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Abstract

This paper studies stochastic algorithms for optimizing nonconvex, nonsmooth1

finite-sum problems, where the nonconvex part is smooth and the nonsmooth part2

is convex. Surprisingly, unlike the smooth case, our knowledge of this fundamental3

problem is very limited. For example, it is not known whether proximal stochastic4

gradient method with constant minibatch even converges to a stationary point. To5

tackle this issue, we develop fast stochastic algorithms with provable convergence6

to a stationary point for constant minibatches. Furthermore, using a variant of these7

algorithms, we show provably faster convergence than proximal batch gradient8

descent. Our results are based on the recent variance reduction techniques for9

convex optimization, with a novel analysis for nonconvex and nonsmooth functions.10

Finally, we prove global linear convergence rate for an interesting subclass of11

nonconvex functions, that subsumes many recent works.12

1 Introduction13

We study nonconvex, nonsmooth, finite-sum optimization problems of the form14

min

x2Rd
F (x) := f(x) + h(x), where f(x) :=

1

n

nX

i=1

f
i

(x), (1)

where each f
i

: Rd ! R is smooth (possibly nonconvex) for all i 2 {1, . . . , n} , [n], while15

h : Rd ! R is nonsmooth but convex and relatively simple.16

Such finite-sum optimization problems are fundamental to machine learning, where they typically17

arise within the spectrum of regularized empirical risk minimization. While there has been extensive18

research in solving nonsmooth convex finite-sum problems (i.e., each f
i

is convex for i 2 [n]) [4, 16,19

32], our understanding of their nonsmooth nonconvex counterpart is surprisingly limited—despite20

the widespread use and importance of nonconvex models. We focus, therefore, on fast stochastic21

methods for solving nonconvex, nonsmooth, finite-sum problems.22

A popular approach to handle nonsmoothness is via proximal operators [14, 25]. For a proper closed23

convex function h, the proximal operator is defined as24

prox
⌘h

(x) := argmin

y2Rd

✓
h(y) +

1

2⌘
ky � xk2

◆
, for ⌘ > 0. (2)

The power of proximal operators lies in how they generalize projections—indeed, if h is the indicator25

function I
C

(x) of a closed convex set C, then proxIC
(x) ⌘ proj

C

(x) ⌘ argmin

y2C

ky � xk.26

Throughout this paper, we assume that the proximal operator of h is relatively easy to compute.27

This is true for many applications in machine learning and statistics including `1 regularization,28
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box-constraints, simplex constraints, among others [2, 18]. Specifically, we assume access to a29

proximal oracle (PO) that takes a point x 2 Rd and returns the output of (2). To describe our30

complexity results more precisely we use the incremental first-order oracle (IFO).1 For a function31

f =

1
n

P
i

f
i

, an IFO takes an index i 2 [n] and a point x 2 Rd, and returns the pair (f
i

(x),rf
i

(x)).32

A standard (batch) method for solving (1) is the proximal-gradient method [13], first studied for33

nonconvex problems in [5]. This method performs the following iteration:34

xt+1
= prox

⌘h

(xt � ⌘rf(xt

)), t = 0, 1, . . . , (3)
where ⌘ > 0 is the step size. The following non-asymptotic rate of convergence result for the35

proximal gradient method was proved recently.36

Theorem (Informal). [7]: The number of IFO and PO calls made by the proximal gradient method (3)37

to reach ✏ close to a stationary point is O(n/✏) and O(1/✏) respectively.38

We refer the readers to [7] for more details. The key point to note here is that the IFO complexity39

of (3) is O(n/✏). This is due to the fact that a full gradient rf needs to computed at each iteration40

of (3), entailing n IFO calls at each iteration. When n is large, this per iteration cost is very expensive,41

and hence often results in slow convergence. A more practical approach is offered by the proximal42

stochastic gradient (PROXSGD) method, which performs the iteration43

xt+1
= prox

⌘th

✓
xt � ⌘

t

|I
t

|
X

i2It

rf
i

(xt

)

◆
, t = 0, 1, . . . , (4)

where I
t

(referred to as minibatch) is a randomly chosen set (with replacement) from [n] and ⌘
t

is a44

step size. Non-asymptotic convergence of PROXSGD was also shown recently, as noted below.45

