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Abstract

Numerous applications in statistics, signal pro-
cessing, and machine learning regularize us-
ing Total Variation (TV) penalties. We study
anisotropic {;-based) TV and also a related
fo-norm variant. We consider for both vari-
ants associated (1roximity operatorswhich
lead to challenging optimization problems. We
solve these problems by developing Newton-type
methods that outperform the state-of-the-art al-
gorithms. More importantly, our 1D-TV al-
gorithms serve as building blocks for solving
the harder task of computing 2- (and higher)-
dimensional TV proximity. We illustrate the
computational benefits of our methods by apply-
ing them to several applications: (i) image de-
noising; (ii) image deconvolution (by plugging in
our TV solvers into publicly available software);
and (iii) four variants of fused-lasso. The results
show large speedups—and to support our claims,
we provide software accompanying this paper.

1. Introduction

Applications in statistics, signal processing, and maghin
learning frequently involve problems of the form

min

min  L(z) + R(x),

@
where L is a differentiable, convex loss, arélis a con-
vex, possibly nonsmooth regularizer. Nonsmoothneds of
makes optimizing1) hard; but often the difficulties raised
by this nonsmoothness can be alleviated by passirgjgo
proximity operator defined by the following operation:

@

proxp(y) = argmin,, 3z -yl + R(=).
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Within machine learning and related fields, the bene-
fits of invoking the proximity operator2j are well-
recognized Klesteroy 2007 Combettes & Pesque2009
Duchi & Singer 2009, and several choices @t have al-
ready been considered.

We study a special choice fdg: one and higher dimen-
sionaltotal-variation (TV)?; for € R”, this is defined as

n—1 1/p
Tvil,D(:c) = (Zi:1 |1 fxi\p) ,

and for matricesX € R™*" it is defined as
m n—1 1/p
.. . |P
Zi:l (ijl |Zi,j+1 — Ti g )
n m—1 1/q
+Zg‘:l (Zi:l it 7xi’j|q) - @

where usuallyp,q € {1,2}. We focus on two
key variants of 8) and @): anisotropicTV (see e.qg.
Bioucas-Dias & Figueired®007), with p, ¢ = 1; and TV
with bothp andq = 2. Extension of ) to tensor data is
relegated toBarbero & Sra2011), for paucity of space.

®3)

2D
TVP#]

(X):

The regularizers Ty and TvD arise in many
applications—e.g., image denoising and deconvolu-
tion (Dahletal, 2010, fused-lasso Tibshirani et al,
2005, logistic fused-lasso Kolar etal, 2010, and
change-point detectiorHarchaoui & Leévy-Ledug 2010);
also see the related worlk/grt & Bleakley, 2010. This
fairly broad applicability motivates us to develop effidien
proximity operators for TV. Before beginning the technical
discussion, let us summarize our key contributions.

Algorithms: For TviP- and T\:P-proximity, we derive
efficient Newton-type algorithms, which we subsequently
use as building blocks for rapidly solving the harder case
of TV2% -proximity (also higher-D TV) wittp, ¢ € {1,2}.
Applications: We highlight some of the benefits of our
fast algorithms by showing their application to image de-
noising; we also show their use as efficient subroutines in

'Our definitions of TV are different from the original ROF
model of TV Rudin et al, 1992); also se&5.2
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larger solvers for image deconvolution and for solving four2. One dimensional TV-Proximity
variants of fused-lasso.

Software: To support our numerical results, we provide
efficient implementations of our algorithrs.

