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Some Aspects of NN Optimization
Backprop ➠ SGD 
Mini-batches 
Initialization 
Batchnorm 
Gradient clipping 
Adaptive methods 
Momentum 
Layerwise params 
…and more!
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Some Aspects of NN Optimization
Backprop ➠ SGD 
Mini-batches 
Initialization 
Batchnorm 
Gradient clipping 
Adaptive methods 
Momentum 
Layerwise params 
…and more!

All while keeping 
validation / test error 
performance in mind
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SGD: Neural network training

min
✓

RN (✓) :=
1

N

NX

i=1

`(yi, F (xi; ✓))

`(y, z) = max(0, 1� yz)

`(y, z) = 1
2 (y � z)2

network output
label
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Iterative method. How to select θ0?1
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What about the step-size η, aka “learning rate”?2
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SGD: Neural network training
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How to compute this stochastic gradient?3
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In reality: momentum, clipping, adaptivity, …4
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Iterative method. How to select θ0?1
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1. Initialization
Properly initializing a NN important. 
NN loss is highly nonconvex; 
optimizing it to attain a “good” 
solution hard, requires careful tuning.

On the importance of initialization and momentum in deep learning

Ilya Sutskever
1 ilyasu@google.com

James Martens jmartens@cs.toronto.edu
George Dahl gdahl@cs.toronto.edu
Geo↵rey Hinton hinton@cs.toronto.edu

Abstract

Deep and recurrent neural networks (DNNs
and RNNs respectively) are powerful mod-
els that were considered to be almost impos-
sible to train using stochastic gradient de-
scent with momentum. In this paper, we
show that when stochastic gradient descent
with momentum uses a well-designed random
initialization and a particular type of slowly
increasing schedule for the momentum pa-
rameter, it can train both DNNs and RNNs
(on datasets with long-term dependencies) to
levels of performance that were previously
achievable only with Hessian-Free optimiza-
tion. We find that both the initialization
and the momentum are crucial since poorly
initialized networks cannot be trained with
momentum and well-initialized networks per-
form markedly worse when the momentum is
absent or poorly tuned.

Our success training these models suggests
that previous attempts to train deep and re-
current neural networks from random initial-
izations have likely failed due to poor ini-
tialization schemes. Furthermore, carefully
tuned momentum methods su�ce for dealing
with the curvature issues in deep and recur-
rent network training objectives without the
need for sophisticated second-order methods.

1. Introduction

Deep and recurrent neural networks (DNNs and
RNNs, respectively) are powerful models that achieve
high performance on di�cult pattern recognition prob-
lems in vision, and speech (Krizhevsky et al., 2012;
Hinton et al., 2012; Dahl et al., 2012; Graves, 2012).

Although their representational power is appealing,
the di�culty of training DNNs has prevented their

Proceedings of the 30
th

International Conference on Ma-

chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

widepread use until fairly recently. DNNs became
the subject of renewed attention following the work
of Hinton et al. (2006) who introduced the idea of
greedy layerwise pre-training. This approach has since
branched into a family of methods (Bengio et al.,
2007), all of which train the layers of the DNN in a
sequence using an auxiliary objective and then “fine-
tune” the entire network with standard optimization
methods such as stochastic gradient descent (SGD).
More recently, Martens (2010) attracted considerable
attention by showing that a type of truncated-Newton
method called Hessian-free Optimization (HF) is capa-
ble of training DNNs from certain random initializa-
tions without the use of pre-training, and can achieve
lower errors for the various auto-encoding tasks con-
sidered by Hinton & Salakhutdinov (2006).