Theorem (Informal). [7]: The number of IFO and PO calls made by PROXSGD, i.e., iteration (4), to46

reach ✏ close to a stationary point is O(1/✏2) and O(1/✏) respectively. For achieving this convergence,47

we need batch sizes |I
t

| that increase and step sizes ⌘
t

that decrease with 1/✏.48

Notice that the PO complexity of PROXSGD is similar to proximal gradient, but its IFO complexity is49

independent of n; though this benefit comes at the cost of an extra 1/✏ factor. Furthermore, the step50

size must decrease with 1/✏ (or alternatively decay with the number of iterations of the algorithm).51

The same two aspects are also seen for convex stochastic gradient, in both the smooth and proximal52

versions. However, in the nonconvex setting there is a key third and more important aspect: the53

minibatch size |I
t

| increases with 1/✏.54

To understand this aspect, consider the case of |I
t

| being a constant (independent of both n and55

✏), typically the choice used in practice. In this case, the above PROXSGD convergence result no56

longer holds and it is not clear if PROXSGD even converges to a stationary point at all. To clarify,57

a decreasing step size ⌘
t

trivially ensures convergence as t ! 1, but the limiting point is not58

necessarily stationary. On the other hand, increasing |I
t

| with 1/✏ can easily lead to |I
t

| � n for59

reasonably small ✏, which effectively reduces the algorithm to (batch) proximal gradient.60

This dismal news does not apply to the convex setting, where convergence (in expectation) to an61

optimal solution has been shown for PROXSGD and its variants using constant minibatch sizes |I
t

|62

[3, 24]. Furthermore, this problem does not afflict the smooth nonconvex case (h ⌘ 0), where conver-63

gence with constant minibatches is ensured [6, 22, 23]. Hence, there appears to be a fundamental gap64

in our understanding of stochastic methods for nonsmooth nonconvex problems. Given the ubiquity65

of nonconvex models in machine learning and statistics, it is important to bridge this gap. To this66

end, we study fast stochastic methods for tackling nonsmooth nonconvex problems with guaranteed67

convergence for constant minibatches, and faster convergence with minibatches independent of 1/✏.68

Main Contributions69

We state our main contributions below and list the key complexity results in Table 1.70

• We analyze nonconvex proximal versions of the recently proposed stochastic algorithms SVRG71

and SAGA [4, 8, 32], hereafter referred to as PROXSVRG and PROXSAGA, respectively. We show72

convergence of these algorithms with constant minibatches. To the best of our knowledge, this is73

the first work to present non-asymptotic convergence rates for stochastic methods that apply to74

nonsmooth nonconvex problems with constant (hence more realistic) minibatches.75

1Introduced in [1] to study lower bounds of deterministic algorithms for convex finite-sum problems.
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Algorithm IFO PO IFO (PL) PO (PL) Constant
minibatch?

PROXSGD O
�
1/✏2

�
O (1/✏) O

�
1/✏2

�
O (1/✏) ?

PROXGD O (n/✏) O (1/✏) O (n log(1/✏)) O ( log(1/✏)) �

PROXSVRG O(n+ (n2/3/✏)) O(1/✏) O((n+ n2/3
) log(1/✏)) O( log(1/✏))

p

PROXSAGA O(n+ (n2/3/✏)) O(1/✏) O((n+ n2/3
) log(1/✏)) O( log(1/✏))

p

Table 1: Table comparing the best IFO and PO complexity of different algorithms discussed in the paper.
The complexity is measured in terms of the number of oracle calls required to achieve an ✏-accurate solution.
The IFO (PL) and PO (PL) represents the IFO and PO complexity of PL functions (see Section 4 for a formal
definiton). The results marked in red are the contributions of this paper. In the table, “constant minibatch”
indicates whether stochastic algorithm converges using a constant minibatch size. To the best of our knowledge,
it is not known if PROXSGD converges on using constant minibatches for nonconvex nonsmooth optimization.
Also, we are not aware of any specific convergence results for PROXSGD in the context of PL functions.

