Optimization for Machine Learning
Lecture 19: Optimization for Neural networks

6.881: MIT

Suvrit Sra
Massachusetts Institute of Technology

May 04, 2021

Accumulate
gradient

Y

Momentum

Virtual step
forward

Nadam

Add layer-wise
normalization

LAMB

Adapt Ir
individually

Y

Adagrad

Fix infinite
accumulation

Y N _— Adadelta
RMSprop

Change

Add
norm

momentum > AdaMax

Adam

Change bias™~_
correction "%

=% dd \ AMSGrad

variance decay '

Radam AdamW

Add
Lookahead

Y

Ralamb Ranger

RangerLARS |~

https://darel13712.github.io/ml/optimizers.html

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

(5/04/21 Lecture 19)

mailto:suvrit@mit.edu?subject=
https://darel13712.github.io/ml/optimizers.html

Accumulate
gradient /

Momentum

Virtual step
forward

Add layer-wise
normalization

Adapt Ir
individually

N
Adagrad
///
Fix infinite
accumulation /
J— Adadelta
Fix
units

RMSprop

Change

Add /
norm
momentum > AdaMax

Switeh to

m
1

/,& Change bla‘é\\
. correction ‘\//‘

\\ ‘/
Add weight \ AMSGrad

variance decay \

N\
\
b

Radam l AdamW

Add
- \V Lookahead

~

\
\

Ranger :

“a RangerLARS |&~

https://darel13712.github.io/ml/optimizers.html

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

(5/04/21 Lecture 19)

Mir

mailto:suvrit@mit.edu?subject=
https://darel13712.github.io/ml/optimizers.html

Some Aspects of NN Optimization

Backprop ™ SGD
Mini-batches
Initialization
Batchnorm
Gradient clipping
Adaptive methods
Momentum
Layerwise params
...and more!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 3

mailto:suvrit@mit.edu?subject=

Some Aspects of NN Optimization

Backprop ™ SGD
Mini-batches

Initialization
Batchnorm | |
: All while keeping
Gradient cllppmg : validation / test error
performance in mind
Adaptive methods
Momentum

Layerwise params
...and more!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 3

mailto:suvrit@mit.edu?subject=

SGD: Neural network training

e 0= DA <
((y,z) = max(0,1 — yz) network output
Uy,z) = 2(y — 2)° label

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 4

mailto:suvrit@mit.edu?subject=

SGD: Neural network training

meln RN Z g y’La f’jfw\
((y,z) = max(0,1 — yz) network output
Uy,z) = 2(y — 2)° label
F .
SGD 9 g o2t ae(:v, 0))

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 4

mailto:suvrit@mit.edu?subject=

SGD: Neural network training

min Ry (0 ze i F (0

((y,z) = max(0,1 — yz) network output

Uy,z) = 2(y — 2)° label

SGD 9 0Ly, F(;0))

— 0 —
LY
l lterative method. How to select 0¢?

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19)

Ihir s

mailto:suvrit@mit.edu?subject=

SGD: Neural network training

min Ry (0) = — 3 0y, F(zs;0))

0 N 4
i=1 A \

((y,z) = max(0,1 — yz) network output

Uy,z) = 2(y — 2)° label

SeD 20

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19)

il

mailto:suvrit@mit.edu?subject=

SGD: Neural network training

min Ry (0) = — 3 0y, F(zs;0))

0 N 4
i=1 A \
((y,z) = max(0,1 — yz) network output
(w.2) = 3y~ 27 abel

SGD

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- I

mailto:suvrit@mit.edu?subject=

SGD: Neural network training

N
, 1
min Rn(0) := ~ ;E(%fi, F(Q
((y,z) = max(0,1 — yz) network output
Uy,z) = 2(y — 2)° label

SGD

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 8

mailto:suvrit@mit.edu?subject=

ol
—
q))
-
Q)
—
<
q))
3
q)]
r~=
-
O
Q
T
@)
=
r~=
O
(0]
D
q))
(@)
r~=
)
>
L)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 9

mailto:suvrit@mit.edu?subject=

1. Inttialization

Properly initializing a NN important.
NN loss is highly nonconvex;

On the importance of initialization and momentum in deep learning

optimizing it to attain a "good” o
solution hard, requires careful tuning. | = G e TN CA TonN 10

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 10

mailto:suvrit@mit.edu?subject=

1. Inttialization

Properly initializing a NN important.
NN loss is highly nonconvex;

On the importance of initialization and momentum in deep learning

optimizing it to attain a "good” o
solution hard, requires careful tuning. | = G e TN CA TonN 10

Example: Don’t initialize all weights to be the same — why?

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 10

mailto:suvrit@mit.edu?subject=

1. Inttialization

Properly initializing a NN important.
NN loss is highly nonconvex;

On the importance of initialization and momentum in deep learning

optimizing it to attain a "good” o
solution hard, requires careful tuning. | = G e TN CA TonN 10

Example: Don’t initialize all weights to be the same — why?