We begin with 1D-TV proximity, and devote most atten-
tion to it, since it forms a crucial part of our 2D-TV meth-
ods. Introduce thalifferencing matrixD € R(»~1)xn
An additional important message of our paper is: even fowith d;; = 0, except ford;; = —1 andd;;;; = 1. Let
large-scale machine learning problems, Newton-type methTV.’(x) = | Dz|,; then the TV-proximity problem is

ods can be superior to first-order methods, provided the
problem has enough structure. This viewpoint, though ob-
vious, seems to be espoused by a surprisingly small fractiop} is often easier to solves via its dual
of researchers within the machine learning community.

mingers 3@ — yl3 + | Da|p. ®)

maxe,, _%HDTUHg + UTD’% s.t. ||qu S )\’ (6)

The literature on TV is huge, so it cannot be summarizedvhere|-|, is thedual-normto ||-||,.. If w is dual feasible,
here. However, we do mention here some of the most dithen the primal variable = y — D" . The corresponding
rectly relevant work. duality-gapis easily computed as

Previously,Vogel & Oman(1996 suggested a Newton ap- gapx,u) := | Dz, — u” Dx. @)

proach for TV; they smoothed the objective, but noted that

it leads to numerical difficulties. In contrast, we solve thelf «* is the optimal dual solution, then the optimal primal

nonsmooth problem directly. Recentlyju etal. (2010  solution is given byr* = y — D" u*.

presented tuned algorithms forfﬂ;proximity based on a

careful “restart” heuristic; their methods show strong em-2.1. TV-L1: Proximity for Tv 1P

pirical performance but do not extend easily to higher-D . .

TV. Our Newton-type methods outperform the tuned meth-For 1D anisotropic TV, the duab] becomes

qu qf Liu etal, 2010, and fit nicgly in a general algo- 1y, ¢(u) = 1| DTu|2~u” Dy, st |ull < A (8)

rithmic framework that allows tackling the harder two- and

higher-D TV problems. This is a box-constrained quadratic program; so it can
o . o be solved by methods such as TROMiIn(& Mor €,

TV regularization in itself arises frequently in image de- 1999, L-BFGS-B Byrd et al, 1994, or projected-Newton

_noising, _whereby_ a large number of TV-based denOiS'(PN) (Bertsekas1989. But these methods can be inef-
ng algorlthms exist (see e.ghu & Char%é?)oa' dHOW'h dﬁcient if invoked out-of-the-box, and carefully exploign
ever, in contrast to our paper, most TvV-based metho f)roblem structure is a must. PN lends itself well to such

use the standard isotropic TV or ROF modeLin et al b . ;
. - “r structure exploitation, and we adapt it to develop a highl
1992, and there are few methods tailored to anisotropic P P P gny

X competitive method for solving the dual proble8).

TV, except those developed in the context of fused- P g P 8.(

lasso Friedman et a).2007 Liu et al, 2010). The generic PN procedure runs iteratively: it first identi-
fies a special subset of the active variables and uses these

h h tth PDHGhG & Chan 200 to compute a reduced Hessian. Then, this Hessian is used
such as the state-of-the-art v an 9 1o scale the gradient and move in direction opposite to it,

method, can be easily adapted. But this is not so. PDH caling by a stepsize, if needed. Finally, the next iterate i

requires fme-t_unlng of its parameters,_ and to optam faSI)btained by projecting onto the constraints, and the cycle
performance its authors apply non-trivial adaptive rules,

. . . repeats. At each iteration we select the active variables:
that fail on our anisotropic model. ADMM-style algo- P
rithms (Combettes & PesqueR009, whose convergence  j._ {il (uL = land[V(u)); > 6) or
speed is highly sensitive to their stepsize parameters, als ’
pose similar problems. In stark contrast, our solvers do not (u; = Aand[Vo(u)l; < —€)},
requireany parameter tuningand run rapidly. wheree > 0 is small scalar. Lef := {1...n}\I be the

Our TV methods can be plugged in directly into solversSet of indices not inf. From the Hessiat = V?¢(u)
such as TwIST Bioucas-Dias & Figueiredo2007 or  We extra<_:t theeduced HessialH ; by selecting rows and
SALSA (Afonso et al, 2010 for image deblurring, and columns indexed by, and compute the “reduced” update
into methods such as FISTABéck & Teboulle 2009 or ) - 1 )

TRIP (Kim et al, 2010, for TV-regularized optimization. ur & Plug = aHp [Vo(u)), ©)

It is tempting to assume that existing isotropic algorithms

whereq is a stepsize, an® denotes elementwise projec-
tion onto the constraints. Let us now see how to exploit
structure to efficiently perform the above steps.

