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Suvrit Sra and Reshad Hosseini

Abstract Machine learning models often rely on sparsity, low-rank, orthogonality,
correlation, or graphical structure. The structure of interest in this chapter is geomet-
ric, specifically the manifold of positive definite (PD) matrices. Though these matri-
ces recur throughout the applied sciences, our focus is on more recent developments
in machine learning and optimization. In particular, we study (i) models that might
be nonconvex in the Euclidean sense but are convex along the PD manifold; and (ii)
ones that are fully nonconvex but are nevertheless amenable to global optimization.
We cover basic theory for (i) and (ii); subsequently, we present a scalable Rieman-
nian limited-memory BFGS algorithm (that also applies to other manifolds). We
highlight some applications from statistics and machine learning that benefit from
the geometric structure studies.

1 Introduction

Fitting mathematical models to data invariably requires numerical optimization.
The field is thus replete with tricks and techniques for better modeling, analysis,
and implementation of optimization algorithms. Among other aspects, the notion of
“structure,” is of perennial importance: its knowledge often helps us obtain faster
algorithms, permit scalability, gain insights, or capture a host of other attributes.

Structure has multifarious meanings, of which perhaps the best known is spar-
sity [5, 52]. But our focus is different: we study geometric structure, in particular
where model parameters lie on a Riemannian manifold.
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Geometric structure has witnessed increasing interest, for instance in optimiza-
tion over matrix manifolds (including orthogonal, low-rank, positive definite matri-
ces, among others) [1, 12, 50, 55]. However, in distinction to general manifold opti-
mization, which extends most Euclidean schemes to Riemannian manifolds [1, 53],
we focus on specific case of “geometric optimization” problems that exploit the
special structure of the manifold of positive definite (PD) matrices. Two geomet-
ric aspects play a crucial role here: (i) the nonpositive curvature of the manifold,
which allows defining a global curved notion of convexity along geodesics on the
manifold; and (ii) the convex (Euclidean) conic structure (e.g., as used in Perron-
Frobenius theory, which includes the famous PageRank algorithm as a special case).

One of our key motivations for studying geometric optimization is that for many
problems it may help uncover hidden (geodesic) convexity, and thus provably place
global optimization of certain nonconvex problems within reach [50]. Moreover,
exploiting geometric convexity can have remarkable empirical consequences for
problems involving PD matrices [47]; which persist even without overall (geodesic)
convexity, as will be seen in §3.1.

Finally, since PD matrices are ubiquitous in not only machine learning and statis-
tics, but throughout the applied sciences, the new modeling and algorithmic tools of-
fered by geometric optimization should prove to be valuable in many other settings.
To stoke the reader’s imagination beyond the material described in this chapter, we
close with a short list of further applications in Section 3.3. We also refer the reader
to our recent work [50], that develops the theoretical material related to geometric
optimization in greater detail.

With this background, we are now ready to recall the geometric concepts at the
heart of our presentation, before moving on to detailed applications of our ideas.

1.1 Manifolds and Geodesic Convexity

A smooth manifold is a space that locally resembles Euclidean space [29]. We focus
on Riemannian manifolds (smooth manifolds equipped with a smoothly varying
inner product on the tangent space) as their geometry permits a natural extension of
many nonlinear optimization algorithms [1, 53].

In particular, we focus on the (matrix) manifold of real symmetric positive def-
inite (PD) matrices. Most of the ideas that we describe apply more broadly to
Hadamard manifolds (i.e., Riemannian manifolds with non-positive curvature), but
we limit attention to the PD manifold for concreteness and due to its vast importance
in machine learning and beyond [6, 17, 45].

A key concept on manifolds is that of geodesics which are curves that join points
along shortest paths. Geodesics help one extend the notion of convexity to geodesic
convexity. Formally, suppose M is a Riemmanian manifold, and x,y are two points
on M . Say γ is a unit speed geodesic joining x to y, such that

γxy : [0,1]→M , s.t. γxy(0) = x, γxy(1) = y.
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Then, we call a set A ⊆ M geodesically convex, henceforth g-convex, if the
geodesic joining an arbitrary pair of points in A lies completely in A . We say
f : A → R is g-convex if for all x,y ∈ A , the composition f ◦ γxy : [0,1]→ R is
convex in the usual sense. For example, on the manifold Pd of d× d PD matrices
the geodesic γXY between X ,Y ∈ Pd has the beautiful closed-form [6, Ch. 6]:

γXY (t) := X1/2(X−1/2Y X−1/2)tX1/2, 0≤ t ≤ 1. (1)

It is common to write X]tY ≡ γXY (t), and we also use this notation for brevity.
Therewith, a function f : Pd → R is g-convex if on a g-convex set A it satisfies

f (X]tY )≤ (1− t) f (X)+ t f (Y ), t ∈ [0,1], X ,Y ∈A . (2)

G-convex functions are remarkable in that they can be nonconvex in the Euclidean
sense, but can still be globally optimized. Such functions on PD matrices have al-
ready proved important in several recent applications [17,18,23,44,48,49,57,58,62].
We provide below several examples, and refer the interested reader to our work [50]
for a detailed, more systematic development of g-convexity on PD matrices.

Example 1 ( [50]). The following functions are g-convex on Pd : (i) tr(eA); (ii) tr(Aα)

for α ≥ 1; (iii) λ
↓
1 (e

A); (iv) λ
↓
1 (A

α) for α ≥ 1.

Example 2 ( [50]). Let X ∈ Cd×k be an arbitrary rank-k matrix (k ≤ d), then A 7→
trX∗AX is log-g-convex, that is,

trX∗(A]tB)X ≤ [trX∗AX ]1−t [trX∗BX ]t , t ∈ [0,1]. (3)

Inequality (3) depends on a nontrivial property of ]t proved e.g., in [50, Thm. 2.8].

Example 3. If h : R+ → R+ is nondecreasing and log-convex, then the map A 7→
∑

k
i=1 logh(λi(A)) is g-convex. For instance, if h(x) = ex, we obtain the special case

that A 7→ log tr(eA) is g-convex.

Example 4. Let Ai ∈ Cd×k with k ≤ d such that rank([Ai]
m
i=1) = k; also let B � 0.

Then φ(X) := logdet(B+∑i A∗i XAi) is g-convex on Pd .

Example 5. The Riemannian distance δR(A,X) := ‖log(X−1/2AX−1/2)‖F between
A,X ∈ Pd [6, Ch. 6] is well-known to be jointly g-convex, see e.g., [6, Cor. 6.1.11].
To obtain an infinite family of such g-convex distances see [50, Cor. 2.19].

Consequently, the Fréchet (Karcher) mean and median of PD matrices are g-
convex optimization problems. Formally, these problems seek to solve

min
X�0

∑
m
i=1 wiδR(X ,Ai), (Geometric Median),

min
X�0

∑
m
i=1 wiδ

2
R(X ,Ai), (Geometric Mean),

where ∑i wi = 1, wi ≥ 0, and Ai � 0 for 1≤ i≤ m. The latter problem has received
extensive interest in the literature [6–8,25,39,41,48]. Its optimal solution is unique
owing to the strict g-convexity of its objective.
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1.2 Beyond g-Convexity: Thompson-Nonexpansivity

We highlight now a special class of nonconvex functions that is amenable to global
optimization without requiring g-convexity. Specifically, we consider functions that
admit “sup norm” contractions, namely contractions under the Thompson metric:

δT (X ,Y ) := ‖log(Y−1/2XY−1/2)‖, (4)

where ‖·‖ is the usual operator norm (hence the ‘sup’). This metric is an object of
great interest in nonlinear Perron-Frobenius theory [28, 30].

We consider maps non-expansive under the Thompson metric (4). Since the met-
ric space (Pd ,δT ) is complete, non-expansive maps under this metric provide fer-
tile grounds for designing convergent iterative algorithms (using fixed-point theory)
without needing g-convexity. We say Φ : Pd → Pd is Thompson non-expansive if

δT (Φ(X),Φ(Y ))≤ qδT (X ,Y ), 0≤ q≤ 1. (5)

If q < 1, then Φ is called q-contractive. Since the Thompson metric is generated by
the operator norm, it turns out to satisfy a larger body of properties (than δR) that
are useful for analyzing fixed-point iterations. We recall some of these properties
below—for details please see [28, 30, 31, 50].

Proposition 1. Unless noted otherwise, all matrices are assumed to be PD.