• We show that by carefully choosing the minibatch size (to be sublinearly dependent on n but still76

independent of 1/✏), we can achieve provably faster convergence than both proximal gradient and77

proximal stochastic gradient. We are not aware of any earlier results on stochastic methods for the78

general nonsmooth nonconvex problem that have faster convergence than proximal gradient.79

• We study a nonconvex subclass of (1) based on the proximal extension of Polyak-Łojasiewicz80

inequality [9]. We show linear convergence of PROXSVRG and PROXSAGA to the optimal solution81

for this subclass. This includes the recent results proved in [27, 34] as special cases. Ours is the82

first stochastic method with provable global linear convergence for this subclass of problems.83

1.1 Related Work84

The literature on finite-sum problems is vast; so we summarize only a few closely related works.85

Convex instances of (1) have been long studied [3, 15, 19] and are fairly well-understood. Remarkable86

recent progress for smooth convex instances of (1) is the creation of variance reduced (VR) stochastic87

methods [4, 8, 26, 28]. Nonsmooth proximal VR stochastic algorithms are studied in [4, 32]88

where faster convergence rates for both strongly convex and non-strongly convex cases are proved.89

Asynchronous VR frameworks are developed in [21]; lower-bounds are studied in [1, 10].90

In contrast, nonconvex instances of (1) are much less understood. Stochastic gradient for smooth91

nonconvex problems is analyzed in [6], and only very recently, convergence results for VR stochastic92

methods for smooth nonconvex problems were obtained in [22, 23, 33]. In [11], the authors consider93

a VR nonconvex setting different from ours, namely, where the loss is (essentially strongly) convex94

but hard thresholding is used. We build upon [22, 23], and focus on handling nonsmooth convex95

regularizers (h 6⌘ 0 in (1)). Incremental proximal gradient methods for this class were also considered96

in [31] but only asymptotic convergence was shown. The first analysis of a projection version of97

nonconvex SVRG is due to [29], who considers the special problem of PCA; see also the follow-up98

work [30]. Perhaps, the closest to our work is [7], where convergence of minibatch nonconvex99

PROXSGD method is studied. However, typical to the stochastic gradient method, the convergence is100

slow; moreover, no convergence for constant minibatches is provided.101

2 Preliminaries102

We assume that the function h(x) in (1) is lower semi-continuous (lsc) and convex. Furthermore, we103

also assume that its domain dom(h) = {x 2 Rd|h(x) < +1} is closed. We say f is L-smooth if104

there is a constant L such that105

krf(x)�rf(y)k  Lkx� yk, 8 x, y 2 Rd.

Throughout, we assume that the functions f
i

in (1) are L-smooth, so that krf
i

(x) � rf
i

(y)k 106

Lkx� yk for all i 2 [n]. Such an assumption is typical in the analysis of first-order methods.107
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One crucial aspect of the analysis for nonsmooth nonconvex problems is the convergence criterion.108

For convex problems, typically the optimality gap F (x) � F (x⇤
) is used as a criterion. It is109

unreasonable to use such a criterion for general nonconvex problems due to their intractability. For110

smooth nonconvex problems (i.e., h ⌘ 0), it is typical to measure stationarity, e.g., using krFk. This111

cannot be used for nonsmooth problems, but a fitting alternative is the gradient mapping2 [17]:112

G
⌘

(x) := 1
⌘

[x� prox
⌘h

(x� ⌘rf(x))]. (5)

When h ⌘ 0 this mapping reduces to G
⌘

(x) = rf(x) = rF (x), the gradient of function F at x.113

We analyze our algorithms using the gradient mapping (5) as described more precisely below.114

Definition 1. A point x output by stochastic iterative algorithm for solving (1) is called an ✏-accurate115

solution, if E[kG
⌘

(x)k2]  ✏ for some ⌘ > 0.116

Our goal is to obtain efficient algorithms for achieving an ✏-accurate solution, where efficiency is117

measured using IFO and PO complexity as functions of 1/✏ and n.118

3 Algorithms119

We focus on two algorithms: (a) proximal SVRG (PROXSVRG) and (b) proximal SAGA (PROXSAGA).120

3.1 Nonconvex Proximal SVRG121

We first consider a variant of PROXSVRG [32]; pseudocode of this variant is stated in Algorithm 1.122

When F is strongly convex, SVRG attains linear convergence rate as opposed to sublinear convergence123

of SGD [8]. Note that, while SVRG is typically stated with b = 1, we use its minibatch variant with124

batch size b. The specific reasons for using such a variant will become clear during the analysis.125

While some other algorithms have been proposed for reducing the variance in the stochastic gradients,126

SVRG is particularly attractive because of its low memory requirement; it requires just O(d) extra127

memory in comparison to SGD for storing the average gradient (gs in Algorithm 1), while algorithms128

like SAG and SAGA incur O(nd) storage cost. In addition to its strong theoretical results, SVRG is129

known to outperform SGD empirically while being more robust to selection of step size. For convex130

problems, PROXSVRG is known to inherit these advantages of SVRG [32].131

We now present our analysis of nonconvex PROXSVRG, starting with a result for batch size b = 1.132

