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Some Aspects of NN Optimization

Backprop ™ SGD
Mini-batches
Initialization
Batchnorm
Gradient clipping
Adaptive methods
Momentum
Layerwise params
...and more!
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Some Aspects of NN Optimization

Backprop ™ SGD
Mini-batches

Initialization
Batchnorm | |
: All while keeping
Gradient cllppmg :  validation / test error
performance in mind
Adaptive methods
Momentum

Layerwise params
...and more!
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SGD: Neural network training

e 0= DA <
((y,z) = max(0,1 — yz) network output
Uy,z) = 2(y — 2)° label
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SGD: Neural network training

meln RN Z g y’La f’jfw\
((y,z) = max(0,1 — yz) network output
Uy,z) = 2(y — 2)° label
F .
SGD 9 g o2t ae(:v, 0))
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SGD: Neural network training

min Ry (0 ze i F (0

((y,z) = max(0,1 — yz) network output

Uy,z) = 2(y — 2)° label

SGD 9 0Ly, F(;0))

— 0 —
LY
l lterative method. How to select 0¢?
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SGD: Neural network training

min Ry (0) = — 3 0y, F(zs;0))

0 N 4
i=1 A \

((y,z) = max(0,1 — yz) network output

Uy,z) = 2(y — 2)° label

SeD 20
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SGD: Neural network training

min Ry (0) = — 3 0y, F(zs;0))

0 N 4
i=1 A \
((y,z) = max(0,1 — yz) network output
(w.2) = 3y~ 27 abel

SGD
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SGD: Neural network training

N
, 1
min Rn(0) := ~ ;E(%fi, F(Q
((y,z) = max(0,1 — yz) network output
Uy,z) = 2(y — 2)° label

SGD
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1. Inttialization

Properly initializing a NN important.
NN loss is highly nonconvex;

On the importance of initialization and momentum in deep learning

optimizing it to attain a "good” o
solution hard, requires careful tuning. | = G e TN CA TonN 10
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1. Inttialization

Properly initializing a NN important.
NN loss is highly nonconvex;

On the importance of initialization and momentum in deep learning

optimizing it to attain a "good” o
solution hard, requires careful tuning. | = G e TN CA TonN 10

Example: Don’t initialize all weights to be the same — why?
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1. Inttialization

Properly initializing a NN important.
NN loss is highly nonconvex;

On the importance of initialization and momentum in deep learning

optimizing it to attain a "good” o
solution hard, requires careful tuning. | = G e TN CA TonN 10

Example: Don’t initialize all weights to be the same — why?

Random Initialize randomly, e.g., via the Gaussian N(0, ¢2), where std o
.depends on the number of neurons in a given layer. Symmetry breaking.
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1. Inttialization

Properly initializing a NN important.
NN loss is highly nonconvex;

On the importance of initialization and momentum in deep learning

optimizing it to attain a "good” o
solution hard, requires careful tuning. | = G e TN CA TonN 10

Example: Don’t initialize all weights to be the same — why?

Random Initialize randomly, e.g., via the Gaussian N(0, ¢2), where std o
.depends on the number of neurons in a given layer. Symmetry breaking.

Why" roughly ensure that random input to a unit does not depend on the
‘number of inputs it gets. For ReLUs current recommendation: use 02=2/n
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1. Inttialization

Properly initializing a NN important.
NN loss is highly nonconvex;

On the importance of initialization and momentum in deep learning

optimizing it to attain a "good” o
solution hard, requires careful tuning. | = G e TN CA TonN 10

Example: Don’t initialize all weights to be the same — why?

Random Initialize randomly, e.g., via the Gaussian N(0, ¢2), where std o
.depends on the number of neurons in a given layer. Symmetry breaking.

