Negative Dependence, Stable Polynomials etc in ML Part 2 SUVRIT SRA & STEFANIE JEGELKA

Laboratory for Information and Decision Systems Massachusetts Institute of Technology

Neural information Processing Systems, 2018

Introduction

Prominent example: Determinantal Point Processes

Stronger notions of negative dependence

Implications: Sampling

Approximating partition functions

2 Theory & Applications

Intro &

Theory

Learning a DPP (and some variants)

Applications

Recommender systems, Nyström method, optimal design, regression, neural net pruning, negative mining, anomaly detection, etc.

Perspectives and wrap-up

Theory

Partition functions

Learning DPPs

Suvrit Sra (suvrit@mit.edu)Negative dependence, stable polynomials etc. in ML - part 2

Computing Partition functions

Aim: Estimate Z_{μ} , i.e., normalization const / partition function

$$\Pr(S) = \frac{1}{Z_{\mu}}\mu(S)$$

Typically intractable and often even hard to approximate

(exponential number of terms to sum over, or evaluation of high-dimensional integrals / volumes)

Computing Partition functions

Nature makes an exception for DPPs!

$$Z_L = \sum_{S \subseteq [n]} \det(L_S) = \det(I + L)$$

$$Z_{\mu} = \sum_{S \subseteq [n]} \mu(S) \qquad \text{(SR)}$$
 What about?
$$Z_{\mu,p} = \sum_{S \subseteq [n]} \mu(S)^{p} \qquad \text{(ESR)}$$

Computing Partition functions

$$Z_{\mu} = \sum_{S \subseteq [n]} \mu(S), \qquad Z_{\mu,p} = \sum_{S \subseteq [n]} \mu(S)^{p}$$

Using properties of stable polynomials, these can be approximated within factor e^n (e^k for k-homogeneous, e.g., k-DPP): [Straszak, Vishnoi, 2016; Nikolov, Singh, 2016; Anari, Gharan, Saberi, Singh, 2016; Anari, Gharan 2017]

Key: Build on Leonid Gurvits' fundamental work (2006) on approximating permanents of nonnegative matrices using convex relaxation afforded by stable polynomials

$$\inf_{z>0} \frac{p(z_1,\ldots,z_n)}{z_1 z_2 \cdots z_n}$$

z=exp(y): yields convex optim.

(a geometric program - GP)

Example: matrix permanents

$$per(A) = \sum_{\sigma \in \mathfrak{S}_n} \prod_{i=1}^n a_{i,\sigma(i)}$$

Eg: counts number of perfect matchings in a bipartite graph

Permanents via stable polynomials (Gurvits 2006)

$$per(A) = \frac{\partial^n p(0)}{\partial z_1 \cdots \partial z_n}$$

A is doubly stochastic

$$p(z_1, \dots, z_n) = \prod_{i=1}^n \left(\sum_{j=1}^n a_{ij} z_j \right)$$

$$\frac{\partial^n p}{\partial z_1 \cdots \partial z_n} \ge \frac{n!}{n^n} \inf_{z>0} \frac{p(z_1, \dots, z_n)}{z_1 z_2 \cdots z_n}$$

Negative dependence, stable polynomials etc. in ML - part 2

Learning

Suvrit Sra (suvrit@mit.edu)Negative dependence, stable polynomials etc. in ML - part 2

Learning a DPP from data

Aim: Learn a DPP kernel matrix from data More generally: Learn an SR measure from data (how?)

Application: Learn from observed subsets to be able to "recommend" or perform "subset selection"

Originally studied in:

Kulesza, Taskar ICML 2011, UAI 2011 Affandi, Fox, Adams, Taskar, ICML 2014 Gillenwater, Kulesza, Fox, Taskar, NIPS 2014

MLE for learning a DPP

Given observations $Y_{I}, ..., Y_{N}$ (subsets of [n]) $\max_{L \succ 0} \phi(L) := \sum_{i=1}^{N} \log \Pr(Y_{i}) = \sum_{i=1}^{N} \log \frac{\det(L_{Y_{i}})}{\det(I+L)}$

Amazingly simple algorithm [Mariet, Sra, 2015]

$$L \leftarrow L + L \nabla \phi(L) L$$

Related recent work

• Asymptotic properties of MLE for DPPs: [Brunel, Moitra, Rigollet, Urschel, 2017]