2Seehttp://arantxa.ii.uam.estgaa/software.html
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First, notice that the Hessial = DD” is symmetric
and tridiagonal, with2s on the main diagonal andls — 5
on the sub- and superdiagonals. Next, observe that what- 'nitialize: a” =0, ¢ = 0.
. : . while (— convergedylo
ever the active sef, the corresponding reduced Hessian Compute Cholesky decom@D” + o'T = R”R.

Algorithm 2 MSN based TV-L2 proximity

H; remains symmetric tridiagonal. This is crucial be- Obtainu by solvingR” Ru = Dy.
cause then we can quickly compute the updating direction  Obtaing by solvingR* q = u.

d; by solving Hyd; = [Vé(u')];. This linear system Updatea using (L5)

can be solved by computing the Cholesky decomposition g*h'fﬁ 1.

H; = R"R in linear time using the LAPACK routine ferlur\g Iuet

DPTTRF (Anderson et al.1999. The resultingR is bidi-
agonal, so we can solve fa; in linear time too. Thus, a
full PN iteration take€)(n) time. Problem (0) is an instance of the well-known trust-region
subproblem, whereby a variety of numerical methods are
(1982 recommends Armijo-search along projection arc.2vailable for it Conn etal. 2000. Below we derive an
However, for our problem Armijo-search is disproportion- &/90rithm based on the MérSorensen Newton (MSN) it-
ately expensive. So we resort to a backtracking strateg§ration More & Sorensen1983, which in general is ex-

using quadratic interpolatioNpcedal & Wright 2000. pensive, but in our case proves to be efficient thanks to the
This strategy is as follows: if the current stepsizedoes tridiagonal Hessian. Curiously, experiments show thaafor

not provide enough decrease dn we build a quadratic certain range ok values, gradient-projection (GP) (without
model usings(w), ¢(u — aj.d), andd.é(u — ayd). Then line-search though) can also be competitive. Thus, for best
stepsizeyy. 1 is set to the value that minimizes this model. Performance we prefer a hybrid MSN-GP method fH)(

If the neway ., is larger than or too similar tay, its value  Consider the KKT conditions forlQ):

is halved. Note that the gradieM¢(uw) might be mis-

leading ifu has components at the boundary ahpoints (DD + al)u = Dy,
outside this boundary (because then, due to the subsequent ofllullz =X) =0, «a>0,
projection no real improvement would be obtained by step-

ping outside the feasible region). To address this concernyherea is a Lagrange multiplier. There are two cases:

The next crucial ingredient is stepsize selectiBertsekas

11)

we modify the computation of the gradieWitp(u), replac-  [Jull2 < A; or [|ull2 = A. If ||ull2 < A, thena = 0 andu

ing by zeros the entries that relate to direction componentis obtained by solvingD D”u = Dy. Conversely, if the

pointing outside the feasible set. solution toD D”u = Dy lies in the interior, then it solves
(11). Thus, we need to only considg||, = A.

Algorithm 1 PN algorithm for TV-L1-proximity Given a, one hasu(a) = (DD” + oI)"'Dy. So we
Solve DDTu* = Dy. must compute the “true&. This can be done by solving
if [[u"]]oe < Areturn w”; end if |lu()||2 = A2, or alternatively solving the MSN equation
u’ = Plu*],t =0
while duality-gap> tolerancedo h(a) = A"t — |lu(e)|z' =0, (12)

Identify set of active constraints let I = {1...n}\ I
Construct reduced Hessidili;

SolveH;d; = [V(}S(ut)]j

Compute stepsize using backtracking + interpolation

which is written so, as it is almost linear in the search
interval, resulting in fast convergenckl@ré & Sorensen