Why" roughly ensure that random input to a unit does not depend on the
‘number of inputs it gets. For ReLUs current recommendation: use 02=2/n

See also: http://cs231n.github.io/neural-networks-2/ for additional practical notes
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1. Impact of initialization

22-layer RelLU net:
good init converges faster

0951

0.2r

0.85F
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0.75
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1. Impact of initialization

22-layer RelLU net:
good init converges faster

30-layer RelLU net:
good initis able to converge

0951 0951

0.9 0.9
5 5
LI L
0851 0.85F
0.8} 0.8}
{l?ﬁ- 1 1 1 1 1 1 1 L 1

{l?ﬁ- T | | 1 ]

*Figures show the beginning of training

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.
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1. Impact of initialization

22-layer RelLU net: : 30-layer RelLU net:
good init converges faster good initis able to converge
1 I lmmmmmmemeeeemeemeemeeeemeemeemeeesessessessessesse———————
a.25r i 05l
08F E 08F
. Q.85 E B 0.&=5|
RS i k-] %nVar[w] =1
|| mememeee———- nVar[w] =1
0.75 - - L L L ! " 0.75
il 0.5 1 1.5 2 25 3 1 a 1 2 3 4 B g T a8 9
Epoch ' Epoch

*Figures show the beginning of training

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.
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2. Step size tuning

Adaptive

Architecture

Sensitive m

Often the most pesky parameter; tuning well can have big impact

NN toolkits use so-called “step-size Schedulers”
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2. Step size tuning

Decaying

Adaptive

Architecture
Sensitive

Often the most pesky parameter; tuning well can have big impact

NN toolkits use so-called “step-size Schedulers”

A Second look at Exponential and Cosine Step Sizes: Simplicity, Convergence, and
Performance

Xiaoyu Li, Zhenxun Zhuang, Francesco Orabona
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Layerwise Adaptive Rate Scaling: popular for large batch training
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Layerwise Adaptive Rate Scaling: popular for large batch training

Algorithm 1 LARS

Input: x, € R, learning rate {nt}le, parameter
0 < B1 < 1, scaling function ¢, € > 0
Set mg =0
fort =1to’1T do
Draw b samples S; from P

Compute g = ﬁ > s.cs, VTt st)
me = Bime—1 + (1 — B1)(gr + Axy)

. . (4) .
$§21 = a;ftz) — Mt C’b(”””gi)"")mi” for all ¢« € |h]

||’m,t

end for
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Layerwise Adaptive Rate Scaling: popular for large batch training

Algorithm 1 LARS

Input: x, € R, learning rate {nt}le, parameter
0 < B1 < 1, scaling function ¢, € > 0
Set mg =0
fort =1to’1T do
Draw b samples S; from P

Compute g; = ﬁ > s.cs, VT, st)

(4Z; J1. 174 == ( 5 ! %
) 6 U= () N
Ty =2 — M oml for all ¢ € [h] )
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Layerwise Adaptive Rate Scaling: popular for large batch training

Algorithm 1 LARS

Input: x, € R, learning rate {nt}le, parameter
0 < B1 < 1, scaling function ¢, € > 0
Set mog = 0
fort =1to’1T do
Draw b samples St from P

Compute g = |St| Zstest Vi(xy, st)
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3. Computing gradients

Key computational task: compute a stochastic gradient
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3. Computing gradients

Key computational task: compute a stochastic gradient

W 1< i < m (hidden units)
Yoo 1<j=<p

(input features)

J
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3. Computing gradients

Key computational task: compute a stochastic gradient

wij 1s< =m (hidden units)
< j < p (input features)
p

Zi = ijl wijTj + b input to ith hidden unit

f(z;) = max(0, z;) output of ith hidden unit
_ N (s input to output unit

2 27:1 w; f(z;) + b

f(z) = F(z;0) =z network output

Aim: compute 07/ 00
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Computing gradients: backpropagation

p
=) Wit b input to it hidden unit
f(z;) = max(0, z;) output of ith hidden unit
m ((y, z) = max(0,1 — yz)
z = . w;f(z;) +b input to output unit
f(z) =F(z;0) =z network output
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Computing gradients: backpropagation

p
=) Wit b input to it hidden unit
f(z;) = max(0, z;) output of ith hidden unit
m ((y, z) = max(0,1 — yz)
z = . w;f(z;) +b input to output unit
f(z) = F(z;0) =2 network output