Recurrent neural networks (RNNs), the temporal ana-
logue of DNNs, are highly expressive sequence mod-
els that can model complex sequence relationships.
They can be viewed as very deep neural networks
that have a “layer” for each time-step with parame-
ter sharing across the layers and, for this reason, they
are considered to be even harder to train than DNNs.
Recently, Martens & Sutskever (2011) showed that
the HF method of Martens (2010) could e↵ectively
train RNNs on artificial problems that exhibit very
long-range dependencies (Hochreiter & Schmidhuber,
1997). Without resorting to special types of memory
units, these problems were considered to be impossi-
bly di�cult for first-order optimization methods due
to the well known vanishing gradient problem (Bengio
et al., 1994). Sutskever et al. (2011) and later Mikolov
et al. (2012) then applied HF to train RNNs to per-
form character-level language modeling and achieved
excellent results.

Recently, several results have appeared to challenge
the commonly held belief that simpler first-order
methods are incapable of learning deep models from
random initializations. The work of Glorot & Ben-
gio (2010), Mohamed et al. (2012), and Krizhevsky
et al. (2012) reported little di�culty training neural
networks with depths up to 8 from certain well-chosen

1Work was done while the author was at the University
of Toronto.
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depends on the number of neurons in a given layer. Symmetry breaking.
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1. Impact of initializationInitialization

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Delving	Deep	into	Rectifiers:	Surpassing	Human-Level	Performance	on	ImageNet	Classification”.	ICCV	2015.

ours

Xavier

22-layer	ReLU net:
good	init converges	faster

*%&' - = 1
ours

Xavier

30-layer	ReLU net:
good	init is	able	to	converge

1
2*%&' - = 1

1
2*%&' - = 1

*%&' - = 1

*Figures	show	the	beginning	of	training
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1
2*%&' - = 1

*%&' - = 1

*Figures	show	the	beginning	of	training
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1. Impact of initializationInitialization

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Delving	Deep	into	Rectifiers:	Surpassing	Human-Level	Performance	on	ImageNet	Classification”.	ICCV	2015.

ours

Xavier

22-layer	ReLU net:
good	init converges	faster

*%&' - = 1
ours

Xavier

30-layer	ReLU net:
good	init is	able	to	converge

1
2*%&' - = 1

1
2*%&' - = 1

*%&' - = 1

*Figures	show	the	beginning	of	training

Ultimately, coming up with good initializations is hard, worthy of deeper investigation
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What about the step-size η, aka “learning rate”?2
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2. Step size tuning

Decaying
Adaptive

Architecture 
Sensitive

Others!

Often the most pesky parameter; tuning well can have big impact
NN toolkits use so-called “step-size Schedulers”
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Layerwise Adaptive Rate Scaling: popular for large batch training
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Algorithm 1 LARS

Input: x1 2 Rd, learning rate {⌘t}Tt=1, parameter
0 < �1 < 1, scaling function �, ✏ > 0
Set m0 = 0
for t = 1 to T do

Draw b samples St from P
Compute gt = 1

|St|
P

st2St
r`(xt, st)

mt = �1mt�1 + (1� �1)(gt + �xt)

x(i)
t+1 = x(i)

t � ⌘t
�(kx(i)

t k)
km(i)

t k
m(i)

t for all i 2 [h]

end for

Algorithm 2 LAMB

Input: x1 2 Rd, learning rate {⌘t}Tt=1, parameters
0 < �1,�2 < 1, scaling function �, ✏ > 0
Set m0 = 0, v0 = 0
for t = 1 to T do

Draw b samples St from P.
Compute gt = 1

|St|
P

st2St
r`(xt, st).

mt = �1mt�1 + (1� �1)gt
vt = �2vt�1 + (1� �2)g

2
t

mt = mt/(1� �t
1)

vt = vt/(1� �t
2)

Compute ratio rt =
mtp
vt+✏

x(i)
t+1 = x(i)

t � ⌘t
�(kx(i)

t k)
kr(i)t +�x

(i)
t k

(r(i)t + �x(i)
t )

end for

3.2 LAMB ALGORITHM

The second instantiation of the general strategy is obtained by using ADAM as the base algorithm A.
ADAM optimizer is popular in deep learning community and has shown to have good performance
for training state-of-the-art language models like BERT. Unlike LARS, the adaptivity of LAMB is
two-fold: (i) per dimension normalization with respect to the square root of the second moment used
in ADAM and (ii) layerwise normalization obtained due to layerwise adaptivity. The pseudocode for
LAMB is provided in Algorithm 2. When �1 = 0 and �2 = 0, the algorithm reduces to be Sign SGD
where the learning rate is scaled by square root of the layer dimension (Bernstein et al., 2018).

