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Introduction
Prominent example: Determinantal Point Processes
“ Stronger notions of negative dependence
Intro &
Theory Implications: Sampling

Approximating partition functions

n Learning a DPP (and some variants)

Theory & Applications

Applications Recommender systems, Nystrom method,
optimal design, regression, neural net pruning,
negative mining, anomaly detection, etc.

Perspectives and wrap-up
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Theory

Partition functions

Learning DPPs
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Computing Partition functions

Aim: Estimate Z,, i.e., normalization const / partition function

Pr(S) = Zi (5)

Typically intractable and often even
hard to approximate

(exponential number of terms to sum over, or evaluation of
high-dimensional integrals / volumes)

buct...

-I N
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Computing Partition functions

* Nature makes an exception for DPPs!

Zp= ) det(Ls) = det(l+ L)

SCn]

Z (S (SR)
Z 1(S (ESR)

What about?
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Computing Partition functions

ZM Lyp = ZM(SP
SCn]

SC[n]

Using properties of stable polynomials, these can be
approximated within factor e (e for k-homogeneous, e.g.,

kK-DPP): [Straszak, Vishnoi, 2016; Nikolov, Singh, 2016; Anari, Gharan,
Saberi, Singh, 2016; Anari, Gharan 2017]

Key: Build on Leonid Gurvits’ fundamental work (2006)
on approximating permanents of nonnegative matrices
using convex relaxation afforded by stable polynomials

Cooplz1, .., 2,
inf (21,5 2n)
2>0 2129+ Zp

z=exp(y): yields convex optim.

(a geometric program - GP)

6
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Example: matrix permanents

per(A4) = Z Hai,a(i)

cecs,, 1=1

Eg: counts number of perfect matchings in a bipartite graph

Permanents via stable polynomials (Gurvits 2006)

0" p(0)
A) =
per(A) 0z1 - 0zp
doubly p(Zl, e ,Zn) — H (Zn CLZ‘ij)
stochastic i J=1
n |
0"p >&infp(z1,...,zn)

0z1+--02, N 2>0 21292,
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Learning
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Learning a DPP from data

Aim: Learn a DPP kernel matrix from data
More generally: Learn an SR measure from data (how?)

Application: Learn from observed subsets to be able to
“recommend” or perform “subset selection”

Originally studied in:

Kulesza, Taskar ICML 2011, UAI 2011
Affandi, Fox, Adams, Taskar, ICML 2014
Gillenwater, Kulesza, Fox, Taskar, NIPS 2014
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MLE for learning a DPP

Given observations Yi,..., YN (subsets of [n])

det Ly)
ey () Zlong Zlog 3ot 1 D

Amazingly simple algorithm [Mariet, Sra, 2015]

Related recent work

» Asymptotic properties of MLE for DPPs: [Brunel, Moitra, Rigollet, Urschel, 2017]
 Learning a DPP via method of moments to achieve near optimal sample
complexity: [Urschel, Brunel, Moitra, Rigollet, ICML 2017]

|0
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Speeding up DPP learning

Challenge: Basic L+L@’(L)L iteration costs »n3, avoid?

k-DPP: Restrict DPP to subsets of size exactly ‘K’
[Kulesza, Taskar, 2011]

LR-DPP: Write L=VVT for low-rank V (can sample size < k)
[Gartrell, Paquet, Koenigstein, 2017]

Kron-DPP: Write L = [.{ ® Lo (can sample any size)
[Mariet, Sra, 2017]

among others...
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Open problems: learning

Problem 1: Learning parametrized classes of
other SR measures

Problem 2: Efficiently learn a “Power-DPP”, i.e., u(S)=det(Ls)"

Problem 3: Learn the diversity tuning parameter ‘p’ in Power-DPPs
and more generally in Exponentiated SR measures

Problem 4: Explore other learning models; e.g. Deep-DPP to learn
nonlinear features for a DPP [Gartrell, Dohmatob, 2018], or “negative
mining” for reducing overfitting [Mariet, Gartrell, Sra, 2018]

12
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Applications

Recommender systems
Model compression
Nystrom approximation
Outlier detection

Optimal design
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Recommender systems

@ Happy Birthday Song | & Trick a Little, Treat a Little O Little Pumpkin - 2/ Who Took the Candy?

