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Convex sets: geometry vs algebra

» Geometry of convex sets is very rich and well-understood (we
didn’t cover much of it)

» But what about (efficient) representation of these geometric
objects?
» How do algebraic, geometric, computational aspects interact?

» Semidefinite programming plays a major role!

IZ" A nice book for detailed development of these ideas:

G. Blekherman, P. Parrilo, R. R. Thomas. Semidefinite
optimization and convex algebraic geometry (2012).



Polyhedral sets

Recall (convex) polyhedra, described by finitely many half-spaces

{xeR”|aiTx§bi, izl,...,m}.
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Polyhedral sets

Recall (convex) polyhedra, described by finitely many half-spaces
{xER”|aiTm§bi, i=1,...,m}.

Convex polyhedra have many nice properties:

e Remain preserved under projection (Fourier-Motzkin
elimination)

e Farkas lemma / duality theory gives emptiness test

e Optimization over cvx polyhedra is linear programming.

‘ But getting away from linearity....
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SDP, LMIs

We've seen SOCPs, SDPs as substantial generalization.
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SDP, LMIs

We've seen SOCPs, SDPs as substantial generalization.

Semidefinite representations
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» LP case—well-understood: if a set is polyhedral (i.e., finite
number of extreme points / rays)

Which sets can be represented via SDPs?

» Do we have a similar nice characterization in SDP case?

» We've seen a few SDRs in Lecture 6 (polyhedra, matrix norms,
second order cones, etc.)

» Preserved under standard “convex algebra”: affine
transformations, convex hulls, taking polars, etc.

» See lecture notes by A. Nemirovski for SDR (and conic) calculus


http://www2.isye.gatech.edu/~nemirovs/
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Semidefinite representations

‘ Can S be represented via SDPs? ‘

» S must be convex and semialgebraic
S can be defined using a finite number of polynomial inequalities.

» Exact or approx. representations (also, relaxing nonconvex S)
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Semidefinite representations

‘ Can S be represented via SDPs? ‘

» S must be convex and semialgebraic
S can be defined using a finite number of polynomial inequalities.

» Exact or approx. representations (also, relaxing nonconvex S)
» Example (“direct” representation)

resS < AO_‘_ZiJ:iAiEO
» “Lifted” representation (recall HW2), can use extra variables
reS <& Jyst A(z)+ B(y) = 0.

» This “projection” / lifting technique can be very useful.
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Lifting / projection

Classic example
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Lifting / projection

Classic example n-dimensional /;-unit ball (crosspolytope).
Requires 2™ inequalities of the form

:|:ZL‘1:|:Q72-'-:|:3§‘n§1.

But we can efficiently represent it as a projection:

{($>y)ER2n|ZZZ/z:1, —yzﬁiflﬁyu 221,,7'L}

Just 2n variables and 2n + 1 constraints

Moral: When playing with convexity, rather than eliminating
variables, often nicer to add new variables with which description
of set can become simpler!
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SDRs and LMIs

e Does every convex semialgebraic set S have a direct SDR?
(answer known in 2-dimensions)

e Does ever basic convex semialgebraic set have a lifted SDR?

\ Answers to both are unknown as of now \

‘ Some partial results known. See references ‘

Let us look at SDR and approx SDR for polynomials



Polynomials

Def. (Polynomial). Let K be a field and z1,...,z, be indetermi-
nates. A polynomial f with coefficients in a field K is a finite linear
combination of monomials:

f:E caxazg it xpt, o €K
« «

we sum over finite n-tuples o = (a, ..., ay), each a; € Np.

» Degree: d =), a; (largest such sum over all «)
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Polynomials

Def. (Polynomial). Let K be a field and z1,...,z, be indetermi-
nates. A polynomial f with coefficients in a field K is a finite linear
combination of monomials:

f:E caxazg it xpt, o €K
« «

we sum over finite n-tuples o = (a, ..., ay), each a; € Np.

» Degree: d =), a; (largest such sum over all «)

Def. Ring of all polynomials Kz1, ..., z,]

Eg: Univariate polynomials with real coefficients R[]
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Nonnegativity

» We care about whether p(z) > 0 for all =
» Question equivalent to SDR for univariate polynomials
» For multivariate polynomials, question remains very important

» (Nonnegativity intimately tied to convexity (formally real fields,
algebraic closure, ordered property etc.))

¥ If p(x) > 0, then degree of p must be even

IS” Set of nonnegative polynomials quite interesting.