The following result provides convergence rate for LAMB in general nonconvex settings. Similar to
the previous case, we focus on the setting where �1 = 0 and � = 0. As before, our analysis extends
to the general case; however, the calculations become messy.

Theorem 3. Let ⌘t = ⌘ =
q

2(f(x1)�f(x⇤))
↵2

ukLk1T
for all t 2 [T ], b = T , di = d/h for all i 2 [h], and

↵l  �(v)  ↵u for all v > 0 where ↵l,↵u > 0. Then for xt generated using LAMB (Algorithm 2),

we have the following bounds:

1. When �2 = 0, we have

✓
E


1p
d
krf(xa)k1

�◆2

 O

✓
(f(x1)� f(x⇤))Lavg

T
+

k�̃k21
Th

◆
,

2. When �2 > 0, we have

E[krf(xa)k2]  O

 s
G2d

h(1� �2)
⇥
"r

2(f(x1)� f(x⇤))kLk1
T

+
k�̃k1p

T

#!
,

where x
⇤

is an optimal solution to the problem in equation 1 and xa is an iterate uniformly randomly

chosen from {x1, · · · , xT }.

Discussion on convergence rates. We first start our discussion with the comparison of convergence
rate of LARS with that of SGD (Theorem 1). The convergence rates of LARS and SGD differ in
two ways: (1) the convergence criterion is (E[

Ph
i=1 krifk])2 as opposed to E[krfk2] in SGD and

(2) the dependence on L and � in the convergence rate. Briefly, the convergence rate of LARS is
better than SGD when the gradient is denser than curvature and stochasticity. This convergence rate
comparison is similar in spirit to the one obtained in (Bernstein et al., 2018). Assuming that the
convergence criterion in Theorem 1 and Theorem 2 is of similar order (which happens when gradients
are fairly dense), convergence rate of LARS and LAMB depend on Lavg instead of L1 and are thus,
significantly better than that of SGD. A more quantitative comparison is provided in Section C of
the Appendix. The comparison of LAMB (with �2 = 0) with SGD is along similar lines. We obtain
slightly worse rates for the case where �2 > 0; although, we believe that its behavior should be better
than the case �2 = 0. We leave this investigation to future work.
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How to compute a stochastic gradient?3
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3. Computing gradients
Key computational task: compute a stochastic gradient
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3. Computing gradients
Key computational task: compute a stochastic gradient

… …

z1

z2

zm

f(z1 )

f(z2)

f(z
m
)

w
1

w2

wm F (x; ✓)

x1

x2

xp

= z

z =
Xm

i=1
wif(zi) + b

z i
=

X
j
w ij

x j
+
b i

w ij
wij

1≤ i ≤ m (hidden units)

1 ≤ j ≤ p (input features)
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Computing gradients: backpropagation
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Observe that a change to   changes , which changes , which 

eventually changes  and thus the loss 𝓁.
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Computing gradients: backpropagation
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�y, if `(y, z) > 0,
0, otherwise.

Chain-rule of calculus

Observe that a change to   changes , which changes , which 

eventually changes  and thus the loss 𝓁.
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Backpropagation
Challenge: How to apply the chain rule in a deep network?
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Backpropagation
Challenge: How to apply the chain rule in a deep network?

A change to a weight wij at the first hidden layer will impact all subsequent layers.

To apply the chain-rule, must aggregate contribution from each unit to final output

We must cover all paths by which information can flow from first layer to last!