Random Initialize randomly, e.g., via the Gaussian N(0, ¢2), where std o
.depends on the number of neurons in a given layer. Symmetry breaking.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 10

mailto:suvrit@mit.edu?subject=

1. Inttialization

Properly initializing a NN important.
NN loss is highly nonconvex;

On the importance of initialization and momentum in deep learning

optimizing it to attain a "good” o
solution hard, requires careful tuning. | = G e TN CA TonN 10

Example: Don’t initialize all weights to be the same — why?

Random Initialize randomly, e.g., via the Gaussian N(0, ¢2), where std o
.depends on the number of neurons in a given layer. Symmetry breaking.

Why" roughly ensure that random input to a unit does not depend on the
‘number of inputs it gets. For ReLUs current recommendation: use 02=2/n

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 10

mailto:suvrit@mit.edu?subject=

1. Inttialization

Properly initializing a NN important.
NN loss is highly nonconvex;

On the importance of initialization and momentum in deep learning

optimizing it to attain a "good” o
solution hard, requires careful tuning. | = G e TN CA TonN 10

Example: Don’t initialize all weights to be the same — why?

Random Initialize randomly, e.g., via the Gaussian N(0, ¢2), where std o
.depends on the number of neurons in a given layer. Symmetry breaking.

Why" roughly ensure that random input to a unit does not depend on the
‘number of inputs it gets. For ReLUs current recommendation: use 02=2/n

See also: http://cs231n.github.io/neural-networks-2/ for additional practical notes

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 10

mailto:suvrit@mit.edu?subject=
http://cs231n.github.io/neural-networks-2/

1. Impact of initialization

22-layer RelLU net:
good init converges faster

0951

0.2r

0.85F

DEF

0.75

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 11

mailto:suvrit@mit.edu?subject=

1. Impact of initialization

22-layer RelLU net:
good init converges faster

30-layer RelLU net:
good initis able to converge

0951 0951

0.9 0.9
5 5
LI L
0851 0.85F
0.8} 0.8}
{l?ﬁ- 1 1 1 1 1 1 1 L 1

{l?ﬁ- T | | 1]

*Figures show the beginning of training

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 12

mailto:suvrit@mit.edu?subject=

1. Impact of initialization

22-layer RelLU net: : 30-layer RelLU net:
good init converges faster good initis able to converge
1 I lmmmmmmemeeeemeemeemeeeemeemeemeeesessessessessesse———————
a.25r i 05l
08F E 08F
. Q.85 E B 0.&=5|
RS i k-] %nVar[w] =1
|| mememeee———- nVar[w] =1
0.75 - - L L L ! " 0.75
il 0.5 1 1.5 2 25 3 1 a 1 2 3 4 B g T a8 9
Epoch ' Epoch

*Figures show the beginning of training

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 12

mailto:suvrit@mit.edu?subject=

-
Q)
p—
Q)
o
®)
C
—
—
o
D
N
—
D
Q
28
N
D
—
Q)
=
Q)
)
Q)
=
=3
-
(@)
=
Q)
—
m\l
-~

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 13

mailto:suvrit@mit.edu?subject=

2. Step size tuning

Adaptive

Architecture

Sensitive m

Often the most pesky parameter; tuning well can have big impact

NN toolkits use so-called “step-size Schedulers”

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 14

mailto:suvrit@mit.edu?subject=

2. Step size tuning

Adaptive

Architecture

Sensitive m

Often the most pesky parameter; tuning well can have big impact

NN toolkits use so-called “step-size Schedulers”

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 14

mailto:suvrit@mit.edu?subject=

2. Step size tuning

Adaptive

Architecture

Sensitive m

Often the most pesky parameter; tuning well can have big impact

NN toolkits use so-called “step-size Schedulers”

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 14

mailto:suvrit@mit.edu?subject=

2. Step size tuning

Decaying

Adaptive

Architecture
Sensitive

Often the most pesky parameter; tuning well can have big impact

NN toolkits use so-called “step-size Schedulers”

A Second look at Exponential and Cosine Step Sizes: Simplicity, Convergence, and
Performance

Xiaoyu Li, Zhenxun Zhuang, Francesco Orabona

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 14

mailto:suvrit@mit.edu?subject=

Layerwise Adaptive Rate Scaling: popular for large batch training

Suvrit Sra (suvrit@emit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- |5

mailto:suvrit@mit.edu?subject=

Layerwise Adaptive Rate Scaling: popular for large batch training

Algorithm 1 LARS

Input: x, € R, learning rate {nt}le, parameter
0 < B1 < 1, scaling function ¢, € > 0
Set mg =0
fort =1to’1T do
Draw b samples S; from P

Compute g = ﬁ > s.cs, VTt st)
me = Bime—1 + (1 — B1)(gr + Axy)

. . (4) .
$§21 = a;ftz) — Mt C’b(”””gi)"")mi” for all ¢« € |h]

||’m,t

end for

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- |5

mailto:suvrit@mit.edu?subject=

Layerwise Adaptive Rate Scaling: popular for large batch training

Algorithm 1 LARS

Input: x, € R, learning rate {nt}le, parameter
0 < B1 < 1, scaling function ¢, € > 0
Set mg =0
fort =1to’1T do
Draw b samples S; from P