δT (X−1,Y−1) = δT (X ,Y ) (6a)
δT (B∗XB,B∗Y B) = δT (X ,Y ), B ∈ GLn(C) (6b)

δT (X t ,Y t) ≤ |t|δT (X ,Y ), for t ∈ [−1,1] (6c)

δT

(
∑i wiXi,∑i wiYi

)
≤ max

1≤i≤m
δT (Xi,Yi), wi ≥ 0,w 6= 0 (6d)

δT (X +A,Y +A) ≤ α

α +β
δT (X ,Y ), A� 0, (6e)

where α = max{‖X‖,‖Y‖} and β = λmin(A). Moreover, for X ∈ Cd×k (k ≤ d) with
full column rank we have the compression inequality [50, Thm. 4.3]:

δT (X∗AX ,X∗BX)≤ δT (A,B). (6f)

1.2.1 Why Thompson nonexpansivity?

Below we review a setting where Thompson nonexpansivity is useful. Consider the
optimization problem: minS�0 Φ(S), where Φ is continuously differentiable on Pd .
Since the constraint set is open, a necessary condition of optimality of a point S∗ is
that its gradient vanishes, that is,

∇Φ(S∗) = 0. (7)
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Various approaches could be used for solving the nonlinear (matrix) equation (7).
And among these, fixed-point iterations may be particularly attractive. Here, one
designs a map G : Pd → Pd , using which we can rewrite (7) in the form

S∗ = G (S∗), (8)

that is, S∗ is a fixed-point of G , and by construction a stationary point of Φ .
Typically, finding fixed-points is difficult. However, if the map G can be chosen

such that it is Thompson contractive, then simply running the Picard iteration

Sk+1← G (Sk), k = 0,1, . . . , (9)

will yield a unique solution to (7)—both existence and uniqueness follow from the
Banach contraction theorem. The reason we insist on Thompson contractivity is be-
cause many of our examples fail to be Euclidean contractions (or even Riemannian
contractions) but end up being Thompson contractions. Thus, studying Thompson
nonexpansivity is valuable. We highlight below a concrete example that arises in
some applications [15–18, 61], and is not a Euclidean but a Thompson contraction.

Application: Geometric Mean of PD Matrices.

Let A1, . . . ,An ∈ Pd be input matrices and wi ≥ 0 be nonnegative weights such
that ∑

n
i=1 wi = 1. A particular geometric mean of the {Ai}n

i=1, called the S-mean, is
obtained by computing [15, 18]

min
X�0

h(X) := ∑
n
i=1 wiδ

2
S (X ,Ai), (10)

where δ 2
S is the squared Stein-distance

δ
2
S (X ,Y ) := logdet

(X+Y
2

)
− 1

2 logdet(XY ), X ,Y � 0. (11)

It can be shown that δ 2
S is strictly g-convex (in both arguments) [48]. Thus, Prob-

lem (10) is a g-convex optimization problem. It is easily seen to possess a solution,
whence the strict g-convexity of h(X) immediately implies that this solution must
be unique. What remains is to obtain an algorithm to compute this solution.

Following (7), we differentiate h(X) and obtain the nonlinear matrix equation

0 = ∇h(X)≡ X−1 = ∑i wi

(
X+Ai

2

)−1
,

from which we naively obtain the Picard iteration

Xk+1←
[
∑i wi

(
Xk+Ai

2

)−1]−1
. (12)

Applying (6a), (6d), and (6e) in sequence we see that (12) is Thompson contraction,
which immediately allows us to conclude its validity as a Picard iteration and its
linear rate of convergence (in the Thompson metric) to the global optimum of (10).
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2 Manifold Optimization

Creating fixed-point iterations is somewhat of an art, and it is not always clear how
to obtain one for a given problem. Therefore, developing general purpose iterative
optimization algorithms is of great practical importance.

For Euclidean optimization a common recipe is to iteratively (a) find a descent
direction; and (b) obtain sufficient decrease via line-search which also helps ensure
convergence. We follow a similar recipe for Riemannian manifolds by replacing Eu-
clidean concepts by their Riemannian counterparts. For example, we now compute
descent directions in the tangent space. At a point X , the tangent space TX is the
approximating vector space (see Fig. 1). Given a descent direction ξX ∈ TX , we per-
form line-search along a smooth curve on the manifold (red curve in Fig. 1). The
derivative of this curve at X provides the descent direction ξX . We refer the reader
to [1, 53] for an in depth introduction to manifold optimization.

Sd
+

X

TX

⇠X

Fig. 1 Line-search on a manifold: X is a
point on the manifold, TX is the tangent
space at the point X , ξX is a descent direc-
tion at X ; the red curve is the curve along
which line-search is performed.

Euclidean methods such as conjugate-
gradient and LBFGS combine gradients at the
current point with gradients and descent di-
rections at previous points to obtain a new
descent direction. To adapt such algorithms
to manifolds we need to define how to trans-
port vectors in a tangent space at one point to
vectors in a tangent space at another point.