Theorem Let &7, denote the set of all nonnegative univariate poly-
nomials of degree < n. Identifying a polynomial with its n + 1

coefficients (pp,...,po), the set &2, is a closed, convex, pointed
cone in R t1
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Theorem A univariate polynomial is nonneg if and only if it is SOS

Proof: Obviously, if p(z) is SOS, then p(z) > 0. For converse, recall by
the fundamental theorem of algebra, we can factorize

pla) = o [ (@ =) T[ (o = 2™ @ = 20)™,
where 7; and z;, are real and complex roots, respectively.
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Testing nonnegativity

Def. (SOS). A univariate polynomial p(z) is a sum of squares (SOS)
if there exist q1, ..., qm € R[x] such that

pa) =" ai).

Theorem A univariate polynomial is nonneg if and only if it is SOS

Proof: Obviously, if p(z) is SOS, then p(z) > 0. For converse, recall by
the fundamental theorem of algebra, we can factorize

p(z) =pn HJ.(w =) [ (@ = 2)™ (@ = 2)™,

where 7; and z;, are real and complex roots, respectively.
Since p(x) > 0, p, > 0, multiplicities n; of real roots are even. Also,
note (z — 2)(z — 2) = (v — a)? + b2, if 2 = a + ib. Thus, we have

pe) = [ (@ = ri)® T [ — ar)? + 031

J

Expand out above product of SOS into a sum to see that p(z) is SOS.
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SOS

Exercise: Show that in fact if p(x) > 0, then it can be written as
a sum of just two squares, i.e., p(r) = ¢} (x) + ¢5(x). (Hint: It
may help to notice (a? + b?)(c? + d?) = (ac — bd)? + (ac + bd)?)
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SOS

Exercise: Show that in fact if p(x) > 0, then it can be written as
a sum of just two squares, i.e., p(r) = ¢} (x) + ¢5(x). (Hint: It
may help to notice (a? + b?)(c? + d?) = (ac — bd)? + (ac + bd)?)

Unfortunately, for multivariate polynomials SOS not

equivalent to p(z1,...,2m,) >0

(Motzkin polynomial)
M(z,y) := x*y? +2%y* +1— 322y nonneg but not SOS.
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SOS and SDP

Theorem Let p(z) be of degree 2d. Then, p(z) > 0 (or SOS) if and
only if there exists a Q) € Si“ that satisfies p(z) = 27 Qz, where
z=[lx,...,2%T.
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SOS and SDP

Theorem Let p(x) be of degree 2d. Then, p(z) > 0 (or SOS) if and

only if there exists a Q) € 81“ that satisfies p(z) = 27 Qz, where
d]T

z=[1,z,...,x

» If p(x) > 0, then we have p(z) = >.I" ¢?(x)
» Obviously, degree of any ¢; at most d

» Write a vector of polynomials

q1(x) m?
0|y |
qm(as) az-d

where row i of V € R™*(4+1) contains coefficients of the g;.
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SOS and SDP

d]T

» Denote [z]4:= [20,2!,...
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SOS and SDP

» Denote [z]4 := [20, 2!, ..., 297

» Then, since ¢ = V[z]q, we have 3. ¢?(z) = (V[z]a)T (V]z]a)
which is nothing but [z]7Q[z]4, where @ = VTV = 0.

» Conversely, if there is a Q such that p(z) = [z]} Q[z]4, just take
Cholesky factorization @ = RT R, to obtain SOS decomp. of p

» If we are given p, how to find SOS decomp / matrix Q7

Remark: N. Z. Shor (inventor of subgradient method), seems to be

first to establish connection between SOS decompositions and
convexity.
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SOS and SDP

# SOSTOOLS package automatically translates between SOS
polynomial and its SDP representation.
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SOS and SDP

# SOSTOOLS package automatically translates between SOS
polynomial and its SDP representation.

Suppose p(z) > 0, then p(z) = [2]2 Q[x]4. We need to find Q.
Expanding out the product above we have

d 2d

gtk ) i
Zj,k:() 9T Zizo (ZjJrk:i qJ"’) v
Since p(x) = ppx™ + ...+ p1x + po. Thus, matching coeffts

pi = Zj—‘rk:i djk; 1= O, ceey 2d.

» These are 2d + 1 linear constraints on ()
» We also have Q = 0

» Thus, finding feasible Q) is an SDP

15/25



Mini-challenge

Exercise: Prove that for 1 < n < m, the polynomial
p(z) = %(227;)(1 + )22 4 Lg(x) is nonnegative, where

q(z) = Z;n:n (227;1) (1 — )22 (—4g)i,
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Mini-challenge

Exercise: Prove that for 1 < n < m, the polynomial
p(z) = %(227;;)(1 + )22 4 Lg(x) is nonnegative, where

q(z) = Z;n:n (227]”) (1 —x)*m=2 (—4g) ",

» Other computational tricks may be more suitable?
Remark: We note that testing nonnegativity of multivariate
polynomials (of degree 4 or higher) is NP-Hard.