Theorem 1. Let b = 1 in Algorithm 1. Let ⌘ =

1/(3Ln), m = n and T be a multiple of m. Then the133

output x
a

of Algorithm 1 satisfies the following bound:134

E[kG
⌘

(x
a

)k2]  18Ln2

3n� 2

✓
F (x0

)� F (x⇤
)

T

◆
,

where x⇤ is an optimal solution of (1).135

Theorem 1 shows that PROXSVRG converges for constant minibatches of size b = 1. This result136

is in strong contrast to PROXSGD whose convergence with constant minibatches is still unknown.137

However, the result delivered by Theorem 1 is not stronger than that of GRADIENTDESCENT. The138

following corollary to Theorem 1 highlights this point.139

Corollary 1. To obtain an ✏-accurate solution, with b = 1 and parameters from Theorem 1, the IFO140

and PO complexities of Algorithm 1 are O(n/✏) and O(n/✏), respectively.141

Corollary 1 follows upon noting that each inner iteration (Step 7) of Algorithm 1 has an effective142

IFO comlexity of O(1) since m = n. This IFO complexity includes the IFO calls for calculating the143

average gradient at the end of each epoch. Furthermore, each inner iteration also invokes the proximal144

oracle, whereby the PO complexity is also O(n/✏). While the IFO complexity of constant minibatch145

PROXSVRG is same as GRADIENTDESCENT, we see that its PO complexity is much worse. This146

is due to the fact that n IFO calls correspond to one PO call in GRADIENTDESCENT, while one147

IFO call in PROXSVRG corresponds to one PO call. Consequently, we do not gain any theoretical148

advantage by using constant minibatch PROXSVRG over GRADIENTDESCENT.149

2This mapping has also been used in the analysis of nonconvex proximal methods in [6, 7, 31].
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Algorithm 1: Nonconvex PROXSVRG
�
x0, T,m, b, ⌘

�

1: Input: x̃0
= x0

m = x0 2 Rd, epoch length m, step sizes ⌘ > 0, S = dT/me
2: for s = 0 to S � 1 do
3: xs+1

0 = xs
m

4: gs+1
=

1
n

Pn
i=1 rfi(x̃

s
)

5: for t = 0 to m� 1 do
6: Uniformly randomly pick It ⇢ {1, . . . , n} (with replacement) such that |It| = b
7: vs+1

t =

1
b

P
it2It

(rfit(x
s+1
t )�rfit(x̃

s
)) + gs+1

8: xs+1
t+1 = prox⌘h(x

s+1
t � ⌘vs+1

t )

9: end for
10: x̃s+1

= xs+1
m

11: end for
12: Output: Iterate xa chosen uniformly at random from {{xs+1

t }m�1
t=0 }S�1

s=0 .

The key question is therefore: can we modify the algorithm to obtain better theoretical guarantees?150

To answer this question, we prove the following main convergence result. For the ease of theoretical151

exposition, we assume n2/3 to be an integer. This is only for convenience in stating our theoretical152

results and all the results in the paper hold for the general case.153

Theorem 2. Suppose b = n2/3 in Algorithm 1. Let ⌘ = 1/(3L), m = bn1/3c and T is a multiple of154

m. Then for the output x
a

of Algorithm 1, we have:155

E[kG
⌘

(x
a

)k2]  18L(F (x0
)� F (x⇤

))

T
,

where x⇤ is an optimal solution to (1).156

Rewriting Theorem 2 in terms of the IFO and PO complexity, we obtain the following corollary.157

Corollary 2. Let b = n2/3 and set parameters as in Theorem 2. Then, to obtain an ✏-accurate158

solution the IFO and PO complexities of Algorithm 1 are O(n+ n2/3/✏) and O(1/✏), respectively.159

The above corollary is due to the following observations. From Theorem 2, it can be seen that the160

total number of inner iterations (across all epochs) of Algorithm 1 to obtain an ✏-accurate solution161

is O(1/✏). Since each inner iteration of Algorithm 2 involves a call to the PO, we obtain a PO162

complexity of O(1/✏). Further, since b = n2/3 IFO calls are made at each inner iteration, we163

obtain a net IFO complexity of O(n2/3/✏). Adding the IFO calls for the calculation of the average164

gradient (and noting that T is a multiple of m), we obtain the desired result. A noteworthy aspect165

of Corollary 2 is that its PO complexity matches GRADIENTDESCENT, but its IFO complexity is166

significantly decreased to O(n+ n2/3/✏) as opposed to O(n/✏) in GRADIENTDESCENT.167