This is where backpropagation enters the game
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Backpropagation

▶︎ A simple, brilliant idea dating back to 1960s, and early 70s. Rediscovered multiple 
time; popularized greatly after 1986 paper of Rumelhart, Hinton, Williams
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Backpropagation

▶︎ A simple, brilliant idea dating back to 1960s, and early 70s. Rediscovered multiple 
time; popularized greatly after 1986 paper of Rumelhart, Hinton, Williams

Key insight: Trade space for time (dynamic programming).

Thus, keep track of how a change to the input of one layer impacts 
its output, and use extra storage to save this (change=derivative).

Challenge: How to apply the chain rule in a deep network?
A change to a weight wij at the first hidden layer will impact all subsequent layers.

To apply the chain-rule, must aggregate contribution from each unit to final output

We must cover all paths by which information can flow from first layer to last!

This is where backpropagation enters the game
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Automatic differentiation

Forward mode AD

Backward mode AD 
(Backprop a special case)

Optimal Jacobian Accumulation: NP-Complete
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Abstract

Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine
learning. Automatic differentiation (AD), also called algorithmic differentiation or sim-
ply “autodiff”, is a family of techniques similar to but more general than backpropagation
for efficiently and accurately evaluating derivatives of numeric functions expressed as com-
puter programs. AD is a small but established field with applications in areas including
computational fluid dynamics, atmospheric sciences, and engineering design optimization.
Until very recently, the fields of machine learning and AD have largely been unaware of each
other and, in some cases, have independently discovered each other’s results. Despite its
relevance, general-purpose AD has been missing from the toolbox of the machine learning
community, a situation slowly changing with its ongoing adoption in mainstream machine
learning frameworks. We survey the intersection of AD and machine learning, cover appli-
cations where AD has direct relevance, and address the main techniques of implementation.
By precisely defining the main differentiation techniques and their interrelationships, we
aim to bring clarity to the usage of terms “autodiff”, “automatic differentiation”, and
“symbolic differentiation” as these are encountered more and more in machine learning
settings.

Keywords: Backpropagation, Gradient-Based Optimization

c©2017 Atılım Güneş Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.

All NN toolkits use autodiff libraries

AD: Generate algorithm for efficient evaluation of derivatives

Numerous tutorials and notes online; well-developed area in PL and numerics
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In reality: BN, momentum,clipping,adaptivity

and many other ideas!4
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Key motivation: unstable gradients
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‣ If several of these matrices are “small” (i.e., norms < 1), when we multiply 

them, the gradient will decrease exponentially fast and tend to vanish 
(hurting learning in lower layers much more) 

‣ Conversely, if several matrices have large norm, the gradient will tend to 
explode. In both cases, the gradients are unstable. 

‣ Coping with unstable gradients poses several challenges, and must be 
dealt with to achieve good results. 
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Partial remedies for unstable gradients
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Partial remedies for unstable gradients

➡ Regularization (numerous ways, implicit and explicit)
➡ ReLU activations
➡ Memory (in RNNS)
➡ Weight normalization and batch normalization (somewhat)
➡ Gradient clipping, normalized gradients
➡ Numerous other ideas (architecture specific)
➡ Residual Networks (Resnets)
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Regularization

+ �k✓k2
definitely use it; but many other ways too!
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Regularization

+ �k✓k2
definitely use it; but many other ways too!

NN folks call this: “weight decay,” though to be pedantic, 
some reserve the term “weight decay” for the part subtracted 
from weights θ when updating them (e.g., ADAMW optimizer)
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Regularizing with Dropout

‣ When fitting to the nitty-gritty of the input, including noise hidden units must rely 
on each other to co-adapt and have complementary coverage of the data space.  

‣ To hinder fitting to noise we must avoid overdoing co-adaptation

Motivation
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‣ When fitting to the nitty-gritty of the input, including noise hidden units must rely 
on each other to co-adapt and have complementary coverage of the data space.  

‣ To hinder fitting to noise we must avoid overdoing co-adaptation

Motivation

‣Randomly turn off units, say with probability 1/2, when training! 

Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.
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Dropout (additional stochasticity in the loss function)
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‣ Accounted for during backprop (how?). 
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Regularizing with Dropout

‣ When fitting to the nitty-gritty of the input, including noise hidden units must rely 
on each other to co-adapt and have complementary coverage of the data space.  

‣ To hinder fitting to noise we must avoid overdoing co-adaptation

Motivation

‣Randomly turn off units, say with probability 1/2, when training! 
‣ For each data point, we randomly set the output of each hidden unit to zero. 
‣ The neurons turned off are randomly chosen anew for each training data point
‣ Accounted for during backprop (how?). 
‣ For units turned off for that round, input weights and activations not updated; unit 
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(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.
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Observation: Known that training converges faster if inputs “whitened”, i.e., 
linearly transformed to have mean zero, unit variance, and decorrelated.
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Idea 0: Activations of one layer, inputs to another. If we do similar whitening of 
the inputs of each layer might help towards improving training.
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Idea 1: Normalize features individually, not jointly

(features at a layer)

x̂k =
xk � E[xk]p

Var[xk]
x = (x1, . . . , xp)
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Idea 1: mini-batch normalization
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BN transform applied to

activation x over a mini-batch

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ε is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ε

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3
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vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ε is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ε

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we
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vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ε is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ε

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we
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vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ε is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ε

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we
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vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ε is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ε

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we
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which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians
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ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
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Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ε is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ε

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we
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Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Model Steps to 72.2% Max accuracy
Inception 31.0 · 106 72.2%
BN-Baseline 13.3 · 106 72.7%
BN-x5 2.1 · 106 73.0%
BN-x30 2.7 · 106 74.8%

BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-
work.

4.2.2 Single-Network Classification

We evaluated the following networks, all trained on the
LSVRC2012 training data, and tested on the validation
data:
Inception: the network described at the beginning of

Section 4.2, trained with the initial learning rate of 0.0015.
BN-Baseline: Same as Inception with Batch Normal-

ization before each nonlinearity.
BN-x5: Inception with Batch Normalization and the

modifications in Sec. 4.2.1. The initial learning rate was
increased by a factor of 5, to 0.0075. The same learning
rate increase with original Inception caused the model pa-
rameters to reach machine infinity.
BN-x30: Like BN-x5, but with the initial learning rate

0.045 (30 times that of Inception).
BN-x5-Sigmoid: Like BN-x5, but with sigmoid non-

linearity g(t) = 1
1+exp(−x) instead of ReLU. We also at-

tempted to train the original Inception with sigmoid, but
the model remained at the accuracy equivalent to chance.
In Figure 2, we show the validation accuracy of the

networks, as a function of the number of training steps.
Inception reached the accuracy of 72.2% after 31 · 106
training steps. The Figure 3 shows, for each network,
the number of training steps required to reach the same
72.2% accuracy, as well as the maximum validation accu-
racy reached by the network and the number of steps to
reach it.
By only using Batch Normalization (BN-Baseline), we

match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
Sec. 4.2.1, we significantly increase the training speed of
the network. BN-x5 needs 14 times fewer steps than In-
ception to reach the 72.2% accuracy. Interestingly, in-
creasing the learning rate further (BN-x30) causes the
model to train somewhat slower initially, but allows it to
reach a higher final accuracy. It reaches 74.8% after 6·106
steps, i.e. 5 times fewer steps than required by Inception
to reach 72.2%.
We also verified that the reduction in internal covari-

ate shift allows deep networks with Batch Normalization

to be trained when sigmoid is used as the nonlinearity,
despite the well-known difficulty of training such net-
works. Indeed, BN-x5-Sigmoid achieves the accuracy of
69.8%. Without Batch Normalization, Inception with sig-
moid never achieves better than 1/1000 accuracy.