Compute g; = ﬁ > s.cs, VT, st)

(4Z; J1. 174 == (5 ! %
) 6 U= () N
Ty =2 — M oml for all ¢ € [h])

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- |5

mailto:suvrit@mit.edu?subject=

Layerwise Adaptive Rate Scaling: popular for large batch training

Algorithm 1 LARS

Input: x, € R, learning rate {nt}le, parameter
0 < B1 < 1, scaling function ¢, € > 0
Set mog = 0
fort =1to’1T do
Draw b samples St from P

Compute g = |St| Zstest Vi(xy, st)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- |5

mailto:suvrit@mit.edu?subject=

L
O
=
r—=
O
0
O
3
=
-
r—=
®
O
%)
r—
o,
O
>
)
%)
—
O
Q
S
)
Q
@
=)
=
D

Suvrit Sra (suvrit@emit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- |6

mailto:suvrit@mit.edu?subject=

3. Computing gradients

Key computational task: compute a stochastic gradient

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 17

mailto:suvrit@mit.edu?subject=

3. Computing gradients

Key computational task: compute a stochastic gradient

W 1< i < m (hidden units)
Yoo 1<j=<p

(input features)

J

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 17

mailto:suvrit@mit.edu?subject=

3. Computing gradients

Key computational task: compute a stochastic gradient

wij 1s< =m (hidden units)
< j < p (input features)
p

Zi = ijl wijTj + b input to ith hidden unit

f(z;) = max(0, z;) output of ith hidden unit
_ N (s input to output unit

2 27:1 w; f(z;) + b

f(z) = F(z;0) =z network output

Aim: compute 07/ 00

Suvrit Sra (suvrit@emit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illi |- 17

mailto:suvrit@mit.edu?subject=

Computing gradients: backpropagation

p
=) Wit b input to it hidden unit
f(z;) = max(0, z;) output of ith hidden unit
m ((y, z) = max(0,1 — yz)
z = . w;f(z;) +b input to output unit
f(z) =F(z;0) =z network output

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 18

mailto:suvrit@mit.edu?subject=

Computing gradients: backpropagation

p
=) Wit b input to it hidden unit
f(z;) = max(0, z;) output of ith hidden unit
m ((y, z) = max(0,1 — yz)
z = . w;f(z;) +b input to output unit
f(z) = F(z;0) =2 network output

:Observe that a change to w;;changes z;, which changes f(z;), which

Eeventually changes z and thus the loss 7.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 18

mailto:suvrit@mit.edu?subject=

Computing gradients: backpropagation

p
=) Wit b input to it hidden unit
f(z;) = max(0, z;) output of ith hidden unit
m ((y,z) = max(0,1 — yz)
2z = . w;f(z;) +b input to output unit
f(z) = F(z;0) =2 network output

‘Observe that a change to w;;changes z;, which changes f(z;), which

Eeventually changes z and thus the loss 7.

Chain-rule of calculus

ol(y,z) | 0z | [0f(z)]|] 0z | of

8w7;j _6’w7;j 1 82’@ _8f(zz) 1 0z

_ —Y, if f(y, Z) > 07
0, otherwise.

= [z;]lzi > O] [w]

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19)

i =

mailto:suvrit@mit.edu?subject=

- Backpropagation

Challenge: How to apply the chain rule in a deep network?

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 19

mailto:suvrit@mit.edu?subject=

Backpropagation

Challenge: How to apply the chain rule in a deep network?

* A change to a weight w;; at the first hidden layer will impact all subsequent layers.

* To apply the chain-rule, must aggregate contribution from each unit to final output
* We must cover all paths by which information can flow from first layer to last!
* This is where backpropagation enters the game

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 19

mailto:suvrit@mit.edu?subject=

Backpropagation

Challenge: How to apply the chain rule in a deep network?

A change to a weight w;; at the first hidden layer will impact all subsequent layers.

*
* To apply the chain-rule, must aggregate contribution from each unit to final output
* We must cover all paths by which information can flow from first layer to last!

* This is where backpropagation enters the game

» A simple, brilliant idea dating back to 1960s, and early 70s. Rediscovered multiple
time; popularized greatly after 1986 paper of Rumelhart, Hinton, Williams

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 19

mailto:suvrit@mit.edu?subject=

Backpropagation

Challenge: How to apply the chain rule in a deep network?

A change to a weight w;; at the first hidden layer will impact all subsequent layers.

*
* To apply the chain-rule, must aggregate contribution from each unit to final output
* We must cover all paths by which information can flow from first layer to last!

* This is where backpropagation enters the game

» A simple, brilliant idea dating back to 1960s, and early 70s. Rediscovered multiple
time; popularized greatly after 1986 paper of Rumelhart, Hinton, Williams

Key insight: Trade space for time (dynamic programming).