:Observe that a change to w;;changes z;, which changes f(z;), which

Eeventually changes z and thus the loss 7.
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Computing gradients: backpropagation

p
=) Wit b input to it hidden unit
f(z;) = max(0, z;) output of ith hidden unit
m ((y,z) = max(0,1 — yz)
2z = . w;f(z;) +b input to output unit
f(z) = F(z;0) =2 network output

‘Observe that a change to w;;changes z;, which changes f(z;), which

Eeventually changes z and thus the loss 7.

Chain-rule of calculus

ol(y,z) | 0z | [0f(z)]| ] 0z | of

8w7;j _6’w7;j 1 82’@ _8f(zz) 1 0z

_ —Y, if f(y, Z) > 07
0, otherwise.

= [z;]lzi > O] [w]
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- Backpropagation

Challenge: How to apply the chain rule in a deep network?
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Backpropagation

Challenge: How to apply the chain rule in a deep network?

* A change to a weight w;; at the first hidden layer will impact all subsequent layers.

* To apply the chain-rule, must aggregate contribution from each unit to final output
* We must cover all paths by which information can flow from first layer to last!
* This is where backpropagation enters the game
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Backpropagation

Challenge: How to apply the chain rule in a deep network?

A change to a weight w;; at the first hidden layer will impact all subsequent layers.

*
* To apply the chain-rule, must aggregate contribution from each unit to final output
* We must cover all paths by which information can flow from first layer to last!

* This is where backpropagation enters the game

» A simple, brilliant idea dating back to 1960s, and early 70s. Rediscovered multiple
time; popularized greatly after 1986 paper of Rumelhart, Hinton, Williams

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 19


mailto:suvrit@mit.edu?subject=

Backpropagation

Challenge: How to apply the chain rule in a deep network?

A change to a weight w;; at the first hidden layer will impact all subsequent layers.

*
* To apply the chain-rule, must aggregate contribution from each unit to final output
* We must cover all paths by which information can flow from first layer to last!

* This is where backpropagation enters the game

» A simple, brilliant idea dating back to 1960s, and early 70s. Rediscovered multiple
time; popularized greatly after 1986 paper of Rumelhart, Hinton, Williams

Key insight: Trade space for time (dynamic programming).

Thus, keep track of how a change to the input of one layer impacts
its output, and use extra storage to save this (change=derivative).
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Automatic differentiation

Forward mode AD
Backward mode AD

(Backprop a special case)

Automatic Differentiation
in Machine Learning: a Survey

Atilim Giines Baydin
Department of Engineering Science
University of Ozford

Ozford OX1 8PJ, United Kingdom

Barak A. Pearlmutter
Department of Computer Science
Maynooth, Co. Kildare, Ireland
Alexey Andreyevich Radul

National University of Ireland Maynooth

GUNES@ROBOTS.OX.AC.UK

BARAKQPEARLMUTTER.NET

Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology

Cambridge, MA 02139, United States
Jeffrey Mark Siskind

| TT—

Optimal Jacobian Accumulation: NP-Complete

All NN toolkits use autodiff libraries

AXCHQMIT.EDU

QOBI@QPURDUE.EDU

S

AD: Generate algorithm for efficient evaluation of derivatives

Numerous tutorials and notes online; well-developed area in PL and numerics

Suvrit Sra (suvrit@mit.edu)
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In reality: BN, momentum,clipping,adaptivity
and many other ideas!
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Key motivation: unstable gradients

ot = % = Diag[f'(z")|W'Tisit,
<

6" = Diag[f' ()W Diag[f' (Z"TH W' 2 ... wkeh

Observations
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Key motivation: unstable gradients