3.2 Nonconvex Proximal SAGA168

In the previous section, we investigated PROXSVRG for solving (1). Note that PROXSVRG is not a169

fully “incremental" algorithm since it requires calculation of the full gradient once per epoch. An170

alternative to PROXSVRG is the algorithm proposed in [4] (popularly referred to as SAGA). We build171

upon the work of [4] to develop PROXSAGA, a nonconvex proximal variant of SAGA.172

The pseudocode for PROXSAGA is presented in Algorithm 2. The key difference between Algorithm 1173

and 2 is that PROXSAGA, unlike PROXSVRG, avoids computation of the full gradient. Instead, it174

maintains an average gradient vector gt, which changes at each iteration (refer to [21]). However,175

such a strategy entails additional storage costs. In particular, for implementing Algorithm 2, we must176

store the gradients {rf
i

(↵t

i

)}n
i=1, which in general can cost O(nd) in storage. Nevertheless, in some177

scenarios common to machine learning (see [4]), one can reduce the storage requirements to O(n).178

Whenever such an implementation of PROXSAGA is possible, it can perform similar to or even better179

than PROXSVRG [4]; hence, in addition to theoretical interest, it is of significant practical value.180

We remark that PROXSAGA in Algorithm 2 differs slightly from [4]. In particular, it uses minibatches181

where two sets I
t

, J
t

are sampled at each iteration as opposed to one in [4]. This is mainly for the182

ease of theoretical analysis.183
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Algorithm 2: Nonconvex PROXSAGA
�
x0, T, b, ⌘

�

1: Input: x0 2 Rd, ↵0
i = x0 for i 2 [n], step size ⌘ > 0

2: g0 =

1
n

Pn
i=1 rfi(↵

0
i )

3: for t = 0 to T � 1 do
4: Uniformly randomly pick sets It, Jt from [n] (with replacement) such that |It| = |Jt| = b
5: vt = 1

b

P
it2It

(rfit(x
t
)�rfit(↵

t
it)) + gt

6: xt+1
= prox⌘h(x

t � ⌘vt)

7: ↵t+1
j = xt for j 2 Jt and ↵t+1

j = ↵t
j for j /2 Jt

8: gt+1
= gt � 1

n

P
jt2Jt

(rfjt(↵
t
jt)�rfjt(↵

t+1
jt

))

9: end for
10: Output: Iterate xa chosen uniformly random from {xt}T�1

t=0 .

We prove that as in the convex case, nonconvex PROXSVRG and PROXSAGA share similar theoretical184

guarantees. In particular, our first result for PROXSAGA is a counterpart to Theorem 1 for PROXSVRG.185

Theorem 3. Suppose b = 1 in Algorithm 2. Let ⌘ = 1/(5Ln). Then for the output x
a

of Algorithm 2186

after T iterations, the following stationarity bound holds:187

E[kG
⌘

(x
a

)k2]  50Ln2

5n� 2

F (x0
)� F (x⇤

)

T
,

where x⇤ is an optimal solution of (1).188

Theorem 3 immediately leads to the following corollary.189

Corollary 3. The IFO and PO complexity of Algorithm 3 for b = 1 and parameters specified in190

Theorem 3 to obtain an ✏-accurate solution are O(n/✏) and O(n/✏) respectively.191

Similar to Theorem 2 for PROXSVRG, we obtain the following main result for PROXSAGA.192

Theorem 4. Suppose b = n2/3 in Algorithm 2. Let ⌘ = 1/(5L). Then for the output x
a

of193

Algorithm 2 after T iterations, the following holds:194

E[kG
⌘

(x
a

)k2]  50L(F (x0
)� F (x⇤

))

3T
,

where x⇤ is an optimal solution of Problem (1).195

Rewriting this result in terms of IFO and PO access, we obtain the following important corollary.196

Corollary 4. Let b = n2/3 and set parameters as in Theorem 4. Then, to obtain an ✏-accurate197

solution the IFO and PO complexities of Algorithm 2 are O(n+ n2/3/✏) and O(1/✏), respectively.198