Thus, keep track of how a change to the input of one layer impacts
its output, and use extra storage to save this (change=derivative).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 19

mailto:suvrit@mit.edu?subject=

Automatic differentiation

Forward mode AD
Backward mode AD

(Backprop a special case)

Automatic Differentiation
in Machine Learning: a Survey

Atilim Giines Baydin
Department of Engineering Science
University of Ozford

Ozford OX1 8PJ, United Kingdom

Barak A. Pearlmutter
Department of Computer Science
Maynooth, Co. Kildare, Ireland
Alexey Andreyevich Radul

National University of Ireland Maynooth

GUNES@ROBOTS.OX.AC.UK

BARAKQPEARLMUTTER.NET

Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology

Cambridge, MA 02139, United States
Jeffrey Mark Siskind

| TT—

Optimal Jacobian Accumulation: NP-Complete

All NN toolkits use autodiff libraries

AXCHQMIT.EDU

QOBI@QPURDUE.EDU

S

AD: Generate algorithm for efficient evaluation of derivatives

Numerous tutorials and notes online; well-developed area in PL and numerics

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

(5/04/21 Lecture 19)

i =

mailto:suvrit@mit.edu?subject=

In reality: BN, momentum,clipping,adaptivity
and many other ideas!

Suvrit Sra (suvrit@emit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 21

mailto:suvrit@mit.edu?subject=

Key motivation: unstable gradients

ot = % = Diag[f'(z")|W'Tisit,
<

6" = Diag[f' ()W Diag[f' (Z"TH W' 2 ... wkeh

Observations

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 20

mailto:suvrit@mit.edu?subject=

Key motivation: unstable gradients

ot = % = Diag[f'(z")|W'Tisit,
<

6" = Diag[f' ()W Diag[f/ (" TH w2 ... kst

Observations

> Multiplication of a chain of matrices in backprop

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 20

mailto:suvrit@mit.edu?subject=

Key motivation: unstable gradients

ot = % = Diag[f'(z")|W'Tisit,
<

6" = Diag[f' ()W Diag[f/ (" TH w2 ... kst

Observations

> Multiplication of a chain of matrices in backprop
> |f several of these matrices are “small” (i.e., norms < 1), when we multiply
them, the gradient will decrease exponentially fast and tend to vanish

(hurting learning in lower layers much more)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 22

mailto:suvrit@mit.edu?subject=

Key motivation: unstable gradients

ot = % = Diag[f'(z")|W'Tisit,
<

6" = Diag[f' ()W Diag[f/ (" TH w2 ... kst

Observations

> Multiplication of a chain of matrices in backprop

> |f several of these matrices are “small” (i.e., norms < 1), when we multiply
them, the gradient will decrease exponentially fast and tend to vanish
(hurting learning in lower layers much more)

» Conversely, if several matrices have large norm, the gradient will tend to
explode. In both cases, the gradients are unstable.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 22

mailto:suvrit@mit.edu?subject=

Key motivation: unstable gradients

ot = % = Diag[f'(z")|W'Tisit,
<

6" = Diag[f’ (z")|W' ' Diag[f' (" THw' T2 ... whest

Observations

> Multiplication of a chain of matrices in backprop

> |f several of these matrices are “small” (i.e., norms < 1), when we multiply
them, the gradient will decrease exponentially fast and tend to vanish
(hurting learning in lower layers much more)

» Conversely, if several matrices have large norm, the gradient will tend to
explode. In both cases, the gradients are unstable.

» Coping with unstable gradients poses several challenges, and must be
dealt with to achieve good results.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 22

mailto:suvrit@mit.edu?subject=

Partial remedies for unstable gradients

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 23

mailto:suvrit@mit.edu?subject=

Partial remedies for unstable gradients

= Regularization (humerous ways, implicit and explicit)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 23

mailto:suvrit@mit.edu?subject=

Partial remedies for unstable gradients

= Regularization (humerous ways, implicit and explicit)
= RelLU activations

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 23

mailto:suvrit@mit.edu?subject=

Partial remedies for unstable gradients

= Regularization (humerous ways, implicit and explicit)
= RelLU activations
= Memory (in RNNS)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 23

mailto:suvrit@mit.edu?subject=

Partial remedies for unstable gradients

= Regularization (humerous ways, implicit and explicit)
= RelLU activations

= Memory (in RNNS)
= Weight normalization and batch normalization (somewhat)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 23

mailto:suvrit@mit.edu?subject=

Partial remedies for unstable gradients

= Regularization (humerous ways, implicit and explicit)

= RelLU activations

= Memory (in RNNS)

= Weight normalization and batch normalization (somewhat)
= Gradient clipping, normalized gradients

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 23

mailto:suvrit@mit.edu?subject=

Partial remedies for unstable gradients

= Regularization (humerous ways, implicit and explicit)

= RelLU activations

= Memory (in RNNS)

= Weight normalization and batch normalization (somewhat)
= Gradient clipping, normalized gradients