• Learning a DPP via method of moments to achieve near optimal sample complexity: [Urschel, Brunel, Moitra, Rigollet, ICML 2017]

Speeding up DPP learning

Challenge: Basic $L+L\phi'(L)L$ iteration costs n^3 , avoid?

k-DPP: Restrict DPP to subsets of size exactly 'k' [Kulesza, Taskar, 2011]

LR-DPP: Write $L = VV^T$ for low-rank V (can sample size \leq k) [Gartrell, Paquet, Koenigstein, 2017]

Kron-DPP: Write $L = L_1 \otimes L_2$ (can sample any size) *[Mariet, Sra, 2017]*

among others...

Open problems: learning

Problem 1: Learning parametrized classes of other SR measures

Problem 2: Efficiently learn a "Power-DPP", i.e., $\mu(S) = det(L_S)^p$

Problem 3: Learn the diversity tuning parameter 'p' in Power-DPPs and more generally in Exponentiated SR measures

Problem 4: Explore other learning models; e.g. Deep-DPP to learn nonlinear features for a DPP [Gartrell, Dohmatob, 2018], or "negative mining" for reducing overfitting [Mariet, Gartrell, Sra, 2018]

Applications

Recommender systems Model compression Nyström approximation Outlier detection Optimal design

Recommender systems

NEW!

😍 Trick a Little, Treat a Little | Halloween Songs for Kids...

Little Pumpkin -Halloween Songs | Nursery...

Who Took the Candy? Halloween Songs by Dave...

Practical Diversified Recommendations on YouTube with Determinantal Point Processes

Mark Wilhelm, Ajith Ramanathan, Alexander Bonomo, Sagar Jain, Ed H. Chi, Jennifer Gillenwater **Challenges:** • Handling mismatch between model's notion of diversity versus user's perception of diversity (true for other applications too) • Scalability to large-scale data

 Integrating within existing recommender ecosystems (e.g. existing pointwise recommenders vs DPP's setwise!)

See also monograph and tutorial by A. Kulesza for more!

Nyström approximation

Fundamental tool for scaling up kernel methods

Which columns (data points)?

(Williams & Seeger 01, Zhang et al 08, Belabbas & Wolfe 09, Gittens & Mahoney 13, Alaoui & Mahoney 15, Deshpande et al 06, Smola & Schölkopf 00, Drineas & Mahoney 05, Drineas et al 06, ...)

Sample subset S from k-DPP

$$\widehat{K} = K_{:,S} K_{S,S}^{\dagger} K_{S,:}$$

Nyström approximation

Sketching matrices/kernel methods

$$\widehat{K} = K_{:,S} K_{S,S}^{\dagger} K_{S,:}$$

Theorems. (Li, Jegelka, Sra 2016)

ratio of elementary symm. polynomials

Nyström approximation

(Li, Jegelka, Sra 2016) symm. polynomials

Neural network pruning

Challenge: Which measure to use for sampling?

"Diversity networks"

- 1. Sample diverse neurons
- 2. Delete redundant ones
- 3. Rebalance layer output

(Mariet, Sra 2016)

Suvrit Sra (suvrit@mit.edu) Negative dependence, stable polynomials etc. in ML - part 2

Outlier detection

Outlier detection

[Mariet, Sra, Jegelka, 2018]

Suvrit Sra (suvrit@mit.edu) Negative dependence, stable polynomials etc. in ML - part 2

Setup: Say 'm' possible experiments with measurements $x_1, ..., x_m$, (with x_i in \mathbb{R}^n), and scalar outcomes $y_1, ..., y_m$

$$y_i = \theta^T x_i + \epsilon$$

Aim: Pick a subset S of [m] to "minimize" uncertainty

Ref. Pukelsheim, Optimal design of experiments.

Suvrit Sra (suvrit@mit.edu)

Negative dependence, stable polynomials etc. in ML - part 2

22

$$\min_{S \subseteq [m], |S|=k} \Phi\left(\left(\sum_{i \in S} x_i x_i^T\right)^{-1}\right)$$

Φ=trace gives A-optimal, Φ=det gives D-optimal design

(Wang, Yu, Singh, 2016) (Bayesian A-opt: Golovin,Krause,Ray, 2013) (Chamon, Ribeiro, 2017) (Chen, Hassani, Karbasi, 2018) (Singh, Xie, 2018) ...and many more

(Mariet, Sra, 2017): Φ=Elemenetary Symmetric Polynomial (recovers A- and D-optimal case extreme cases)

Thm. Greedy algo and convex relaxation both work. Success of greedy uses "Dual" volume sampling!