The above result is due to Theorem 4 and because each iteration of PROXSAGA requires O(n2/3
)199

IFO calls. The number of PO calls is only O(1/✏), since make one PO call for every n2/3 IFO calls.200

Discussion: It is important to note the role of minibatches in Corollaries 2 and 4. Minibatches201

are typically used for promoting parallelism in stochastic methods. But unlike previous works, we202

use minibatches as a theoretical tool to improve convergence rates of both nonconvex PROXSVRG203

and PROXSAGA. In particular, by carefully selecting the minibatch size, we can improve the IFO204

complexity of the algorithms described in the paper from O(n/✏) (similar to GRADIENTDESCENT)205

to O(n2/3/✏) (matching the smooth nonconvex case). Furthermore, the PO complexity is also206

improved in a similar manner by using the minibatch size mentioned in Theorems 2 and 4.207

4 Extensions208

We discuss some extensions of our approach in this section. Our first extension is to provide209

convergence analysis for a subclass of nonconvex functions that satisfy a specific growth condition210

popularly known as the Polyak-Łojasiewicz (PL) inequality. In the context of gradient descent,211

this inequality was proposed by Polyak in 1963 [20], who showed global linear convergence of212

gradient descent for functions that satisfy the PL inequality. Recently, in [9] the PL inequality was213

6



PL-SVRG:(x0,K, T,m, ⌘)
for k = 0 to K do

xk

= ProxSVRG(xk�1, T,m, b, ⌘) ;
end
Output: xK

PL-SAGA:(x0,K, T,m, ⌘)
for k = 0 to K do

xk

= ProxSAGA(xk�1, T, b, ⌘) ;
end
Output: xK

Figure 1: PROXSVRG and PROXSAGA variants for PL functions.

generalized to nonsmooth functions and used for proving linear convergence of proximal gradient.214

The generalization presented in [9] considers functions F (x) = f(x)+h(x) that satisfy the following:215

216

µ(F (x)� F (x⇤
))  1

2

D
h

(x, µ), where µ > 0

and D
h

(x, µ) := �2µmin

y

⇥
hrf(x), y � xi+ µ

2

ky � xk2 + h(y)� h(x)
⇤
.

(6)

An F that satisfies (6) is called a µ-PL function.217

When h ⌘ 0, condition (6) reduces to the usual PL inequality. The class of µ-PL functions includes218

several other classes as special cases. It subsumes strongly convex functions, covers f
i

(x) = g(a>
i

x)219

with only g being strongly convex, and includes functions that satisfy a optimal strong convexity220

property [12]. Note that the µ-PL functions also subsume the recently studied special case where f
i

’s221

are nonconvex but their sum f is strongly convex. Hence, it encapsulates the problems of [27, 34].222

The algorithms in Figure 1 provide variants of PROXSVRG and PROXSAGA adapted to optimize223

µ-PL functions. We show the following global linear convergence result of PL-SVRG and PL-SAGA224

in Figure 1 for PL functions. For simplicity, we assume  = (L/µ) > n1/3. When f is strongly225

convex,  is referred to as the condition number, in which case  > n1/3 corresponds to the high226

condition number regime.227

Theorem 5. Suppose F is a µ-PL function. Let b = n2/3, ⌘ =

1/5L, m = bn1/3c and T = d30e.228

Then for the output xK of PL-SVRG and PL-SAGA (in Figure 1), the following holds:229

E[F (xK

)� F (x⇤
)]  [F (x0

)� F (x⇤
)]

2

K

,

where x⇤ is an optimal solution of (1).230

The following corollary on IFO and PO complexity of PL-SVRG and PL-SAGA is immediate.231

Corollary 5. When F is a µ-PL function, then the IFO and PO complexities of PL-SVRG and232

PL-SAGA with the parameters specified in Theorem 5 to obtain an ✏-accurate solution are O((n+233

n2/3
) log(1/✏)) and O( log(1/✏)), respectively.234

Note that proximal gradient also has global linear convergence for PL functions, as recently shown235

in [9]. However, its IFO complexity is O(n log(1/✏)), which is much worser than that of PL-SVRG236

and PL-SAGA (Corollary 5).237

Other extensions: While we state our results for specific minibatch sizes, a more general convergence238

analysis is provided for any minibatch size b  n2/3 (Theorems 6 and 7 in the Appendix). Moreover,239

our results can be easily generalized to the case where non-uniform sampling is used in Algorithm 1240

and Algorithm 2. This is useful when the functions f
i

have different Lipschitz constants.241

5 Experiments242

We present our empirical results in this section. For our experiments, we study the problem of243

non-negative principal component analysis (NN-PCA). More specifically, for a given set of samples244