= Numerous other ideas (architecture specific)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 23

mailto:suvrit@mit.edu?subject=

Partial remedies for unstable gradients

= Regularization (humerous ways, implicit and explicit)

= RelLU activations

= Memory (in RNNS)

= Weight normalization and batch normalization (somewhat)
= Gradient clipping, normalized gradients

= Numerous other ideas (architecture specific)

= Residual Networks (Resnets)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 23

mailto:suvrit@mit.edu?subject=

Regularization

+ AllO]I*

definitely use it; but many other ways too!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 24

mailto:suvrit@mit.edu?subject=

Regularization

+ AllO]I*

definitely use it; but many other ways too!
NN folks call this: “weight decay,” though to be pedantic,
'some reserve the term “weight decay” for the part subtracted
‘from weights 8 when updating them (e.g., ADAMW optimizer)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 24

mailto:suvrit@mit.edu?subject=

Regularizing with Dropout

Motivation

» When fitting to the nitty-gritty of the input, including noise hidden units must rely
on each other to co-adapt and have complementary coverage of the data space.
» To hinder fitting to noise we must avoid overdoing co-adaptation

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||“' 25

mailto:suvrit@mit.edu?subject=

Regularizing with Dropout

Motivation

» When fitting to the nitty-gritty of the input, including noise hidden units must rely
on each other to co-adapt and have complementary coverage of the data space.
» To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 05

mailto:suvrit@mit.edu?subject=

Regularizing with Dropout

Motivation

» When fitting to the nitty-gritty of the input, including noise hidden units must rely
on each other to co-adapt and have complementary coverage of the data space.
» To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

» Randomly turn off units, say with probability 1/2, when training!

figure from the [dropout] paper

(b) After applying dropout.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||“' 25

mailto:suvrit@mit.edu?subject=
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Regularizing with Dropout

Motivation

» When fitting to the nitty-gritty of the input, including noise hidden units must rely
on each other to co-adapt and have complementary coverage of the data space.
» To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

» Randomly turn off units, say with probability 1/2, when training!
» For each data point, we randomly set the output of each hidden unit to zero.

figure from the [dropout] paper

(b) After applying dropout.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 25

mailto:suvrit@mit.edu?subject=
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Regularizing with Dropout

Motivation

» When fitting to the nitty-gritty of the input, including noise hidden units must rely
on each other to co-adapt and have complementary coverage of the data space.
» To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

» Randomly turn off units, say with probability 1/2, when training!
» For each data point, we randomly set the output of each hidden unit to zero.
» The neurons turned off are randomly chosen anew for each training data point

figure from the [dropout] paper

(b) After applying dropout.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 25

mailto:suvrit@mit.edu?subject=
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Regularizing with Dropout

Motivation

» When fitting to the nitty-gritty of the input, including noise hidden units must rely
on each other to co-adapt and have complementary coverage of the data space.
» To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

» Randomly turn off units, say with probability 1/2, when training!
» For each data point, we randomly set the output of each hidden unit to zero.
» The neurons turned off are randomly chosen anew for each training data point
» Accounted for during backprop (how?).

figure from the [dropout] paper

(b) After applying dropout.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 25

mailto:suvrit@mit.edu?subject=
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Regularizing with Dropout

Motivation

» When fitting to the nitty-gritty of the input, including noise hidden units must rely
on each other to co-adapt and have complementary coverage of the data space.
» To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

» Randomly turn off units, say with probability 1/2, when training!
» For each data point, we randomly set the output of each hidden unit to zero.
» The neurons turned off are randomly chosen anew for each training data point
» Accounted for during backprop (how?).
» For units turned off for that round, input weights and activations not updated; unit
effectively dropped out for that particular training sample. This additional stochasticity
helps in regularization. Explore: other ways of adding stochasticity to NN training

figure from the [dropout] paper

(b) After applying dropout.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 25

mailto:suvrit@mit.edu?subject=
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Batch Normalization

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil_ 26

mailto:suvrit@mit.edu?subject=

Batch Normalization

Observation: Known that training converges faster if inputs “whitened”, i.e.,
linearly transformed to have mean zero, unit variance, and decorrelated.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||“' 26

mailto:suvrit@mit.edu?subject=

Batch Normalization

Observation: Known that training converges faster if inputs “whitened”, i.e.,
linearly transformed to have mean zero, unit variance, and decorrelated.

Idea 0: Activations of one layer, inputs to another. If we do similar whitening of
the inputs of each layer might help towards improving training.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 26

mailto:suvrit@mit.edu?subject=

Batch Normalization

Observation: Known that training converges faster if inputs “whitened”, i.e.,
linearly transformed to have mean zero, unit variance, and decorrelated.

Idea 0: Activations of one layer, inputs to another. If we do similar whitening of
the inputs of each layer might help towards improving training.

Full whitening involves inverting large matrices, a no-go

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 26

mailto:suvrit@mit.edu?subject=

Batch Normalization

Observation: Known that training converges faster if inputs “whitened”, i.e.,
linearly transformed to have mean zero, unit variance, and decorrelated.

