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Admin

♠ Poster presentation on 10th May — mandatory

♠ HW, Midterm, Quiz — to be reweighted

♠ Project final report on 16th May — upload to easychair

♠ Any questions / concerns: email me!

♠ Email me if you need to meet
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Convex sets: geometry vs algebra

I Geometry of convex sets is very rich and well-understood (we
didn’t cover much of it)

I But what about (efficient) representation of these geometric
objects?

I How do algebraic, geometric, computational aspects interact?

I Semidefinite programming plays a major role!

� A nice book for detailed development of these ideas:

G. Blekherman, P. Parrilo, R. R. Thomas. Semidefinite
optimization and convex algebraic geometry (2012).
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Polyhedral sets

Recall (convex) polyhedra, described by finitely many half-spaces{
x ∈ Rn | aTi x ≤ bi, i = 1, . . . ,m

}
.

Convex polyhedra have many nice properties:

• Remain preserved under projection (Fourier-Motzkin
elimination)

• Farkas lemma / duality theory gives emptiness test

• Optimization over cvx polyhedra is linear programming.

But getting away from linearity....
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SDP, LMIs

We’ve seen SOCPs, SDPs as substantial generalization.

Semidefinite representations

Which sets can be represented via SDPs?

I LP case—well-understood: if a set is polyhedral (i.e., finite
number of extreme points / rays)

I Do we have a similar nice characterization in SDP case?

I We’ve seen a few SDRs in Lecture 6 (polyhedra, matrix norms,
second order cones, etc.)

I Preserved under standard “convex algebra”: affine
transformations, convex hulls, taking polars, etc.

I See lecture notes by A. Nemirovski for SDR (and conic) calculus
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Semidefinite representations

Can S be represented via SDPs?

I S must be convex and semialgebraic

S can be defined using a finite number of polynomial inequalities.

I Exact or approx. representations (also, relaxing nonconvex S)

I Example (“direct” representation)

x ∈ S ⇔ A0 +
∑

i
xiAi � 0

I “Lifted” representation (recall HW2), can use extra variables

x ∈ S ⇔ ∃y s.t. A(x) +B(y) � 0.

I This “projection” / lifting technique can be very useful.
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Lifting / projection

Classic example

n-dimensional `1-unit ball (crosspolytope).
Requires 2n inequalities of the form

±x1 ± x2 · · · ± xn ≤ 1.

But we can efficiently represent it as a projection:{
(x, y) ∈ R2n |

∑
i
yi = 1, −yi ≤ xi ≤ yi, i = 1, . . . , n

}
.

Just 2n variables and 2n+ 1 constraints

Moral: When playing with convexity, rather than eliminating
variables, often nicer to add new variables with which description
of set can become simpler!
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SDRs and LMIs

• Does every convex semialgebraic set S have a direct SDR?

(answer known in 2-dimensions)

• Does ever basic convex semialgebraic set have a lifted SDR?

Answers to both are unknown as of now

Some partial results known. See references

Let us look at SDR and approx SDR for polynomials
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Polynomials

Def. (Polynomial). Let K be a field and x1, . . . , xn be indetermi-
nates. A polynomial f with coefficients in a field K is a finite linear
combination of monomials:

f =
∑
α

cαx
α =

∑
α

xα1
1 · · ·x

αn
n , cα ∈ K;

we sum over finite n-tuples α = (α1, . . . , αn), each αi ∈ N0.

I Degree: d =
∑

i αi (largest such sum over all α)

Def. Ring of all polynomials K[x1, . . . , xn]

Eg: Univariate polynomials with real coefficients R[x]
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Nonnegativity

I We care about whether p(x) ≥ 0 for all x

I Question equivalent to SDR for univariate polynomials

I For multivariate polynomials, question remains very important

I (Nonnegativity intimately tied to convexity (formally real fields,

algebraic closure, ordered property etc.))

� If p(x) ≥ 0, then degree of p must be even

� Set of nonnegative polynomials quite interesting.