On Riemannian manifolds, the gradient is
a direction in the tangent space, where the
inner-product of the gradient with another di-
rection in the tangent space gives the direc-
tional derivative of the function. Formally, if
gX defines the inner product in the tangent
space TX , then

D f (X)ξ = gX (grad f (X),ξ ), for ξ ∈ TX .

Given a descent direction the curve along which we perform line-search can be
a geodesic. A map that combines the direction and a step-size to obtain a corre-
sponding point on the geodesic is called an exponential map. Riemannian mani-
folds also come equipped with a natural way to transport vectors on geodesics that
is called parallel transport. Intuitively, a parallel transport is a differential map with
zero derivative along the geodesics.

Using these ideas, and in particular deciding where to perform the vector trans-
port we can obtain different variants of Riemannian LBFGS. We recall one specific
LBFGS variant from [50] (presented as Alg. 1), which yields the best performance
in our applications, once we combine it with a suitable line-search algorithm.

In particular, to ensure Riemannian LBFGS always produces a descent direction,
we must ensure that the line-search algorithm satisfies the Wolfe conditions [44]:
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Table 1 Summary of key Riemannian objects for the PD matrix manifold.

Definition Expression for PD matrices
Tangent space Space of symmetric matrices

Metric between two tangent vectors ξ ,η at Σ gΣ (ξ ,η) = tr(Σ−1ξ Σ−1η)
Gradient at Σ if Euclidean gradient is ∇ f (Σ) grad f (Σ) = 1

2 Σ(∇ f (X)+∇ f (X)T )Σ
Exponential map at point Σ in direction ξ RΣ (ξ ) = Σ exp(Σ−1ξ )

Parallel transport of tangent vector ξ from Σ1 to Σ2 TΣ1,Σ2 (ξ ) = Eξ ET , E = (Σ2Σ
−1
1 )1/2

f (RXk(αξk))≤ f (Xk)+ c1αD f (Xk)ξk, (13)
D f (Xk+1)ξk+1 ≥ c2D f (Xk)ξk, (14)

where 0< c1 < c2 < 1. Note that αD f (Xk)ξk = gXk(grad f (Xk),αξk), i.e., the deriva-
tive of f (Xk) in the direction αξk is the inner product of descent direction and gra-
dient of the function. Practical line-search algorithms implement a stronger (Wolfe)
version of (14) that enforces

|D f (Xk+1)ξk+1| ≤ c2D f (Xk)ξk. (15)

Key details of a practical way to implement this line-search may be found in [23].

Algorithm 1 Pseudocode for Riemannian LBFGS
Given: Riemannian manifold M with Riemannian metric g; parallel transport T on M ;
geodesics R; initial value X0; a smooth function f
Set initial Hdiag = 1/

√
gX0 (grad f (X0),grad f (X0))

for k = 0,1, . . . do
Obtain descent direction ξk by unrolling the RBFGS method
Compute ξk← HESSMUL(−grad f (Xk),k)
Use line-search to find α such that it satisfies Wolfe conditions
Calculate Xk+1 = RXk (αξk)
Define Sk = TXk ,Xk+1 (αξk)
Define Yk = grad f (Xk+1)−TXk ,Xk+1 (grad f (Xk))
Update Hdiag = gXk+1 (Sk,Yk)/gXk+1 (Yk,Yk)
Store Yk; Sk; gXk+1 (Sk,Yk); gXk+1 (Sk,Sk)/gXk+1 (Sk,Yk); Hdiag

end for
return Xk
function HESSMUL(P,k)
if k > 0 then

Pk = P−
gXk+1 (Sk ,Pk+1)

gXk+1 (Yk ,Sk)
Yk

P̂ = TXk+1,Xk HESSMUL(TXk ,Xk+1 Pk,k−1) return P̂−
gXk+1 (Yk ,P̂)
gXk+1 (Yk ,Sk)

Sk +
gXk+1 (Sk ,Sk)

gXk+1 (Yk ,Sk)
P

else
return HdiagP

end if
end function
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3 Applications

We are ready to present two applications of geometric optimization. Section 3.1
summarizes recent progress in fitting Gaussian Mixture Models (GMMs), for which
g-convexity proves remarkably useful and ultimately helps Alg. 1 to greatly outper-
form the famous Expectation Maximization (EM) algorithm—this is remarkable as
previously many believed it impossible to outdo EM via general nonlinear optimiza-
tion techniques. Next, in Section 3.2 we present an application to maximum like-
lihood parameter estimation for non-Gaussian elliptically contoured distributions.
These problems are Euclidean nonconvex but often either g-convex or Thompson
nonexpansive, and thus amenable to geometric optimization.