Idea 0: Activations of one layer, inputs to another. If we do similar whitening of
the inputs of each layer might help towards improving training.

Full whitening involves inverting large matrices, a no-go

Idea 1: Normalize features individually, not jointly

x:($1’...7mp) g@k: gjk_ 4:[:1316]
k
(features at a layer) \/V&r [x]

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 26

mailto:suvrit@mit.edu?subject=

Batch Normalization

Observation: Known that training converges faster if inputs “whitened”, i.e.,
linearly transformed to have mean zero, unit variance, and decorrelated.

Idea 0: Activations of one layer, inputs to another. If we do similar whitening of
the inputs of each layer might help towards improving training.

Full whitening involves inverting large matrices, a no-go

Idea 1: Normalize features individually, not jointly |
Expectation and

1 D ~ L ZEk — I [ka] Variance computed
L = (aj ooy d) — over training data set
\/V&I' [ka] (LeCun98— this speeds

(features at a layer) up training)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 26

mailto:suvrit@mit.edu?subject=

Batch Normalization

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil_ 27

mailto:suvrit@mit.edu?subject=

Batch Normalization

Idea 1: Normalize features individually, not jointly
L :

1 A CE’ - 't ,CB

r=(x,...,2") ik |

- \/ Var[zk]

"]

(features at a layer)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 27

mailto:suvrit@mit.edu?subject=

Batch Normalization

Idea 1: Normalize features individually, not jointly

Expectation and

_ (] D ~ L .Tk — I [lek] Variance computed
L = (ZB ooyl) L = over training data set
\/V&I' [ka] (LeCun98 — this speeds

(features at a layer) up training)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 27

mailto:suvrit@mit.edu?subject=

Batch Normalization

Idea 1: Normalize features individually, not jointly

Expectation and

_ (] D ~ L .Tk — I [lek] Variance computed
L = (ZE ooyl) L = over training data set
\/V&I' [le‘k] (LeCun98 — this speeds

(features at a layer) up training)

Idea 1: mini-batch normalization

@
New

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 27

mailto:suvrit@mit.edu?subject=

Batch Normalization

Idea 1: Normalize features individually, not jointly

Expectation and

_ (] D ~ L .CIZk — I [le‘k] Variance computed
L = (33 ooyl) L = over training data set
\/V&I' [ZEk] (LeCun98 — this speeds

(features at a layer) up training)

Input: Values of = over a mini-batch: B = {x1. . };
Parameters to be learned: v,

Output: {y; = BN, g(x;)}

Idea 1: mini-batch normalization

Q) n
N 1 .
UB — — Z T; // mini-batch mean
m 1 =1
BN transform applied to . :
activation x over a mini-batch 9B < Z(% — 1) // mini-batch variance
1=1
T; 4 Ti — 1B // normalize
\/ (7123 + €
Yi < vx; + 8 = BN, g(x;) // scale and shift

figure: [loffe, Szegedy, 2015]

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 27

mailto:suvrit@mit.edu?subject=

Batch Normalization

Idea 2: Restore representation
power” / Undo damage by
learning y and f

Suvrit Sra (suvrit@mit.edu)

Input: Values of z over a mini-batch: B = {z1. ., };
Parameters to be learned: ~, 3
Output: {y; = BNv,ﬁ(l’z‘)}

1 m
UB < E;%

1 m
oF — > (wi —)
1=1

AN aj _ B *
€T; 4 i M // normalize

‘ \/aé—l—e

yi < 7Z; + f = BN, g(z;)

// mini-batch mean

// mini-batch variance

// scale and shift

figure: [loffe, Szegedy, 2015]

6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 28

mailto:suvrit@mit.edu?subject=

Batch Normalization

Idea 2: Restore representation
power” / Undo damage by
learning y and f

Suvrit Sra (suvrit@mit.edu)

Input: Values of z over a mini-batch: B = {z1. ., };
Parameters to be learned: ~, 3
Output: {y; = BNv,ﬂ(l’z‘)}

1 m
UB < E;%

1 m
oF — > (wi —)
1=1

AN aj _ B *
€T; 4 i M // normalize

1
2
RSO WAL O s

// mini-batch mean

// mini-batch variance

y; < vx; + B = BN, g(z;) // scale and shift |}

L — S

figure: [loffe, Szegedy, 2015]

6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 28

mailto:suvrit@mit.edu?subject=

Batch Normalization

Idea 2: Restore representation
power” / Undo damage by
learning y and f

Suvrit Sra (suvrit@mit.edu)

Input: Values of z over a mini-batch: B = {z1. ., };
Parameters to be learned: ~, 3
Output: {y; = BNv,ﬂ(l’z‘)}

1 m
UB < E;%

1 m
oF — > (wi —)
1=1

AN aj _ B *
€T; 4 i M // normalize

1
2
RSO WAL O s

// mini-batch mean

// mini-batch variance

y; < vx; + B = BN, g(z;) // scale and shift |}

L — S

figure: [loffe, Szegedy, 2015]