4.2.3 Ensemble Classification

The current reported best results on the ImageNet Large
Scale Visual Recognition Competition are reached by the
Deep Image ensemble of traditional models (Wu et al.,
2015) and the ensemble model of (He et al., 2015). The
latter reports the top-5 error of 4.94%, as evaluated by the
ILSVRC server. Here we report a top-5 validation error of
4.9%, and test error of 4.82% (according to the ILSVRC
server). This improves upon the previous best result, and
exceeds the estimated accuracy of human raters according
to (Russakovsky et al., 2014).
For our ensemble, we used 6 networks. Each was based

on BN-x30, modified via some of the following: increased
initial weights in the convolutional layers; using Dropout
(with the Dropout probability of 5% or 10%, vs. 40%
for the original Inception); and using non-convolutional,
per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
accuracy after about 6 · 106 training steps. The ensemble
prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
details of ensemble and multicrop inference are similar to
(Szegedy et al., 2014).
We demonstrate in Fig. 4 that batch normalization al-

lows us to set new state-of-the-art by a healthy margin on
the ImageNet classification challenge benchmarks.

5 Conclusion
We have presented a novel mechanism for dramatically
accelerating the training of deep networks. It is based on
the premise that covariate shift, which is known to com-
plicate the training of machine learning systems, also ap-
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✓ BN layer can be added to many networks (e.g., CNNs, Resnets, etc.)


➡ Current Challenge: BN for RNNs; also, is BN truly necessary?

✓ BN enables higher learning rates: backprop through a BN layer is 

unaffected by the scale of its parameters, BN(Wx)=BN( (aW)x)

✓ BN has a regularizing effect (Dropout can even be dropped out)

✓ Challenge: Formally understand and explain BN
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the number of training steps required to reach the same
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By only using Batch Normalization (BN-Baseline), we

match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
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the network. BN-x5 needs 14 times fewer steps than In-
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despite the well-known difficulty of training such net-
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(with the Dropout probability of 5% or 10%, vs. 40%
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per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
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prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
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x 7! hL � hL�1 � · · · � h1(x)

hi(z) := z + �(Wiz + bi)
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Id + σ(.)

Note: Without the Identity map (Id), we are back to the usual model
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Why resnets?Simply	stacking	layers?
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Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.
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Making network deeper does not necessarily work better

Limits on what initialization and batch normalization give us
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Key idea: Identity maps
Deep	Residual	Learning

• Plaint	net

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

any	two
stacked	layers

0

a(0)

weight	layer

weight	layer

relu

relu

a 0 is	any	desired	mapping,

hope	the	2	weight	layers	fit	a(0)

Deep	Residual	Learning

• Plaint	net

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

any	two
stacked	layers

0

a(0)

weight	layer

weight	layer

relu

relu

a 0 is	any	desired	mapping,

hope	the	2	weight	layers	fit	a(0)

Aim: Learn map H(x). 

Approach: Hope the deep net fits H(x)
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a(0)

weight	layer

weight	layer

relu

relu

a 0 is	any	desired	mapping,

hope	the	2	weight	layers	fit	a(0)

Aim: Learn map H(x) = F(x)+x

Approach: Hope the deep net fits F(x)

Deep	Residual	Learning

• Residual net

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

a 0 is	any	desired	mapping,

hope	the	2	weight	layers	fit	a(0)
hope the	2	weight	layers	fit	b(0)

let	a 0 = b 0 + 0
weight	layer

weight	layer

relu

relu

0

a 0 = b 0 + 0

identity
0

b(0)A residual block
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a 0 is	any	desired	mapping,

hope	the	2	weight	layers	fit	a(0)
hope the	2	weight	layers	fit	b(0)

let	a 0 = b 0 + 0
weight	layer

weight	layer

relu

relu

0

a 0 = b 0 + 0

identity
0

b(0)

If identity were optimal easy 
to fit by setting weights=0 

By adding Id, increasing 
depth should not hurt 
performance…

A residual block
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hope	the	2	weight	layers	fit	a(0)
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let	a 0 = b 0 + 0
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relu
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0
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b(0)