3.1 Gaussian Mixture Models

This material of this section is based on the authors’ recent work [23]; the interested
reader is encouraged to consult that work for additional details.

Gaussian Mixture Models (GMMs) have a long history in machine learning and
signal processing and continue to enjoy widespread use [10, 21, 36, 40]. For GMM
parameter estimation, Expectation Maximization (EM) [20] still seems to be the de
facto choice—although other approaches have also been considered [43], typical
nonlinear programming methods such as conjugate gradients, quasi-Newton, New-
ton, are usually viewed as inferior to EM [59].

One advantage that EM enjoys is that its M-Step satisfies the PD constraint on
covariances by construction. Other methods often struggle when dealing with this
constraint. An approach is to make the problem unconstrained by performing a
change-of-variables using Cholesky decompositions (as also exploited in semidefi-
nite programming [14]). Another possibility is to formulate the PD constraint via a
set of smooth convex inequalities [54] or to use log-barriers and to invoke interior-
point methods. But such methods tend to be much slower than EM-like iterations,
especially in higher dimensions [49].

Driven by these concerns the authors view GMM fitting as a manifold optimiza-
tion problem in [23]. But surprisingly, an out-of-the-box invocation of manifold
optimization completely fails! To compete with and to outdo EM, further work is
required: g-convexity supplies the missing link.

3.1.1 Problem Setup

Let N denote the Gaussian density with mean µ ∈ Rd and covariance Σ ∈ Pd , i.e.,

N (x; µ,Σ) := det(Σ)−1/2(2π)−d/2 exp
(
− 1

2 (x−µ)T
Σ
−1(x−µ)

)
.

A Gaussian Mixture Model has the probability density
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p(x) := ∑
K
j=1 α jN (x; µ j,Σ j), x ∈ Rd ,

where α ∈ ∆K , the K-dimensional probability simplex, and {µ j ∈ Rd ,Σ j � 0}K
j=1.

Given i.i.d. samples {x1, . . . ,xn}, we wish to estimate these parameters by maximum
likelihood. This leads to the GMM optimization problem

max
α∈∆K ,{µ j ,Σ j�0}Kj=1

∑
n
i=1 log

(
∑

K
j=1 α jN (xi; µ j,Σ j)

)
. (16)

Problem (16) is well-known to be a difficult nonconvex problem. So like EM, we
also seek only efficient computation of local solutions. As alluded to above, before
we can successfully apply manifold optimization (in particular, our LBFGS algo-
rithm) to solve (16), we need to expose its g-convexity.

To that end, we begin with maximum likelihood estimation for a single Gaussian

max
µ,Σ�0

L (µ,Σ) := ∑
n
i=1 logN (xi; µ,Σ). (17)

Although (17) is Euclidean convex, it is not g-convex. In [23] a simple reformula-
tion1 is used that makes (17) g-convex and ends up having far-reaching impact on
the overall GMM problem. More precisely, we augment the sample vectors xi to
instead consider yT

i = [xT
i 1]. Therewith, problem (17) turns into

max
S�0

L̂ (S) := ∑
n
i=1 logN̂ (yi;S), (18)

where N̂ (yi;S) :=
√

2π exp( 1
2 )N (yi;0,S). Theorem 1 shows that (18) is g-convex

and its solution yields the solution to the original problem (17).

Theorem 1 ( [23]). The map−L̂ (S) is g-convex. Moreover, if µ∗,σ∗ maximize (17),

and S∗ maximizes (18), then L̂ (S∗) = L (µ∗,Σ ∗) for S∗ =
(

Σ ∗+µ∗µ∗T
µ∗

µ∗T 1

)
.

Theorem 2 states a local version of this result for GMMs.

Theorem 2 ( [23]). A local maximum of the reparameterized GMM log-likelihood

L̂ ({S j}K
j=1) := ∑

n
i=1 log

(
∑

K
j=1 α jN̂ (yi;S j)

)
(19)

is a local maximum of the original log-likelihood (16).