6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 28

mailto:suvrit@mit.edu?subject=

Batch Normalization

Input: Values of z over a mini-batch: B = {z1. ., };

Idea 2: Restore representation Parameters to be learned: v, 3
power” / Undo damage by Output: {y; = BN, 5(z;)}
learning y and o
o =) // mini-batch
UB m ;CIZ mini-oatcn mean
0F E i(m — ug)? // mini-batch variance
y m 1=1 z
T, < Al // normalize

1
2
i 4 2y b - . s

y; < vx; + B = BN, g(z;) // scale and shift

| T— R

Intuition: Allow the transformation to represent the identity (this idea recurs)

figure: [loffe, Szegedy, 2015]

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 28

mailto:suvrit@mit.edu?subject=

Batch Normalization

Input: Values of z over a mini-batch: B = {z1. ., };

Idea 2: Restore representation Parameters to be learned: v, 3
power” / Undo damage by Output: {y; = BN, 5(z;)}
learning y and o
o =) // mini-batch
UB m ;CIZ mini-oatcn mean
0F E i(m — ug)? // mini-batch variance
y m 1=1 z
T, < Al // normalize

1
2
i 4 2y b - . s

y; < vx; + B = BN, g(z;) // scale and shift

S

Intuition: Allow the transformation to represent the identity (this idea recurs)

Exercise: Derive backprop rules to figure out how to update scale y and shift f

figure: [loffe, Szegedy, 2015]

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 28

mailto:suvrit@mit.edu?subject=

Batch Normalization

0.8

-

— = = Inception (several other speedups

..... —_ li [
....... oo seine enabled, and used for this plot)
BN-x30
4+ BN-x5-Sigmoid

4 Steps to match Inception

|
10M 15M 20M 25M 30M

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

figure: [loffe, Szegedy, 2015]

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illi I-

mailto:suvrit@mit.edu?subject=

Batch Normalization

v BN layer can be added to many networks (e.g., CNNs, Resnets, etc.)

= Current Challenge: BN for RNNs; also, is BN truly necessary?
v BN enables higher learning rates: backprop through a BN layer is
unaffected by the scale of its parameters, BN(Wx)=BN((aW)x)
v BN has a regularizing effect (Dropout can even be dropped out)

v Challenge: Formally understand and explain BN

0.8

. == - emmmmmmm-- -4
{4 l
= = = Inception (several other speedups
————— BN-Baseli .
....... BN enabled, and used for this plot)
BN-x30
+ 4 BN-x5-Sigmoid
4 Steps to match Inception

| |
10M 15M 20M 25M 30M

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

figure: [loffe, Szegedy, 2015]

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 29

mailto:suvrit@mit.edu?subject=

Residual Networks (Resnets)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 30

mailto:suvrit@mit.edu?subject=

Residual Networks (Resnets)

ZIZHhLOhL_lo---Ohl(ZC)
hi(z) :==z+oc(W;z+ b;)

Note: Without the Identity map (Id), we are back to the usual model

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 30

mailto:suvrit@mit.edu?subject=

Why resnets?

CIFAR-10
20r
56-layer
44-layer
S 32-layer
= == 20-layer

._plain-Z N AN
plain-3 O Ve— /o /
— o . . . \. ° .
e Nimtc 2 solid: test/val
O '] |]]] .
0 ! 2 e ey 3 6 dashed: train

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 31

mailto:suvrit@mit.edu?subject=

Why resnets?

CIFAR-10
ayer
ayer
9 X ayer
8 10 \'\ T
g YA 20-layer
| i N
plain-2 APEN
_p1a¥n—3 Ve— / ‘\‘/ .
O . S | | | | solid: test/val
0 ! 2 el : 6 dashed:train

Making network deeper does not necessarily work better

Limits on what initialization and batch normalization give us

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||“' 31

mailto:suvrit@mit.edu?subject=

Key idea: Identity maps

"
weight layer
any two
stacked layers l relu

weight layer

rel
HOx) leu

Aim: Learn map H(x).
Approach: Hope the deep net fits H(x)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 32

mailto:suvrit@mit.edu?subject=

Key idea: Identity maps

X |

v

weight layer

Aresidual block F(x) | relu identity

weight layer X

H(x)=F(x)+ x |

Aim: Learn map H(x) = F(x)+x
Approach: Hope the deep net fits F(x)

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 33

mailto:suvrit@mit.edu?subject=

Key idea: Identity maps

X I
v
weight layer
Aresidual block F(x) | relu identity
weight layer X

H(x)=F(x)+x

relu If identity were optimal easyé
to fit by setting weights=0
Aim: Learn map H(x) = F(X)+x - By adding Id, increasing
Approach: Hope the deep net fits F(x) - depth should not hurt

performance...