F(x) is a residual mapping wrt identity

If identity were optimal easy 
to fit by setting weights=0 

By adding Id, increasing 
depth should not hurt 
performance…

A residual block

x 7! hL � hL�1 � · · · � h1(x)

hi(z) := z + �(Wiz + bi)
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a 0 is	any	desired	mapping,

hope	the	2	weight	layers	fit	a(0)
hope the	2	weight	layers	fit	b(0)

let	a 0 = b 0 + 0
weight	layer
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relu
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0

a 0 = b 0 + 0
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F(x) is a residual mapping wrt identity

Explore: Try residual wrt other distinguished (i.e., not Id) mappings

If identity were optimal easy 
to fit by setting weights=0 

By adding Id, increasing 
depth should not hurt 
performance…

A residual block
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Simply	stacking	layers?
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• “Overly	deep”	plain	nets	have	higher	training	error
• A	general	phenomenon,	observed	in	many	datasets

solid:	test/val
dashed:	train

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

Deep	Residual	Learning

• Plaint	net

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.
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relu

relu

a 0 is	any	desired	mapping,

hope	the	2	weight	layers	fit	a(0)
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CIFAR-10	experiments
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• Deep	ResNets	can	be	trained	without	difficulties
• Deeper	ResNets	have	lower	training	error,	and	also	lower	test	error

solid:	test
dashed:	train

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.
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Recent theory on ResNets
▶︎ Bartlett et al, 2018. Optimization properties of deep residual networks.

▶︎ Hardt, Ma 2017. Global optimality of deep linear resnets y=(I+WL)(I+WL-1)…(I+W1)x
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▶︎ Bartlett et al, 2018. Optimization properties of deep residual networks.

▶︎ Hardt, Ma 2017. Global optimality of deep linear resnets y=(I+WL)(I+WL-1)…(I+W1)x

▶︎ Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal 
Approximator (deep Resnet with one neuron per hidden layer and ReLU activation). 

mailto:suvrit@mit.edu?subject=


Suvrit Sra (suvrit@mit.edu)                            6.881 Optimization for Machine Learning (5/04/21 Lecture 19) 35

Recent theory on ResNets
▶︎ Bartlett et al, 2018. Optimization properties of deep residual networks.

▶︎ Hardt, Ma 2017. Global optimality of deep linear resnets y=(I+WL)(I+WL-1)…(I+W1)x

▶︎ Shamir, 2018. Considers x ↦ wT(x + VFθ(x)) and shows that every local optimum of this 
Resnet (with final purely linear layer) is “better than” a simple linear model. Presents some 
conditions under which one can prove that adding the Id map does not hurt performance.

▶︎ Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal 
Approximator (deep Resnet with one neuron per hidden layer and ReLU activation). 
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▶︎ Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal 
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▶︎ Yun, Sra, Jadbabaie, 2019. Deep ResNet can be provably better than linear models 
(provides a “deep” version of Shamir’s result above, result leaves open problems.

mailto:suvrit@mit.edu?subject=


Suvrit Sra (suvrit@mit.edu)                            6.881 Optimization for Machine Learning (5/04/21 Lecture 19) 35

Recent theory on ResNets
▶︎ Bartlett et al, 2018. Optimization properties of deep residual networks.

▶︎ Hardt, Ma 2017. Global optimality of deep linear resnets y=(I+WL)(I+WL-1)…(I+W1)x

▶︎ Shamir, 2018. Considers x ↦ wT(x + VFθ(x)) and shows that every local optimum of this 
Resnet (with final purely linear layer) is “better than” a simple linear model. Presents some 
conditions under which one can prove that adding the Id map does not hurt performance.

▶︎ Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal 
Approximator (deep Resnet with one neuron per hidden layer and ReLU activation). 

▶︎ Yun, Sra, Jadbabaie, 2019. Deep ResNet can be provably better than linear models 
(provides a “deep” version of Shamir’s result above, result leaves open problems.

▶︎ Allen-Zhu, Li, 2019. “What can ResNet learn efficiently, Going beyond Kernels?”
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