Updateu’™! = Plu} — ad;]. 1983. Newton'’s iteration for 12) is

t+t+ 1
end while o = a = h(a) /M (a), (13)
return w'.

and a simple calculation shows that

Finally, we must account for the case wheis so large that

the unconstrained optimum coincides with the constrained L ()3 (14)
one. In this case, we just obtairt via DDTu* = Dy. W(a)  u(a)T(DDT + o) tu(a)’

All the above ideas are encapsulated as Algorifhm

The key idea in MSN is to eliminate the matrix in-
_ . 1D verse in (4) by introducing the Cholesky decomposition
2.2. TV-L2: PI’OXImIty fOI’ Tv 2 DDT +OéI — RTR and defining aVeCtQ’ — (RT)—lu_
For TV-L2 proximity p = 2, so the dual@) becomes As aresult, iteration](3) becomes

miny ¢(u) i= | DTul} - u Dy, stull: <\ o Il ()l
(10) lalz U7

(15)
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Observe that botli? andg can be computed in linear time

so the overall iterationl®) runs in linear time. Algorithm 3 Proximal Dykstra Algorithm for18)

Initialize Xo =Y, Py =0,Q0=0,t =0
The MSN iteration {5) is fairly sophisticated. Let us look  while (= convergedpo

at a much simpler one: GP withfixed stepsizex Z, = Solve (9 with ¥’ = X, + P,
P P 0 P.=X+P - Z;
41 t t Xi+1 = Solve QO)withY = Z, + Q.
u =Py u —apgVo(u)), 16 t+1
Iz <a( oV (u’)) (16) Qui1=2Z+Q:— X1

which is set to the inverse of the largest eigenvalue of the tettl

. T - - . end while
HessianD D" . This is easily done as the eigenvalues have o X,

a closed-form expression, namely= 2 — 2 cos (%) (for
0 < i < n). The largest\,,_; = 2 — 2cos (@)

Wh'f_h tengs ttﬁl asn = C;?]; S0ao :t'1/4 |sag_ood|ap|ir_ox- and @0) must be solved only about 4—6 times. When
!rr;aTl?]n. tL;]r glromfre't. ;pro]ect')dﬂ"t‘?@t.'s asod r_ltv_- p,q € {1,2}, we invoke our Newton-type methods to effi-
'al. 1hus, the iteratiorl6) can € altraclive, and it in- CFiently solve the corresponding 1D-TV subproblems.
deed can outperform the more sophisticated MSN method,

Fhough pnly for a very limited range ofvalues. Therefore, 4. Numerical Results: Proximity operators
in practice we recommend a hybrid of GP and MSN. ) . . . .
In this section, we provide experimental results illugtrgt
3. Two-dimensional TV Proximity the per_formance of our Newton-type algorlt.hms for ;D—'_I'V
proximity. We test them under two scenarios: (i) with in-
Now we advance to the harder problem of two-dimensionatreasing input size; and (ii) with varying penalty param-
TV. Let X € R™*™ be an input matrix, and let’ denote  eter \. For scenario (i) we select a randone [0, 50]
its ¢-th row, andx; its j-th column. Further, leD,, and  for each run; the data vectgris also generated randomly
D,,, be differencing matrices for the row and column di- by pickingy; € [—2), 2] (proportionally scaled ta) for
mensions. Then, the regularizd) €an be written as 1 <4 < n. For scenario (ii)y; ranges if—2, 2], while the

) _ penalty\ is varied from10~3 (negligible regularization) to
Tv, ((X) = Zl | Dnz' ||, + Zj [Dmzxjlg-  (17) 103 (the TV-term dominates).