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 33

mailto:suvrit@mit.edu?subject=

Key idea: Identity maps

QZI%hLOI’LL_lo---Ohl(ZEJ
b

hi(z) := z—|—a(Wiz—|—bZ—)J i)
weight layer
Aresidual block F(x) | relu identity
weight layer X

Hx)=F(x)+x

relu If identity were optimal easyé
to fit by setting weights=0
Aim: Learn map H(x) = F(X)+x - By adding Id, increasing
Approach: Hope the deep net fits F(x) - depth should not hurt

. performance... |
F(x) is a residual mapping wrt identity oo

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 33

mailto:suvrit@mit.edu?subject=

Key idea: Identity maps

QZI%hLOI’LL_lo---Ohl(ZEJ

hi(2) i= 2 + o (Wiz + b;) X i
weight layer
Aresidual block F(x) | relu identity
weight layer X

H(x)=F(x)+x

relu If identity were optimal easyé
to fit by setting weights=0
Aim: Learn map H(x) = F(X)+x - By adding Id, increasing
Approach: Hope the deep net fits F(x) - depth should not hurt

. performance... |
F(x) is a residual mapping wrt identity oo

Explore: Try residual wrt other distinguished (i.e., not Id) mappings

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 33

mailto:suvrit@mit.edu?subject=

CIFAR-10

20-\.\...X‘\ ...
M YR \ 56-layer
\ . .
N W Z
o YN 44-layer
S RANTERRNG : ‘: 32-layer
8 111 LTI IR ‘_/N.\',\/x\“ ‘ R
£ ~_._\ VAN 20-layer
i ~
AT \'/‘/"\. .t
sh— A A — S At Tl
plain-2 N RV TR\
“~plain-3 "\,\ :_x Vie—_ /.\ /
~plain-4 IR WO 1A -
| e | | il solid: test/val
0 ! 2 e el : . dashed:train

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil_ 34

mailto:suvrit@mit.edu?subject=

CIFAR-10 ResNets

20 I ‘- ...
ResNet-20

ResNet-32
=== ResNet-44

== ResNet-56
= ResNet-11(

20-layer
32-layer
44-layer
56-layer
110-layer

e

0 ! 1 1 '.yl\mi";‘"“’wm
0 | 2 3 4 5 6
iter. (1e4)

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illi I- 34

mailto:suvrit@mit.edu?subject=

Recent theory on ResNets

» Bartlett et al, 2018. Optimization properties of deep residual networks.
» Hardt, Ma 2017. Global optimality of deep linear resnets y={1+W)(I+Wi-1)...(I+W1)x

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) Illil- 35

mailto:suvrit@mit.edu?subject=

Recent theory on ResNets

» Bartlett et al, 2018. Optimization properties of deep residual networks.
» Hardt, Ma 2017. Global optimality of deep linear resnets y={1+W)(I+Wi-1)...(I+W1)x

» Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal
Approximator (deep Resnet with one neuron per hidden layer and RelLU activation).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 35

mailto:suvrit@mit.edu?subject=

Recent theory on ResNets

» Bartlett et al, 2018. Optimization properties of deep residual networks.
» Hardt, Ma 2017. Global optimality of deep linear resnets y={1+W)(I+Wi-1)...(I+W1)x

» Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal
Approximator (deep Resnet with one neuron per hidden layer and RelLU activation).

» Shamir, 2018. Considers x » wl(x + VFy(x)) and shows that every local optimum of this
Resnet (with final purely linear layer) is “better than” a simple linear model. Presents some
conditions under which one can prove that adding the Id map does not hurt performance.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 35

mailto:suvrit@mit.edu?subject=

Recent theory on ResNets

» Bartlett et al, 2018. Optimization properties of deep residual networks.
» Hardt, Ma 2017. Global optimality of deep linear resnets y={1+W)(I+Wi-1)...(I+W1)x

» Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal
Approximator (deep Resnet with one neuron per hidden layer and RelLU activation).

» Shamir, 2018. Considers x » wl(x + VFy(x)) and shows that every local optimum of this
Resnet (with final purely linear layer) is “better than” a simple linear model. Presents some
conditions under which one can prove that adding the Id map does not hurt performance.

» Yun, Sra, Jadbabaie, 2019. Deep ResNet can be provably better than linear models
(provides a “deep” version of Shamir’s result above, result leaves open problems.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 35

mailto:suvrit@mit.edu?subject=

Recent theory on ResNets

» Bartlett et al, 2018. Optimization properties of deep residual networks.
» Hardt, Ma 2017. Global optimality of deep linear resnets y={1+W)(I+Wi-1)...(I+W1)x

» Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal
Approximator (deep Resnet with one neuron per hidden layer and RelLU activation).

» Shamir, 2018. Considers x » wl(x + VFy(x)) and shows that every local optimum of this
Resnet (with final purely linear layer) is “better than” a simple linear model. Presents some
conditions under which one can prove that adding the Id map does not hurt performance.

» Yun, Sra, Jadbabaie, 2019. Deep ResNet can be provably better than linear models
(provides a “deep” version of Shamir’s result above, result leaves open problems.

» Allen-Zhu, Li, 2019. “What can ResNet learn efficiently, Going beyond Kernels?”

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 35

mailto:suvrit@mit.edu?subject=