{z
i

}n
i=1, we solve the following optimization problem:245

min

kxk1, x�0
�1

2

x>

 
nX

i=1

z
i

z>
i

!
x. (7)
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Figure 2: Non-negative principal component analysis. Performance of PROXSGD, PROXSVRG and
PROXSAGA on ’rcv1’ (left), ’a9a’(left-center), ’mnist’ (right-center) and ’aloi’ (right) datasets. Here,
the y-axis is the function suboptimality i.e., f(x)�f(x̂) where x̂ represents the best solution obtained
by running gradient descent for long time and with multiple restarts.

The problem of NN-PCA is, in general, NP-hard. This variant of the standard PCA problem can246

be written in the form (1) with f
i

(x) = �(x>z
i

)

2 for all i 2 [n] and h(x) = I
C

(x) where C is the247

convex set {x 2 Rd|kxk  1, x � 0}. In our experiments, we compare PROXSGD with nonconvex248

PROXSVRG and PROXSAGA. The choice of step size is important to PROXSGD. The step size of249

PROXSGD is set using the popular t-inverse step size choice of ⌘
t

= ⌘0(1 + ⌘0bt/nc)�1 where250

⌘0, ⌘
0 > 0. For PROXSVRG and PROXSAGA, motivated by the theoretical analysis, we use a fixed251

step size. The parameters of the step size in each of these methods are chosen so that the method gives252

the best performance on the objective value. In our experiments, we include the value ⌘0 = 0, which253

corresponds to PROXSGD with fixed step size. For PROXSVRG, we use the epoch length m = n.254

We use standard machine learning datasets in LIBSVM for all our experiments 3. The samples from255

each of these datasets are normalized i.e. kz
i

k = 1 for all i 2 [n]. Each of these methods is initialized256

by running PROXSGD for n iterations. Such an initialization serves two purposes: (a) it provides257

a reasonably good initial point, typically beneficial for variance reduction techniques [4, 26]. (b)258

it provides a heuristic for calculating the initial average gradient g0 [26]. In our experiments, we259

use minibatch size b = 1 in order to demonstrate the performance of the algorithms with constant260

minibatches.261

We report the objective function value for the datasets. In particular, we report the suboptimality in262

objective function i.e., f(xs+1
t

)� f(x̂) (for PROXSVRG) and f(xt

)� f(x̂) (for PROXSAGA). Here263

x̂ refers to the solution obtained by running proximal gradient descent for a large number of iterations264

and multiple random initializations. For all the algorithms, we compare the aforementioned criteria265

against for the number of effective passes through the dataset i.e., IFO complexity divided by n. For266

PROXSVRG, this includes the cost of calculating the full gradient at the end of each epoch.267

Figure 2 shows the performance of PROXSGD , PROXSVRG and PROXSVRG on NN-PCA problem268

(see Section D of the Appendix for more experiments). It can be seen that the objective value for269

PROXSVRG and PROXSAGA is much lower compared to PROXSGD, suggesting faster convergence270

for these algorithms. We observed a significant gain consistently across all the datasets. Moreover,271

the selection of step size was much simpler for PROXSVRG and PROXSAGA than that for PROXSGD.272

We did not observe any significant difference in the performance of PROXSVRG and PROXSAGA for273

this particular task.274

6 Final Discussion275

In this paper, we presented fast stochastic methods for nonsmooth nonconvex optimization. In276

particular, by employing variance reduction techniques, we show that one can design methods that277

can provably perform better than PROXSGD and proximal gradient descent. Furthermore, in contrast278

to PROXSGD, the resulting approaches have provable convergence to a stationary point with constant279

minibatches; thus, bridging a fundamental gap in our knowledge of nonsmooth nonconvex problems.280

We proved that with a careful selection of minibatch size, it is possible to theoretically show superior281

performance to proximal gradient descent. Our empirical results provide evidence for a similar282

conclusion even with constant minibatchs. Thus, we conclude with an important open problem of283

developing stochastic methods with provably better performance than proximal gradient descent with284

constant minibatch size.285

3The datasets can be downloaded from https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets.
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