4.1. Results for TV-L1 proximity

We compare running times of our PN approach (C imple-
(18) mentation) against two methods: (i) the FLSA function
(C implementation) of the SLEP libraryiQ et al,, 2009,

where) > 0 is a penalty parameter. Unfortunately, in gen-Wh'C,h seems to be the state-of:the-art method fo}DTv
eral, the proximity operator for a sum of convex functionsprox'm'tY (IT'U e;t al, 2010; and (i) the EathW|se CO.Ord"
is difficult to compute. However, if we could split§) into nate Op_t|m|zat|on method (R +dRTRANImplementation)
from (Friedman et a)2007). For PN and SLEP, we use du-
min 3| X — Y2+ A Z | D, x|, (19) alitygap of10~° as the stopping criterion. For Coordinate
s g Optimization, duality gap is not supported so we use its de-
min HIX —Y[E+A Zj | Dyjllqs (20)  fault stopping criteria. Timing results are presented g Fi
ure 1 (left panel) for increasing input sizes and penalties.
then our task would be greatly simplified, especially be-From the plots we see that both SLEP and PN are much
cause 19 and QO0) themselves further decompose into faster than Coordinate Optimization. Though, it must be
1D-TV proximity problems. Fortunately, at the cost of mentioned that the latter returns the full regularizatiathp
slight additional storage, we can do precisely this splitti  while SLEP and PN compute the solution for only one
via the proximal Dykstramethod Combettes & Pesquet But this is no limitation; SLEP and PN run much faster
2009. Algorithm 3 presents pseudocode. and with warm-starts one can rapidly compute solutions for
several\ values, if needed.

The corresponding Tf,\%-proximity problem is

min HIX —Y[R+ATV2 (X)),

Remarks: Since (9) and Q0) decompose into indepen-
dent 1D-TV subproblems, we could solve these subprobWith increasing input sizes PN finds a solution faster than
lems in parallel if desired. Also, as shown, AlgorithB) ( SLEP, taking roughly at most 60% of the time: explicit nu-
cannot solveX9) and @Q) in parallel due to the shared de- merical values are reported Taldléor easy reference. Fig-
pendence orZ,;. A variant of Algorithm3 allows us to  urel indicates that larger speedups are observed for small
overcome this limitation, though it is usually more prefer- A, while for large\, both SLEP and PN perform similarly.
able for multi-dimensional TVRarbero & Sra2011). Em-  The rationale behind this behavior is simple: for smaller
pirically, Algorithm 3 converges rapidly and usuallfg)  \ the active sef is prone to become larger, and PN ex-
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TV1 increasing sizes . TV1 increasing penalties X TV2 increasing sizes TV2 increasing penalties
10 10 10

---SLEP ~=-MSN ~--MSN
- - i R ---GP ---GP
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J—Pm]ec(edNewmn , et aama
- - - Coordinate Optimization L 10

_o|[---SLEP
— Projected Newton
- - Coordinate Of
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10 2 z "
Penalty A
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Problem size
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Problem size
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Figure 1.Running times (in secs). Left panel: PN, SLEP and Coordinate Optimizstiwers for T4°-proximity with increasing input
sizes and penalties. Right panel: MSN, GP, and hybrid MSN-GP solvefs4P-proximity with increasing input sizes and penalties.

erations (an upper limit imposed in our implementation).
Conversely, MSN finds a solution satisfying the stopping
criterion under every situation, thus showing a more ro-
bust behavior. Therefore, we propose a hybrid approach
that combines the strengths of MSN and GP. This hybrid is

Table 1.Running times (in milliseconds) for PN, SLEP and Coor-
dinate Optimization solvers for TV-L1 problems with increasing
input sizes (in log-scale); denotes problem size.

log,,n  SLEP PN @ORD.