3.1.2 Numerical Results

We solve the reparameterized problem (19)2 using Alg. 1. We illustrate the per-
formance through experiments on real and simulated data. All compared methods

1 This reformulation essentially uses the “natural parameters”
2 Actually, we solve a slightly different unconstrained problem that also reparameterizes α j .
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are initialized using k-means++ [3], and all share the same stopping criterion. The
methods stop when the difference of average log-likelihood (i.e., log-likelihood/n)
between iterations falls below 10−6, or when the iteration count exceeds 1500.

Since EM’s performance depends on the degree of separation of the mixture
components [32, 59], we also assess the impact of separation on our methods. We
generate data as proposed in [19, 56]. The distributions are chosen so their means
satisfy the following separation inequality:

∀i 6= j : ‖µi−µ j‖ ≥ cmax
i, j
{tr(Σi), tr(Σ j)}.

The parameter c shows level of separation; we use e to denote eccentricity, i.e., the
ratio of the largest eigenvalue of the covariance matrix to its smallest eigenvalue. A
typical 2D data with K = 5 created for different separations is shown in Figure 2.
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Fig. 2 Data clouds for three levels of separation: c = 0.2 (low); c = 1 (medium); c = 5 (high).

We tested both high eccentricity (e= 10) and spherical (e= 1) Gaussians. Table 2
reports the results, which are obtained after running 20 different random initializa-
tions. Without our reformulation Riemannian optimization is not competitive (we
omit the results), while with the reformulation our Riemannian LBFGS matches or
exceeds EM. We note in passing that a Cholesky decomposition based formulation
ends up being vastly inferior to both EM and our Riemannian methods. Numerical
results supporting this claim may be found in [23].

Table 2 Speed and average log-likelihood (ALL) comparisons for d = 20, e = 10 and e = 1. The
numbers are averaged values for 20 runs over different sampled datasets, therefore the ALL values
are not comparable to each other. The standard-deviation are also reported in the table.

EM (e = 10) LBFGS (e = 10) EM (e = 1) LBFGS (e = 1)
Time (s) ALL Time (s) ALL Time (s) ALL Time (s) ALL

c = 0.2 K = 2 1.1 ± 0.4 -10.7 5.6 ± 2.7 -10.7 65.7 ± 33.1 17.6 39.4 ± 19.3 17.6
K = 5 30.0 ± 45.5 -12.7 49.2 ± 35.0 -12.7 365.6 ± 138.8 17.5 160.9 ± 65.9 17.5

c = 1 K = 2 0.5 ± 0.2 -10.4 3.1 ± 0.8 -10.4 6.0 ± 7.1 17.0 12.9 ± 13.0 17.0
K = 5 104.1 ± 113.8 -13.4 79.9 ± 62.8 -13.3 40.5 ± 61.1 16.2 51.6 ± 39.5 16.2

c = 5 K = 2 0.2 ± 0.2 -11.0 3.4 ± 1.4 -11.0 0.2 ± 0.1 17.1 3.0 ± 0.5 17.1
K = 5 38.8 ± 65.8 -12.8 41.0 ± 45.7 -12.8 17.5 ± 45.6 16.1 20.6 ± 22.5 16.1
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Table 3 Speed and ALL comparisons for natural image data d = 35.
EM Algorithm LBFGS Reformulated CG Reformulated CG Original CG Cholesky Reformulated
Time (s) ALL Time (s) ALL Time (s) ALL Time (s) ALL Time (s) ALL

K = 2 16.61 29.28 14.23 29.28 17.52 29.28 947.35 29.28 476.77 29.28
K = 4 165.77 31.65 106.53 31.65 153.94 31.65 6380.01 31.64 2673.21 31.65
K = 8 596.01 32.81 332.85 32.81 536.94 32.81 14282.80 32.58 9306.33 32.81
K = 10 2159.47 33.05 658.34 33.06 1048.00 33.06 17711.87 33.03 7463.72 33.05

Next, we present an evaluation on a natural image dataset, for which GMMs have
been reported to be effective [64]. We extracted 200K image patches of size 6× 6
from random locations in the images and subtracted the DC component. GMM fit-
ting results obtained by different algorithms are reported in Table 3. As can be seen,
manifold LBFGS performs better than EM and manifold CG. Moreover, our refor-
mulation proves crucial: without it manifold optimization is substantially slower.
The Cholesky-based model without our reformulation has the worst performance
(not reported), and even with reformulation it is inferior to the other approaches.

