOLA filtering actually covers the entire range from to
space-invariant filtering to arbitrary linear transformations,
trading computational efficiency for being more expressive.

Figure 1 shows further examples what kind of image
transformations our framework is able to express.

4. Space-Variant Blind Deconvolution

Least-squares based alternating minimization methods
offer a simple but effective choice for blind-deconvolution.
Here one estimates the image x given A and y by mini-
mizing ||Az — y||?; analogously one estimates a given x
and y by minimizing || Xa — y||? (a and X were intro-
duced in Sec. 3.3). It is also natural to add non-negativity
constraints on x and a, so that both minimizations are
essentially special cases of the non-negative least-squares
problem, z = argmin,~||/Bz — y||?, which is commonly
solved using: (i) constrained optimization using its gradient
2BT(Bz — y) wrt. z; and (ii) using multiplicative updates,

BTy

BTB:z (12)

O

where the Hadamard product ®, and the fraction bar denote
component-wise multiplication and division, respectively.

Both gradient-based and multiplicative methods were
used by Harmeling et al. [ 1 3] for deriving an efficient online
algorithm for multiframe blind deconvolution. Their algo-
rithm recovers a true image x given a sequence of noisy and
blurred images y(©, ...,y each of which is modeled
as y® = A® z 4+ n® for 0 < ¢t < s. The noise n is
assumed to be zero-mean Gaussian, and the transformation
matrices A®*) are unknown.

Harmeling et al. showed the effectiveness of process-
ing the image sequence y(?), . .., y(*~1) using the following
two steps in alternatingly:

1. Given x and y(") estimate the PSF a("), parameterizing
A, using constrained optimization,

2. Given A and y update the true underlying image x
by a single multiplicative update step, as in (12).

At the beginning z is initialized by the first observation 3/(?).

However, Harmeling et al. [13] considered only space-
invariant convolutions. Thus the immediate question is
whether their online algorithm for multiframe blind decon-
volution can be combined with our framework of space-
variant filtering? The answer is ‘yes’ and will be proven
in the following experimental section.

5. Experiments

Our work is motivated by two main application areas:
(1) ground-based astronomical observations through turbu-
lences of the atmosphere, and (ii) magnetic resonance imag-
ing (MRI) of objects in constant motion with high noise.
In the following we present results for both problems that
demonstrate that our framework for efficient filter flow does
solve these real-world problems. However, for both applica-
tions there is no ground truth available, so additionally we
show controlled lab experiments with known ground truth
which we describe first.

5.1. Controlled lab experiments

To verify and evaluate our approach we recorded several
image sequences under controlled conditions. For these ex-
periments we mounted a Canon EOS 5D Mark II camera
equipped with a 200 mm zoom lens on a tripod on a plat-
form roof and captured a static scene through hot air ex-
hausted by the building’s vent, which could be closed to
take sharp images of the same scene. The sequences consist
of 100 frames degraded by spatially-varying blur (each with
an exposure time of 1/250s). Figure 4 shows typical frames
and in the last row the reconstructed images. The images
of the “chimney” and the “building” sequences have size
237 x 237 pixels, the images of the “books” sequence have
size 109 x 109 pixels. For all three sequences we choose a
Bartlett-Hanning window with 50%overlap. We modelled
the space-variant blurs with 3 x 3 PSFs. Figure 3 com-
pares our reconstructed images (left column) with the sharp
ground-truth images. For all three image sequences the re-
constructed images reveal great faithfulness in detail and
high-frequency structure confirming both our image model
and the presented blind deconvolution algorithm.

5.2. Looking through atmospheric turbulences

The top row of Figure 2 shows typical frames from an
image sequence of the central massive of the lunar crater
Copernicus. The original recording was taken with a 14-
inch {710 Celestron C14 and a DMK 31 AF03 CCD camera
from Imaging Source at a frame rate of 30 fps with an expo-
sure time of 10 ms. The field of view is 227x227 pixels in
size, which corresponds to an angular size of approximately
16”, which is despite the good seeing conditions at the time
of recording, beyond the isoplanatic patch. Thus space-
variant filters are needed to describe the image deforma-



Figure 1. Expressivity of our proposed SVOLA framework; (left to right) Rotational transformation approximated by a spatially-varying
PSF with 13x13 kernels each 41x41 pixels in size, atmospheric blur with 3x3 different speckle patterns each, global motion blur, expressable

by one single PSF.

tion caused by the atmosphere. The bottom row of Figure 2
shows the results of state-of-the-art reconstruction methods
after having processed 200 frames. From left to right we
show the subjectively best observed frame, a reconstruc-
tion with AviStack, a standard “lucky imaging” software
[10, 30], a Knox-Thompson reconstruction [16, 27] (us-
ing 300 Know-Thompson and 100 triple correlation phase
pairs), the results of Harmeling et al. [13] (with PSF size
31 x 31 pixels and Tikhonov regularization for the PSF),
and of BD based on EFF. We modelled the recorded frames
as an EFF with 3 x 3 PSFs of size 31 x 31 pixels and a
Bartlett-Hanning window of size 128 x 128 with 50% over-
lap to model the space-variant blur. For none of the method
further post-processing was performed.