guided using the following (empirically determined) rufe o
1.00 1.19 3.6561 1.63 thumb: if A < ||ly||2 use GP, otherwise use MSN. Further,
1.53 0.17 0.2476 1.37 as a safeguard, if GP is invoked but fails to find a solution
2.06 0.30 0.29 1.52 within 50 iterations, the hybrid should switch to MSN. This
g:ﬁ g:gg g:gi é:?g combination guarantees rapid convergence in practice. Re-
3,64 5 05 3.10 2220 sults for this hybrid approach are included in the plots in
4.17 15.10 8.22 92.41 Figurel, and we see that it successfully mimics the behav-
4.70 67.60  39.35 359.50 ior of the better algorithm amongst MSN and GP.
5.23 221.58 137.81 1550.27
5.75 759.62 464.32 5678.25 ; . ; ;
628 2874.83 1655 95 23985 00 5. Numerical Results: Applications
6.81 9457.11 5659.42 93366.00

To highlight the potential benefits of our algorithms we
show below three main applications: (i) fused-lasso; (ii)
image denoising; and (iii) image deblurring. However, we

- : . note here that the exact application itself is not as much a
plicitly takes advantage of this set by updating only the NO%ocus as the fact that our solvers apply to a variety of appli-

indexed byl. On the other hand, for large PN's strategy ; . : : o
t hile | to not I I .
becomes similar to that of SLEP, hence the similar pen‘or—Ca lons while leading to noticeable empirical speedups

mance. Finally, as Coordinate Optimization computes th
full regularization path, its runtime is invariant o %'1' Results for 1D Fused-Lasso

Our first application is to fused-lasso for which we plug in
our algorithms as subroutines into the genenaFsolver

of Kim et al. (2010. We then apply RIP to solve the fol-
To compare the running times of MSN and GP, we agairlowing variants of fused-lasso:

use duality gap ot0~° as the stopping criterion. Further,

as MSN might generate infeasible solutions during the op- 1. Fused-lasso (FL):Here L(z) = 3|ly — Az|3, and
timization, we also apply a boundary proximity criterion R(z) = Aiflz[li + Aof|Dzl|1; this is the original
for MSN with tolerancel0—%. Looking at the results it fused-lasso problem introduced iffishirani et al,
can be seen that the performance of MSN and GP differs 2009, and used in several applications, such
noticeably in the two experimental scenarios. While Fig- ~ a@s in bioinformatics Tibshirani & Wang 2008
ure 1 (first plot; right panel) might indicate that GP con- Rapaport & Vert2008 Friedman et a).2007).

verges faster than MSN for large inputs, it does so depend- 2. ¢,-variable fusion (VF): Same as FL but with

ing on the size of\ relative to||y||,. Indeed, Figurd. (last Xo||Dz||, instead. This FL variant seems to be new.
plot) shows that although for small values kf GP runs

faster than MSN, a3 increases, GP’s performance wors-
ens dramatically, so much that for moderately lakgéis
unable to find an acceptable solution even after 10000 it-

4.2. Results for TV-L2

3. Logistic-fused lasso (LFL):A logistic lossL(x, ¢) =
>, log (1 + e*yi(“?”c)) can be introduced in the
FL formulation to obtain a more appropriate model for
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classification on a dataséta;, y;)}. For an applica-
tion to time-varying networks se€olar et al.(2010.

4. Logistic + ¢»-fusion (LVF): This model combines lo- DATASET FL VF LFL  LVF
gistic loss with the VF setting.

Table 3.Classification accuracies on microarray data.

ARRAYCGH 73.6% 78.9% 73.6% 73.6%
LEUKEMIAS 92.0% 92.0% 96.0% 96.0%

CoOLON 772% 77.2% 77.2% 77.2%
Table 2.Running times (secs) for SLEP anakiP for optimizing OVARIAN 88.8% 83.3% 77.7% T77.7%
RAT 67.2% 65.5% 70.4% 70.4%

different versions of fused-lasso with increasing input sizes. Both
methods were run to satisfy the same convergence criterion.

5.2. Results for 2D-TV

MODEL SLEP TRIP . . . .