Theorem Let Pn denote the set of all nonnegative univariate poly-
nomials of degree ≤ n. Identifying a polynomial with its n + 1
coefficients (pn, . . . , p0), the set Pn is a closed, convex, pointed
cone in Rn+1
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Testing nonnegativity

Def. (SOS). A univariate polynomial p(x) is a sum of squares (SOS)
if there exist q1, . . . , qm ∈ R[x] such that

p(x) =
∑m

k=1
q2k(x).

Theorem A univariate polynomial is nonneg if and only if it is SOS

Proof: Obviously, if p(x) is SOS, then p(x) ≥ 0. For converse, recall by
the fundamental theorem of algebra, we can factorize

p(x) = pn
∏

j
(x− rj)nj

∏
k
(x− zk)mk(x− z̄k)mk ,

where rj and zk are real and complex roots, respectively.
Since p(x) ≥ 0, pn > 0, multiplicities nj of real roots are even. Also,
note (x− z)(x− z̄) = (x− a)2 + b2, if z = a+ ib. Thus, we have

p(x) =
∏

j
(x− rj)2sj

∏
k
[(x− ak)2 + b2k]mk .

Expand out above product of SOS into a sum to see that p(x) is SOS.
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SOS

Exercise: Show that in fact if p(x) ≥ 0, then it can be written as
a sum of just two squares, i.e., p(x) = q21(x) + q22(x). (Hint: It
may help to notice (a2 + b2)(c2 + d2) = (ac− bd)2 + (ac+ bd)2)

Unfortunately, for multivariate polynomials SOS not
equivalent to p(x1, . . . , xm) ≥ 0

(Motzkin polynomial)

M(x, y) := x4y2+x2y4+1−3x2y2 nonneg but not SOS.
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a sum of just two squares, i.e., p(x) = q21(x) + q22(x). (Hint: It
may help to notice (a2 + b2)(c2 + d2) = (ac− bd)2 + (ac+ bd)2)
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SOS and SDP

Theorem Let p(x) be of degree 2d. Then, p(x) ≥ 0 (or SOS) if and
only if there exists a Q ∈ Sd+1

+ that satisfies p(x) = zTQz, where
z = [1, x, . . . , xd]T .

I If p(x) ≥ 0, then we have p(x) =
∑m

i q
2
i (x)

I Obviously, degree of any qi at most d

I Write a vector of polynomials
q1(x)
q2(x)

...
qm(x)

 = V


x0

x1

...
xd


where row i of V ∈ Rm×(d+1) contains coefficients of the qi.
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SOS and SDP

I Denote [x]d := [x0, x1, . . . , xd]T

I Then, since q = V [x]d, we have
∑

i q
2
i (x) = (V [x]d)

T (V [x]d)
which is nothing but [x]TdQ[x]d, where Q = V TV � 0.

I Conversely, if there is a Q such that p(x) = [x]TdQ[x]d, just take
Cholesky factorization Q = RTR, to obtain SOS decomp. of p

I If we are given p, how to find SOS decomp / matrix Q?

Remark: N. Z. Shor (inventor of subgradient method), seems to be
first to establish connection between SOS decompositions and
convexity.
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SOS and SDP

` SOSTOOLS package automatically translates between SOS
polynomial and its SDP representation.

Suppose p(x) ≥ 0, then p(x) = [x]TdQ[x]d. We need to find Q.
Expanding out the product above we have∑d

j,k=0
qjkx

j+k =
∑2d

i=0

(∑
j+k=i

qjk

)
xi.

Since p(x) = pnx
n + . . .+ p1x+ p0. Thus, matching coeffts

pi =
∑

j+k=i
qjk, i = 0, . . . , 2d.

I These are 2d+ 1 linear constraints on Q

I We also have Q � 0

I Thus, finding feasible Q is an SDP
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Mini-challenge

Exercise: Prove that for 1 ≤ n ≤ m, the polynomial
p(x) = 1

2

(
2m
2n

)
(1 + x)2m−2n + 1

2q(x) is nonnegative, where

q(x) =
∑m

j=n

(
2m

2j

)
(1− x)2m−2j(−4x)j−n.