Fig. 3 visualizes evolution of the objective function with the number of iterations
(i.e., the number of log-likelihood and gradient evaluations, or the number of E- and
M-steps). The datasets used in Fig. 3 are the ‘magic telescope’ and ‘year prediction’
datasets3, as well as natural image data used in Table 2. It can be seen that although
manifold optimization methods spend time doing line-search they catch up with EM
algorithm in a few iterations.
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Fig. 3 The objective function with respect to the number of function and gradient evaluations. The
objective function is the Best ALL minus current ALL values. Left: ‘magic telescope’ (K = 5,d =
10). Middle: ‘year predict’ (K = 6,d = 90). Right: natural images (K = 8,d = 35).

3.2 MLE for Elliptically Contoured Distributions

Our next application is to maximum likelihood parameter estimation for Kotz-type
distributions. Here given i.i.d. samples (x1, . . . ,xn) from an Elliptically Contoured
Distribution Eϕ(S), up to constants the log-likelihood is of the form

3 Available at UCI machine learning dataset repository via https://archive.ics.uci.edu/ml/datasets
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L (x1, . . . ,xn;S) =− 1
2 n logdetS+∑

n
i=1 logϕ(xT

i S−1xi), (20)

where ϕ is a so-called density generating function (dgf). We write Φ ≡ −L , so
that computing the MLE amounts to minimizing Φ . But this is in general difficult:
Φ can be nonconvex and may have multiple local minima. However, under suitable
assumptions on ϕ , we can still maximize (20) to global optimality. Some examples
are already known [26, 42, 63], and geometric optimization yields results that are
more general than previously known examples. We refer the reader to [50] for the
precise details, and provide a quick summary of the main ideas below.

The “suitable assumptions” alluded to above cover two main classes of dgfs:

(i) Geodesically convex (g-convex): This class contains functions for which the
negative log-likelihood Φ(S) is g-convex. Some members of this class have
been previously studied (possibly without exploiting g-convexity);

(ii) Log-Nonexpansive (LN): This class was introduced in [50]. It exploits the
“non-positive curvature” property of the PD manifold and it covers several
ECDs outside the scope of previous methods [26, 57, 63]. This class is essen-
tially the same as what we call Thompson nonexpansive in this chapter.

In [50], the authors also discuss the class Log-Convex (LC), for which the dgf ϕ is
log-convex, whereby Φ is nonconvex. But since Φ is now a difference of convex
functions it is amenable to majorization-minimization.

Several examples of strictly g-convex ECDs are: (i) Multivariate Gaussian;
(ii) Kotz with α ≤ d

2 (its special cases include Gaussian, multivariate power expo-
nential, multivariate W-distribution with shape parameter smaller than one, elliptical
gamma with shape parameter ν ≤ d

2 ); (iii) Multivariate-t; (iv) Multivariate Pearson
type II with positive shape parameter; (v) Elliptical multivariate logistic distribution.

For the class LN, we can circumvent the machinery of manifold optimization and
obtain simple fixed-point algorithms as alluded to in Sec. 1.2.

As an illustrative example, consider the problem of finding the minimum of neg-
ative log-likelihood solution of Kotz-type distribution (which is a particular ECD):

Φ(S) = n
2 logdet(S)+( d

2 −α)∑
n
i=1 log(xT

i S−1xi)+∑
n
i=1

(
xT

i S−1xi
b

)β

, (21)

where α , β , and b are (known) fixed parameters. To minimize Φ , following Sec. 1.2,
we seek to solve ∇Φ(S) = 0. This amounts to the nonlinear matrix equation

S = 2
n ∑

n
i=1 xih(xT

i S−1xi)xT
i , (22)

where h(·) = ( d
2 −α)(·)−1 + β

bβ
(·)β−1. If (22) has positive definite solution, then it

is a candidate MLE. If it is unique, then it is the desired minimum of (21).
The question now is whether upon setting G := 2

n ∑
n
i=1 xih(xT

i S−1xi)xT
i and sim-

ply iterating Sk+1←G (Sk), we can obtain a solution to (22). This is where the theory
developed in §1.2 comes into play. We mention below a slightly stronger result.

Let τ = 1−β and c = bβ (d/2−α)
β

. Knowing that h(·) = g(( d
2 −α)(·)−1) has the

same contraction factor as g(·), it can be shown that h in the iteration (22) for Kotz-
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Fig. 4 Running times comparison between normal fixed-point iteration (FP), fixed-point iteration
with scaling factor (FP2) and four different manifold optimization methods. The objective function
is Kotz-type negative log-likelihood with parameters β = 0.5 and α = 1. The plots show (from left
to right), running times for estimating S ∈ Pd , for d ∈ {4,16,64}.

type distributions for which 0 < β < 2 and α < d
2 is Thompson-contractive. There-

with, one can show the following convergence result.