"Dual" volume sampling

$P(S) \propto \det(X_S X_S^{\top})$ NOT a DPP ...but SR

n rows, $m \gg n$ columns. Sample k > n columns.

(Avron & Boutsidis 2013): approximation bounds on Frobenius norms for A-/E-optimal experimental design from sampling.

(Mariet, Sra, 2017) generalize to E-Symm. Polynomials

Note: (Derezinski, Warmuth, 2017) and (Li, Jegelka, Sra, 2017) provide efficient algorithms to sample from P(S)

An aside for convex optimization folks

Dual of convex relaxation to D-optimal design is the famous MVCE problem (Todd, *Minimum Volume Ellipsoids* SIAM 2016)

max $\log \det(M)$, $M \succ 0$, $||Ma_i - z|| \le 1$, $1 \le i \le N$

Uncovers a connection between geometry, optimization, and optimal-design (and hence stable polynomials!)

Hence, similar geometric problems via duals of convex relaxations of the Φ -optimal design problems (prev. slide)

Other ML applications

- See past tutorials on submodular models in ML (various authors)
- Reinforcement learning (diversity based exploration) <u>https://arxiv.org/abs/1802.04564</u>
- ☆ Fairness and diversity <u>https://arxiv.org/abs/1610.07183</u>
- Video Summarization
 <u>https://arxiv.org/abs/1807.10957</u>
- Diversified minibatches for SGD <u>https://arxiv.org/abs/1705.00607</u>
- Diverse sampling in Bayesian optimization
 (Kathuria, Deshpande, Kohli, 2016; Wang, Li, Jegelka, Kohli, 2017)
- \overleftrightarrow and of course, many more (see tutorial website for more...)

Related work at this conference

Perezinski, Warmuth, Hsu. Leveraged volume sampling for linear regression

Chen, Zhang, Zhou. Fast Greedy MAP Inference for Determinantal Point Process to Improve Recommendation Diversity

Zhou, Wang, Bilmes. Diverse Ensemble Evolution: Curriculum Data-Model Marriage

Hong, Shann, Su, Chang, Fu, Lee. Diversity-Driven Exploration Strategy for Deep Reinforcement Learning (adds a distance based control)

Gillenwater, Kulesza, Vassilvitskii, Mariet. Maximizing Induced Cardinality Under a Determinantal Point Process

Brunel. Learning Signed Determinantal Point Processes through the Principal Minor Assignment Problem

Mariet, Sra, Jegelka. Exponentiated Strongly Rayleigh Distributions

Djolonga, Jegelka, Krause. Provable Variational Inference for Constrained Log-Submodular Models

Suvrit Sra (suvrit@mit.edu)Negative dependence, stable polynomials etc. in ML - part 2

Perspectives

Suvrit Sra (suvrit@mit.edu)Negative dependence, stable polynomials etc. in ML - part 2

Recent results!

- Strongly log-concave (SLC) polynomials introduced by Gurvits in 2009, many properties laid out. Aim: approximate partition functions over combinatorially large sample spaces
- Properties further developed by Anari, Gharan, Vinzant (Oct & Nov 2018) and used to solve: Mason's conjecture and more!
- Matroid Base Exchange Walk: Fast Mixing so in particular, the SR property is not necessary for fast mixing.
- Exponentiated SR measures (Mariet, Sra, Jegelka, 2018), with an approximate mixing time analysis and few applications
- The ESR case 0 < α < 1 falls under the SLC framework, hence fast MCMC sampling (Anari, Liu, Gharan, Vinzant, Nov 2018)

Summary and outlook

We saw:	Negative dependence as a paradigm in ML Foundations of strong ND = Strongly Rayleigh Connections to real stable polynomials Fast MCMC sampling Fast approx of partition functions Many applications
Outlook:	Deeper connections to optimization Modeling diversity (semi-supervised) Richer theory of ND sampling Proving stability of numerous polys still wide-open Additional applications: from active to interactive Mixing positive and negative dependence

Thanks

Chengtao Li

Zelda Mariet