Baby Songs & Nursery... | Halloween Songs for Kids... Halloween Songs | Nursery... Halloween Songs by Dave...

Practical Diversified Recommendations on YouTube with
Determinantal Point Processes

Mark Wilhelm, Ajith Ramanathan, Alexander Bonomo Sagar Jain, Ed H. Chi, Jennifer Gillenwater

Challenges * Handling mismatch between model’s notion of diversity
versus user’s perception of diversity (true for other applications t00)
- Scalability to large-scale data

* Integrating within existing recommender ecosystems

(e.g. existing pointwise recommenders vs DPP’s setwise!)

See also monograph and tutorial by A. Kulesza for more! 14
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Nystrom approximation

Fundamental tool for scaling up kernel methods

NI
'Y,

Which columns (data points)?

(Williams & Seeger 01, Zhang et al 08, Belabbas & Wolfe 09, Gittens &
Mahoney 13, Alaoui & Mahoney 15, Deshpande et al 06, Smola &
Schélkopf 00, Drineas & Mahoney 05, Drineas et al 06, ...)

Sample subset S from k-DPP

K = K:,SK;SKS,:

5
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Nystrom approximation

Sketching matrices/kernel methods
I T
K = K;,SKS,SKS,:
Theorems. (Li, Jegelka, Sra 2016)

43[

K = Klr| < ctl VN — k  Approx quality

K — Killr — C+:-_¢k_-, ¢ > k landmarks
" R(%) ~q1_ ¢ T 1;'€c+1(K ), Expected risk
\ R(Zs) — Ny e K) / kernel ridge regression

|6

H
Suvrit Sra (suvrit@mit.edu) Negative dependence, stable polynomials etc. in ML - part 2 I|I| |




Nystrom approximation

Sketch 107

10

Theorems.

0| K — K
K — K;

|
AdapPart

D
) Kmeans
D ApplLev
O AppReglLev |
0 kDPP
0 _
8 .
X quality
- andmarks
| 2d risk
10°

Idge regression

(Li, Jegelka, Sra 2016)
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Neural network pruning
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SR R o to use for sampling?
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—f— random

0.8 |- —+— importance pruning
i —+— DIVNET

“Diversity networks”

1. Sample diverse neurons
2. Delete redundant ones
3. Rebalance layer output

test error

(Mariet, Sra 2016)
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Outlier detection
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Outlier detection
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p=0 iIncreasing sensitivity

pem - p(S) = pu(S)P

[Mariet, Sra, Jegelka, 2018]
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Optimal design & active learning

PRIOR EXPERIMENT POSTERIOR
SELECTION
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OPTIMAL DESIGN
OF EXPERIMENTS

A Case Study Approach

MODEL PERTURBATION /mg ise.inf.eth.ch
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Optimal design & active learning

Setup: Say ‘m’ possible experiments with measurements
x1,....xm, (With x; in R"), and scalar outcomes y, ...,vm

Ui — (9T337; €

Aim: Pick a subset S of [m] to “minimize” uncertainty

~1
min <I>(( a:Z:E,LT) )

\

What is this?

Ref. Pukelsheim, Optimal design of experiments.
22
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Optimal design & active learning

—1
min <I>(< :UZ:I:;‘F) >
SClm],|S|=k ;

®=trace gives A-optimal, P=det gives D-optimal design

(Wang, Yu, Singh, 2016) (Chamon, Ribeiro, 2017)

(Bayesian A-opt: Golovin,Krause,Ray, 2013)  (Chen, Hassani, Karbasi, 2018)
(Singh, Xie, 2018)

...and many more

(Mariet, Sra, 2017). ®=Elemenetary Symmetric Polynomial
(recovers A- and D-optimal case extreme cases)

Thm. Greedy algo and convex relaxation both work.
Success of greedy uses “Dual” volume sampling!