5 . 5 5 . . We now show application of our two-dlmensmnalfﬁv
n 10 10 10 10 10 10°  proximity solver. We are not aware of natural applications
FS 0.089 1.43 41.80| 0.02 0.10 0.86 for two or higher-dimensional ﬁ\%—proximity, so we do
VS 0.16 1.26  35.77| 0.02 0.10 0.90 not discuss it further. The most basic and natural applica-
LFL 0.21 15.01 144.81) 0.78 5.35 53.88 tjon of our TV?D -proximity is to image denoising. Among
LVF 0.86 0.02 132.131 0.81 0.15 11.24 e yast number of denoising methods, we compare against

the well-established method based on the classic ROF-TV
model Rudin et al, 1992). This model takes anxn noisy
imageY and denoises it by solving

Synthetic data. We first compare RiP equipped with our
proximity solvers with the approach dfiu et al. (2010.
Here random matriced € R"*™ are generated, whose
entries are selected to follow a zero mean, unit variance minx ;HX . Y||% F ATVior(X), (21)
normal distribution. We fixn = 100, and set\; = \y = 2

0.01. Then, we sample matrices with number of columnswhere the ROF version of TV is defined as

n varying as10?, 104, and10°. To select the vector of re-

sponsey, we use the formulg = sgn(Axz; + v), where TVror(X) = Zlgiﬂ-@ 1(V2)i 512,
x;, andv are random vectors whose entries have vari- Tit1j — Tij
. - K3 k2 Z,
ancesl and0.01, respectively. The numerical results are (V)i = { 7 _+i _ xj } :
2,] ]

summarized in Tabl@, where we compare SLEP (version

4.0) (Liu et al, 2009 against the RiP-based approach. That is, the TV operator is applied on the discrete gra-
While for smaller matrices with = 103 both methods run  dient over the image. This TV regularization is known
similarly fast, as the size of the input matrices increath®s, as isotropic TV, in contrast to our anisotropic TV. Al-
TRrIP-based fused-lasso solvers run much faster than SLEEhough often the isotropic version [Lvis preferred, for
some applications anisotropic TV shows superior denois-
ing. We show a simple example that illustrates this set-
ting naturally, namely, denoising of two-dimensional bar-

Real Data. We tested each of the four FL mod-
els on binary classification tasks for the following mi-

croarray datasets: ArrayCGHSftfansky et a). 2006, codes Choksi et al, 2010. We apply our 2D-TV op-

Leukemias Golub etal, 1999, Colon (. Alonetal, erator to this setting and compare against the isotropic

;ggg %\;i%agagzge?m:;zj??pn?oiﬁesfg Hzla e;rills, en[nodel which we solved using the state-of-the-art PDHG
.9' W Pt in qual parts ( method Zhu & Chan 2008. For further reference we also
suring both classes are present in every split) for training

2 compare against: (i) the anisotropic TV solver proposed
vglldatlon ar}d test. The penalty paragmetlers Wherg fqund b% (Fpriedmgn ot aj.FZ%)O?)' (i) an gdapted (anisrftrogic)
glrld S?a"i.h in the range,, /:; < [1& t', 107] tl'ot MaxiMiz€ " ppHG solver obtained easily by modifying the original for-
classilication accuracy on the vaildation Spiits. mulation; and (iii) a median filter. We note that the step-

Table 3 shows test accuracies. We see that in generakize selection rules recommended for PDHG, failed to pro-
logistic-loss based FL models yield better classification a duce fast runtimes when applied to anisotropic TV. Thus, to
curacies than those based on least-squares. This resultritake PDHG competitive, we searched for optimal stepsize
natural: logistic-loss is more suited for classification in parameters for it by exhaustive grid search.

tasks like the ones proposed for these datasets. Regardir:}gble4 presents runtimes and Improved Signal-to-Noise

tslily'r:?glt?p;iﬁ;hggetﬁgt OLflt\rﬁa (E‘ga\:sgﬁ;?tseir:};?n?: "NRatio (ISNR) values obtained for a series of denoising ex-
v ! 'ce, Thoug ! yp periments on barcode images that were corrupted by addi-

better for Ovarian, while TéP works best for ArrayCGH. tive (variance0.2) and multiplicative (varianc®.3) gaus-

3Both TriP and SLEP are implemented inAlLAB; only the ~ Sian noise. To compensate for the loss of contrast produced
crucial proximity operators are implemented in C. by TV filtering, intensity values are rescaled to the range
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Table 4.Barcodes denoising results obtained via PN, Coordinate Optimization apdealdPDHG for the anisotropic model, genuine
PDHG for the isotropic model, and a median filter. ISNR (dB) values (highieetter) and running times in seconds are shown.