ot = % = Diag[f'(z")|W'Tisit,
<

6" = Diag[f' ()W Diag[ f/ (" TH w2 ... kst

Observations

> Multiplication of a chain of matrices in backprop
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Key motivation: unstable gradients

ot = % = Diag[f'(z")|W'Tisit,
<

6" = Diag[f' ()W Diag[ f/ (" TH w2 ... kst

Observations

> Multiplication of a chain of matrices in backprop
> |f several of these matrices are “small” (i.e., norms < 1), when we multiply
them, the gradient will decrease exponentially fast and tend to vanish

(hurting learning in lower layers much more)
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Key motivation: unstable gradients

ot = % = Diag[f'(z")|W'Tisit,
<

6" = Diag[f' ()W Diag[ f/ (" TH w2 ... kst

Observations

> Multiplication of a chain of matrices in backprop

> |f several of these matrices are “small” (i.e., norms < 1), when we multiply
them, the gradient will decrease exponentially fast and tend to vanish
(hurting learning in lower layers much more)

» Conversely, if several matrices have large norm, the gradient will tend to
explode. In both cases, the gradients are unstable.
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Key motivation: unstable gradients

ot = % = Diag[f'(z")|W'Tisit,
<

6" = Diag[f’ (z")|W' ' Diag[f' (" THw' T2 ... whest

Observations

> Multiplication of a chain of matrices in backprop

> |f several of these matrices are “small” (i.e., norms < 1), when we multiply
them, the gradient will decrease exponentially fast and tend to vanish
(hurting learning in lower layers much more)

» Conversely, if several matrices have large norm, the gradient will tend to
explode. In both cases, the gradients are unstable.

» Coping with unstable gradients poses several challenges, and must be
dealt with to achieve good results.
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Partial remedies for unstable gradients
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Partial remedies for unstable gradients

= Regularization (humerous ways, implicit and explicit)
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Partial remedies for unstable gradients

= Regularization (humerous ways, implicit and explicit)
= RelLU activations
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Partial remedies for unstable gradients

= Regularization (humerous ways, implicit and explicit)
= RelLU activations
= Memory (in RNNS)
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Partial remedies for unstable gradients

= Regularization (humerous ways, implicit and explicit)
= RelLU activations

= Memory (in RNNS)
= Weight normalization and batch normalization (somewhat)
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Partial remedies for unstable gradients

= Regularization (humerous ways, implicit and explicit)

= RelLU activations

= Memory (in RNNS)

= Weight normalization and batch normalization (somewhat)
= Gradient clipping, normalized gradients
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Partial remedies for unstable gradients

= Regularization (humerous ways, implicit and explicit)

= RelLU activations

= Memory (in RNNS)

= Weight normalization and batch normalization (somewhat)
= Gradient clipping, normalized gradients

= Numerous other ideas (architecture specific)
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Partial remedies for unstable gradients

= Regularization (humerous ways, implicit and explicit)

= RelLU activations

= Memory (in RNNS)

= Weight normalization and batch normalization (somewhat)
= Gradient clipping, normalized gradients

= Numerous other ideas (architecture specific)

= Residual Networks (Resnets)
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Regularization

+ AllO]I*

definitely use it; but many other ways too!
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Regularization

+ AllO]I*

definitely use it; but many other ways too!
NN folks call this: “weight decay,” though to be pedantic,
'some reserve the term “weight decay” for the part subtracted
‘from weights 8 when updating them (e.g., ADAMW optimizer)

_____________________________________________________________
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Regularizing with Dropout

Motivation

» When fitting to the nitty-gritty of the input, including noise hidden units must rely
on each other to co-adapt and have complementary coverage of the data space.
» To hinder fitting to noise we must avoid overdoing co-adaptation
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Regularizing with Dropout

Motivation

» When fitting to the nitty-gritty of the input, including noise hidden units must rely
on each other to co-adapt and have complementary coverage of the data space.
» To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)
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Regularizing with Dropout