23
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“Dual” volume sampling

P(S) o< det(XgXgq)

NOT a DPP
...but SR

n rows, m > n columns. Sample k£ > n columns.

(Avron & Boutsidis 2013): approximation bounds on Frobenius
norms for A-/E-optimal experimental design from sampling.

(Mariet, Sra, 2017) generalize to E-Symm. Polynomials

Note: (Derezinski, Warmuth, 2017) and (Li, Jegelka, Sra, 2017) provide
efficient algorithms to sample from P(S)

24
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Optimal design & active learning

An aside for convex optimization folks

Dual of convex relaxation to D-optimal design is the famous
MVCE problem (Todd, Minimum Volume Ellipsoids SIAM 2016)

max logdet(M), M =0, ||Ma; —z|| <1, 1<t <N

Uncovers a connection between geometry, optimization, and
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Other ML applications

/\

/\

/\

/\

/\

/\

/\

See past tutorials on submodular models in ML (various authors)

Reinforcement learning (diversity based exploration)
https://arxiv.org/abs/1802.04564

Fairness and diversity
https://arxiv.org/abs/1610.07183

Video Summarization
https://arxiv.org/abs/1807.10957

Diversified minibatches for SGD
https://arxiv.org/abs/1705.00607

Diverse sampling in Bayesian optimization
(Kathuria, Deshpande, Kohli, 2016; Wang, Li, Jegelka, Kohli, 2017)

and of course, many more (see tutorial website for more...)
26
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https://arxiv.org/abs/1802.04564
https://arxiv.org/abs/1610.07183
https://arxiv.org/abs/1807.10957
https://arxiv.org/abs/1705.00607

Related work at this conference

Derezinski, Warmuth, Hsu. Leveraged volume sampling for linear regression

Zhang, Galley, Gao, ¢an, Li, Brockett, Dolan. Generating Informative and Diverse
Conversational Responses via Adversarial Information Maximization (based on M)

Chen, Zhang, Zhov. Fast Greedy MAP Inference for Determinantal Point Process to
Improve Recommendation Diversity

Zhou, Wang, Bilmes. Diverse Ensemble Evolution: Curriculum Data-Model Marriage

Hong, Shann, Su, Chang, Fu, Lee. Diversity-Driven Exploration Strategy for Deep
Reinforcement Learning (adds a distance based control)

Gillenwater, Kulesza, Vassilvitskii, Mariet. Maximizing Induced Cardinality Under a
Determinantal Point Process

Brunel. Learning Signed Determinantal Point Processes through the Principal Minor
Assignment Problem

Mariet, Sra, Jegelka. Exponentiated Strongly Rayleigh Distributions

Diolonga, Jegelka, Krause. Provable Variational Inference for Constrained Log-
Submodular Models

HE & 8 8 & 848
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Perspectives
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necent results:

Strongly log-concave (SLC) polynomials — introduced by
Gurvits in 2009, many properties laid out. Aim: approximate
partition functions over combinatorially large sample spaces

Properties further developed by Anari, Gharan, Vinzant (Oct &
Nov 2018) and used to solve: Mason’s conjecture and more!

Matroid Base Exchange Walk: Fast Mixing — so in particular, the
SR property is not necessary for fast mixing.

Exponentiated SR measures (Mariet, Sra, Jegelka, 2018), with an
approximate mixing time analysis and few applications

The ESR case 0 < a < [ falls under the SLC framework, hence
fast MCMC sampling (Anari, Liu, Gharan, Vinzant, Nov 2018)

29
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Summary and outlook

Negative dependence as a paradigm in ML

Foundations of strong ND = Strongly Rayleigh
We saw: Connections to real stable polynomials

Fast MCMC sampling

Fast approx of partition functions

Many applications

Deeper connections to optimization
Modeling diversity (semi-supervised)

Outlook: Richer theory of ND sampling
Proving stability of numerous polys still wide-open
Additional applications: from active to interactive
Mixing positive and negative dependence

30
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Suvrit Sra (suvrit@mit.edu)

Thanks

Chengtao Li Zelda Mariet
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