Theorem 3 ( [50]). For Kotz-type distributions with 0 < β < 2 and α < d
2 , Itera-

tion (22) converges to a unique fixed point.

3.2.1 Numerical Results

We compare now the convergence speed of fixed-point (FP) MLE iterations for dif-
ferent sets of parameters α and β . For our experiments, we sample 10,000 points
from a Kotz-type distribution with a random scatter matrix and prescribed values
of α and β . We compare the fixed-point approach with four different manifold
optimization methods: (i) steepest descent (SD); (ii) conjugate gradient (CG); (iii)
limited-memory RBFGS (LBFGS); (iv) trust-region (TR). All methods are initial-
ized with the same random covariance matrix.

The first experiment (Fig. 4) fixes α , β , and shows the effect of dimension on
convergence. Next, in Fig. 5, we fix dimension and consider the effect of varying α

and β . As it is evident from the figures, FP and steepest descent method could have
very slow convergence in some cases. FP2 denotes a re-scaled version of the basic
fixed-point iteration FP (see [50] for details); the scaling improves conditioning and
accelerates the method, leading to an overall best performance.
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Fig. 5 Running time variance for Kotz-type distributions with d = 16 and α = 2β for different
values of β ∈ {0.1,1,1.7}.



14 Suvrit Sra and Reshad Hosseini

3.3 Other applications

To conclude we briefly mention below additional applications that rely on geomet-
ric optimization. Our listing is by no means complete, and is biased towards work
more closely related to machine learning. However, it should provide a starting point
for the interested reader in exploring other applications and aspects of the rapidly
evolving area of geometric optimization.
Computer vision. Chapter ?? (see references therein) describes applications to im-
age retrieval, dictionary learning, and other problems in computer vision that involve
PD matrix data, and therefore directly or indirectly rely on geometric optimization.
Signal processing. Diffusion Tensor Imaging (DTI) [27]; Radar and signal process-
ing [2, 41]; Brain Computer Interfaces (BCI) [60];
ML and Statistics. Social networks [46]; Deep learning [33, 35]; Determinantal
point processes [24, 34]; Fitting elliptical gamma distributions [51]; Fitting mixture
models [22, 37]; see also [11].
Others. Structured PD matrices [9]; Manifold optimization with rank constraints [55]
and symmetries [38]. We also mention here two key theoretical references: general
g-convex optimization [4], and wider mathematical background [13].
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39. Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-
definite matrices. SIAM Journal on Matrix Anal. Appl. (SIMAX) 26, 735–747 (2005)

40. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (2012)
41. Nielsen, F., Bhatia, R. (eds.): Matrix Information Geometry. Springer (2013)
42. Ollila, E., Tyler, D., Koivunen, V., Poor, H.V.: Complex elliptically symmetric distributions:

Survey, new results and applications. IEEE Transactions on Signal Processing 60(11), 5597–
5625 (2011)

43. Redner, R.A., Walker, H.F.: Mixture densities, maximum likelihood, and the EM algorithm.
Siam Review 26, 195–239 (1984)

44. Ring, W., Wirth, B.: Optimization methods on riemannian manifolds and their application to
shape space. SIAM Journal on Optimization 22(2), 596–627 (2012)

45. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge, MA (2002)
46. Shrivastava, A., Li, P.: A new space for comparing graphs. In: Advances in Social Networks

Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference on, pp. 62–71.
IEEE (2014)

47. Sra, S.: On the matrix square root and geometric optimization. arXiv:1507.08366 (2015)
48. Sra, S.: Positive Definite Matrices and the S-Divergence. Proceedings of the American Math-

ematical Society (2015). also arXiv:1110.1773v4
49. Sra, S., Hosseini, R.: Geometric optimisation on positive definite matrices for elliptically con-

toured distributions. In: Advances in Neural Information Processing Systems, pp. 2562–2570
(2013)

50. Sra, S., Hosseini, R.: Conic geometric optimisation on the manifold of positive definite matri-
ces. SIAM Journal on Optimization 25(1), 713–739 (2015)

51. Sra, S., Hosseini, R., Theis, L., Bethge, M.: Data modeling with the elliptical gamma distribu-
tion. In: Artificial Intelligence and Statistics (AISTATS), vol. 18 (2015)

52. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statisti-
cal Society. Series B (Methodological) pp. 267–288 (1996)
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