I Other computational tricks may be more suitable?
Remark: We note that testing nonnegativity of multivariate
polynomials (of degree 4 or higher) is NP-Hard.
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Application

7→ Global optimization of a univariate polynomial p(x)

7→ Instead of seeking x∗ ∈ argmin p(x), first attempt to find a
good lower bound on optimal value p(x∗)

7→ A number γ is a global lower bound on p(x), iff

p(x) ≥ γ ∀x ⇔ p(x)− γ ≥ 0, ∀x.

7→ Now optimize to get tightest bound, so

max γ s.t. p(x)− γ is SOS.

7→ Turn this into SDP for SOS; solve SDP to obtain γ∗

7→ Note, optimal γ∗ gives global minimum of polynomial, even
though p may be highly nonconvex!
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Applications

I Polynomials nonnegative only over an interval

I Minimizing ratio of two polynomials (where q(x) > 0)

p(x)

q(x)
≥ γ ↔ p(x)− γq(x) ≥ 0.

I Several others (in nonlinear control, etc.)

I (Lower bounds for minima of multivariate polynomials)
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What we did not cover?

◦ See Springer Encyclopedia on Optimization (over 4500 pages!)

◦ Convex relaxations of nonconvex problems in greater detail

◦ Algorithms (trust-region methods, cutting plane techniques,
bundle methods, active-set methods, and 100s of others)

◦ Applications of our techniques

◦ Software, systems ideas techniques, implementation details

◦ Theory: convex analysis, geometry, probability

◦ Noncommutative polynomial optimization (where often we
might just care for just a “feasibility” test)

◦ Convex optimization in inf-dimensional Hilbert, Banach spaces

◦ Semi-infinite and infinite programming

◦ Multi-stage stochastic programming, chance constraints, robust
optimization, tractable approximations of hard problems

◦ Optimization on manifolds, on matrix manifolds

◦ And 100s of other things!
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Thanks!

Hope you learned something new!!
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Some algebra

Ideals and cones

Given a set of multivariate polynomials {f1, . . . , fm}, define

ideal(f1, . . . , fm) :=
{
f | f =

∑
i
tifi, ti ∈ R[x]

}
.

cone(f1, . . . , fm) :=

g | g = s0 +
∑
{i}

sifi +
∑
{i,j}

sijfifj + . . .

 ,

where each term is a squarefree product of fi, with a coefficient
sα ∈ R[x] that is a sum of squares.
The sum is finite, with a total of 2m − 1 terms, corresponding to
the nonempty subsets of {f1, . . . , fm}.
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Algebraic connections

Note: Every polynomial in ideal(fi) vanishes in the solution set of
fi(x) = 0.
Note: Every element of cone(fi) is nonnegative on the feasible set
fi(x) ≥ 0.

Example Ax = b is infeasible↔ there exists a µ, such that ATµ = 0
and bTµ = −1.

Theorem Hilbert’s Nullstellensatz: Let f1(z), . . . , fm(z) be polyno-
mials in complex variables z1, . . . , zn. Then,

fi(z) = 0, (i = 1, . . . ,m) is infeasible in Cn

⇔ −1 ∈ ideal(f1, . . . , fm).

Exercise: Verify the “easy” direction of the above theorems.
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Semialgebraic connections

Farkas lemma and Positivstellensatz

Theorem (Farkas lemma). Ax+ b = 0 and Cx+ d ≥ 0 is infeasible
is equivalent to

∃λ ≥ 0, µ s.t.

{
ATµ+ CTλ = 0

bTµ+ dTλ = −1.

Theorem (Positivstellensatz). The system fi(x) = 0 for i =
1, . . . ,m and gi(x) ≥ 0 for i = 1, . . . , p is infeasible in Rn is equiv-
alent to

∃F (x), G(x) ∈ R[x] s.t.


F (x) +G(x) = −1

F (x) ∈ ideal(f1, . . . , fm)

G(x) ∈ cone(g1, . . . , gp).
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What it means?

I For every infeasible system of polynomial equations and
inequalities, there exists a simple algebraic identity that
directly certifies non-existence of real solutions.

I Evaluation of polynomial F (x) +G(x) at any feasible point
should produce a nonnegative number. But this expression is
identically equal to −1, a contradiction.

I Degree of F (x) and G(x) can be exponential.

I These cones and ideals are always convex sets (regardless of
original polynomial); similar to dual function being always
concave, regardless of primal.
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