ANISOTROPIC ISOTROPIC MEDIAN
SIZE ISNR TiMe PN  TimMe CoorD. TIME PDHG || ISNR TiME PDHG || ISNR TIME
100x 100 | 2.39 0.11 2.85 0.64| 2.04 0.03|| 1.24 0.00
175x 175 | 4.14 0.27 15.99 8.71 3.38 0.11 1.74 0.02
300x 300 | 5.48 0.88 140.78 128.74 4.38 0.37|| 2.35 0.03
375x 375 | 6.04 1.39 167.68 93.87 4.39 0.76| 2.42 0.07
500x 500 | 4.42 2.59 228.55 203.19 3.58 1.30(| 2.18 0.09

Figure 2. Example of barcode denoising for the isotropic and anisotropic modeds1otb x 175 image. a) Clean image. b) Noisy
image. c) Anisotropic denoising. d) Isotropic denoising. €) Median filter.

of the original image. The penalty parametefor each  anisotropic deconvolution algorithm. Tal#eresents nu-
model was chosen so as to maximize the on thex3@00  merical results (visual results are Barbero & Sra2011))
image. As expected, the anisotropic TV regularizer is mordor deconvolution of noisy barcode images subjected to
appropriate for the underlying structure of the image, andnotion blurring. Comparing against SALSAs default
thus obtains lower reconstruction errors. An example igsotropic denoising operator, again an anisotropic model
shown in Figure2, where we also observe visually better produces a better reconstruction. Results for Richardson-
reconstructions via the anisotropic model. Additional ex-Lucy (RL) (Biggs & Andrews 1997 as implemented in
perimental results are ilBéarbero & Sra2017). Matlab are also presented, showing much faster filtering

Regarding running times, our PN solver vastly outper—t'mes but inferior reconstruction quality.

forms Coordinate Optimization and anisotropic PDHG.
The isotropic version of the problem is simpler than the
anisotropic one, so it is no surprise that the carefully tune Table 5.Deconvolution results for anisotropic and isotropic mod-
PDHG approach requires less time than PN. Itis also wortlels using the SALSA solver, and AfLAB’s Richardson-Lucy
mentioning that in Choksi et al. 2010 an/; loss is used, (RL) method. ISNR (dB) values and runtimes (in secs) are shown.
and denoising cast as a Linear Program, to which a generic

solver is applied; this approach requires runtimes of over
10% seconds for the largest image.

ANISOTROPIC ISOTROPIC RL
n ISNR TIME ISNR TIME ISNR TIME

5.3. Image deconvolution 100| 1.55 1.19| 1.10 0.12| 073 0.04

With little added effort our two-dimensional TV solvercan 175 | 2.79  0.81) 215 0.55 0.79 0.18

; 300 | 4.07 3.34| 3.07 2.40 1.07 0.46
be employed for the harder problem of image deconvolu- 375| 405 541l 292 371 113 o061

tion, which takes the form 500| 3.21 8.98| 237 571| 1.04 1.26
min, i||Kz —y|3+ AR(z),

where K is a blur operatorR is a regularizer, and: en-

codes an imz_ige. As stated l_Jefore, this problgm can_alsACknOMedgments

be solved usingrox as a building block. Precisely this

is done by the solver SALSAAfonso et al, 2010. We  With partial support from Spain’s TIN 2010-21575-C02-01
plug our 2D-TV solver directly into SALSA to obtain a fast and FPU-MEC grant reference AP2006—02285.
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