Not surprisingly, the reconstruction with AviStack is
only slightly better than the visually best observed frame.
By comparison, the result of the Knox-Thompson method

reveals greater detail and higher spatial resolution. Despite
the violated assumption of isoplanacity, the reconstucted
image modelled by a single PSF is comparable in quality to
the Knox-Thompson reconstruction. Compared to the pre-
vious images, our estimated image under the assumption of
a spatially varying PSF shows even more detail and reveals
structure unresolved in the previous images.

5.3. MRI of objects in motion

The second application addresses the common problem
of object motion in Magnetic Resonance Imaging (MRI).
MRI is a medical imaging modality for visualising the in-
ternal structure and function of the human body and animals
used in preclinical studies. Compared to computed tomog-
raphy (CT), MRI provides much greater contrast between
different soft tissues, that makes it especially useful in neu-
rological (brain), musculoskeletal, cardiovascular, and on-
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Figure 2. Copernicus Crater: top row shows typical observed frames; bottom row compares our approach against other state-of-the-art

methods.
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Figure 3. Results from the EFF reconstruction compared to ground
truth for the controlled experiments.

cological (cancer) imaging.

Figure 6 shows typical frames of two image sequences
of a mouse’s thorax in a preclinical study for contrast MRI.
The sequences correspond to two axial slices at different
height. Both were taken with a 7 Tesla ClinScan of Bruker
and consist of 200 frames, each 128 x 128 pixel in size.
As can be seen from these frames, object motion produces

large blurs and leads to a significant loss in image quality.
Besides global object motion also the heart beat causes local
distortions. Both global and local deformations can be de-
scribed by our framework for space-variant filtering. Thus
we applied our space-variant blind deconvolution algorithm
with 4 x 4 PSFs of size 20 x 20 pixels (choosing a Bartlett-
Hanning window of size 64 x 64 pixels with 50% overlap).
For kernel estimation we imposed additional Tikhonov reg-
ularization. Figure 6 shows the estimated images of our
method. More interestingly, our method can be used for ef-
fective motion correction, as at each time step the estimated
object image remains at the same position. Dropping the
energy constraint on the kernel, the estimated PSFs give not
only information about the object motion, but also about
the intensity change, which is of mayor interest in contrast
or functional MRI. For comparison Figure 5 compares our
results with a state-of-the-art method for non-rigid registra-
tion from Friston ez al. [11]. We clearly see that our method
recovers more image details.

6. Discussion and Conclusion

We introduced a powerful framework for space-variant
blind-deconvolution by considering a structurally restricted
set of admissible linear filters. Our framework offers an effi-
cient compromise between the extremes of space-invariance
and full-dense linear transformations. We extended the
overlap-add idea to the space-variant setting, thereby allow-
ing us to compute matrix-vector-multiplications involving
the filter rapidly using FFTs. We applied our framework
to real-world blind-deconvolution applications drawn from
astronomy and medical imaging. We obtained very encour-
aging results, using an efficient online algorithm, without
taking resort to expensive equipment like hybrid cameras.

Some questions do remain open at this point. The first
one is how to further improve the runtime of kernel estima-
tion, especially because the number of parameters involved
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Figure 4. EFF reconstruction (bottom row) and typical frames
from the controlled experiments.

can be large. For kernels (per patch) of sizes 31 x 31 the run-
time lies in minutes, though for sizes of 15 x 15 the runtime
is in seconds. For speeding up kernel estimation, we did try
the recent ideas of Joshi et al. [15] and Cho et al. [6]. But
in our experiments, the presence of noise led to unfavorable
kernel estimates. Another method of speedup could be by
using GPUs for computation, though the large amount of
data transfer could impede an easy speedup.

Friston et al. [11] EFF reconstruction

Figure 5. MRI of objects in motion: comparison to the non-rigid
registration method of Friston ez al. [11] versus our approach

Other immediate open questions that we wish to inves-
tigate in the future include application of our framework to
other domains where space-variant blind-deconvolution is
important, e.g., to electron microscopy.
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