16
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Global optimization of a univariate polynomial p(z)

Instead of seeking x* € argmin p(x), first attempt to find a
good lower bound on optimal value p(z*)

A number ~y is a global lower bound on p(z), iff

p(z) 2~y Ve << plz)—v=0, Vo

Now optimize to get tightest bound, so
max vy s.t. p(x)—-is SOS.

Turn this into SDP for SOS; solve SDP to obtain ~*
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Application

11

U

Global optimization of a univariate polynomial p(z)

Instead of seeking x* € argmin p(x), first attempt to find a
good lower bound on optimal value p(z*)

A number ~y is a global lower bound on p(z), iff

p(z) 2~y Ve << plz)—v=0, Vo

Now optimize to get tightest bound, so
max vy s.t. p(x)—-is SOS.

Turn this into SDP for SOS; solve SDP to obtain ~*

Note, optimal v* gives global minimum of polynomial, even
though p may be highly nonconvex!

17/25
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Applications

» Polynomials nonnegative only over an interval

» Minimizing ratio of two polynomials (where g(x) > 0)

(z)

7)

S

>y < p@)—yq(z) > 0.

Q
—

» Several others (in nonlinear control, etc.)

» (Lower bounds for minima of multivariate polynomials)

18 /25
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What we did not cover?

See Springer Encyclopedia on Optimization (over 4500 pages!)
Convex relaxations of nonconvex problems in greater detail

Algorithms (trust-region methods, cutting plane techniques,
bundle methods, active-set methods, and 100s of others)

Applications of our techniques
Software, systems ideas techniques, implementation details
Theory: convex analysis, geometry, probability

Noncommutative polynomial optimization (where often we
might just care for just a “feasibility” test)

Convex optimization in inf-dimensional Hilbert, Banach spaces
Semi-infinite and infinite programming

Multi-stage stochastic programming, chance constraints, robust
optimization, tractable approximations of hard problems
Optimization on manifolds, on matrix manifolds

And 100s of other things!
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Thanks!

Hope you learned something new!!
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Some algebra

Ideals and cones

Given a set of multivariate polynomials {fi,..., fm}, define
ideal(f1,... fm) = {f | F =D tifis ti€Ra]}.

cone(fi,....fm) = 9lg=s0+ > sifi+ Y sififi+...¢,
{d} {i.g}

where each term is a squarefree product of f;, with a coefficient

sq € R[z| that is a sum of squares.

The sum is finite, with a total of 2" — 1 terms, corresponding to

the nonempty subsets of {fi1,..., fm}



Algebraic connections

Note: Every polynomial in ideal(f;) vanishes in the solution set of

Note: Every element of cone(f;) is nonnegative on the feasible set

Example Az = b is infeasible <> there exists a 1, such that ATp =0
and bTp = —1.

Theorem Hilbert's Nullstellensatz: Let fi1(z),..., fm(z) be polyno-
mials in complex variables z1,..., z,. Then,

fi(z)=0,(i=1,...,m) is infeasible in C"
& —leideal(fi,..., fm)

Exercise: Verify the “easy” direction of the above theorems.
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Semialgebraic connections

Farkas lemma and Positivstellensatz

Theorem (Farkas lemma). Az +b =0 and Cz +d > 0 is infeasible
is equivalent to

ATp+CTA=0
N> 0t 4T
b*u+d'A=-1.
Theorem (Positivstellensatz). The system fi(x) = 0 for i =
1,...,mand g;(z) > 0fori=1,...,pis infeasible in R" is equiv-
alent to

F(z)+ G(z)=-1
dF(z),G(z) € R[z] s.t. < F(x) € ideal(f1, ..., fm)
G(x) € cone(g1, ..., gp)-

24 /25



What it means?

For every infeasible system of polynomial equations and
inequalities, there exists a simple algebraic identity that
directly certifies non-existence of real solutions.

Evaluation of polynomial F'(z) + G(x) at any feasible point
should produce a nonnegative number. But this expression is
identically equal to —1, a contradiction.

Degree of F(x) and G(x) can be exponential.

These cones and ideals are always convex sets (regardless of
original polynomial); similar to dual function being always
concave, regardless of primal.
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