Motivation

» When fitting to the nitty-gritty of the input, including noise hidden units must rely
on each other to co-adapt and have complementary coverage of the data space.
» To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

» Randomly turn off units, say with probability 1/2, when training!

figure from the [dropout] paper

(b) After applying dropout.
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Regularizing with Dropout

Motivation

» When fitting to the nitty-gritty of the input, including noise hidden units must rely
on each other to co-adapt and have complementary coverage of the data space.
» To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

» Randomly turn off units, say with probability 1/2, when training!
» For each data point, we randomly set the output of each hidden unit to zero.

figure from the [dropout] paper

(b) After applying dropout.
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Regularizing with Dropout

Motivation

» When fitting to the nitty-gritty of the input, including noise hidden units must rely
on each other to co-adapt and have complementary coverage of the data space.
» To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

» Randomly turn off units, say with probability 1/2, when training!
» For each data point, we randomly set the output of each hidden unit to zero.
» The neurons turned off are randomly chosen anew for each training data point

figure from the [dropout] paper

(b) After applying dropout.
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Regularizing with Dropout

Motivation

» When fitting to the nitty-gritty of the input, including noise hidden units must rely
on each other to co-adapt and have complementary coverage of the data space.
» To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

» Randomly turn off units, say with probability 1/2, when training!
» For each data point, we randomly set the output of each hidden unit to zero.
» The neurons turned off are randomly chosen anew for each training data point
» Accounted for during backprop (how?).

figure from the [dropout] paper

(b) After applying dropout.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 25


mailto:suvrit@mit.edu?subject=
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Regularizing with Dropout

Motivation

» When fitting to the nitty-gritty of the input, including noise hidden units must rely
on each other to co-adapt and have complementary coverage of the data space.
» To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

» Randomly turn off units, say with probability 1/2, when training!
» For each data point, we randomly set the output of each hidden unit to zero.
» The neurons turned off are randomly chosen anew for each training data point
» Accounted for during backprop (how?).
» For units turned off for that round, input weights and activations not updated; unit
effectively dropped out for that particular training sample. This additional stochasticity
helps in regularization. Explore: other ways of adding stochasticity to NN training

figure from the [dropout] paper

(b) After applying dropout.
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Batch Normalization
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Batch Normalization

Observation: Known that training converges faster if inputs “whitened”, i.e.,
linearly transformed to have mean zero, unit variance, and decorrelated.
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Batch Normalization

Observation: Known that training converges faster if inputs “whitened”, i.e.,
linearly transformed to have mean zero, unit variance, and decorrelated.

Idea 0: Activations of one layer, inputs to another. If we do similar whitening of
the inputs of each layer might help towards improving training.
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Batch Normalization

Observation: Known that training converges faster if inputs “whitened”, i.e.,
linearly transformed to have mean zero, unit variance, and decorrelated.

Idea 0: Activations of one layer, inputs to another. If we do similar whitening of
the inputs of each layer might help towards improving training.

Full whitening involves inverting large matrices, a no-go
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Batch Normalization

Observation: Known that training converges faster if inputs “whitened”, i.e.,
linearly transformed to have mean zero, unit variance, and decorrelated.

Idea 0: Activations of one layer, inputs to another. If we do similar whitening of
the inputs of each layer might help towards improving training.

Full whitening involves inverting large matrices, a no-go

Idea 1: Normalize features individually, not jointly

x:($1’...7mp) g@k: gjk_ 4:[:1316]
k
(features at a layer) \/V&r [x ]
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Batch Normalization

Observation: Known that training converges faster if inputs “whitened”, i.e.,
linearly transformed to have mean zero, unit variance, and decorrelated.

Idea 0: Activations of one layer, inputs to another. If we do similar whitening of
the inputs of each layer might help towards improving training.

Full whitening involves inverting large matrices, a no-go

Idea 1: Normalize features individually, not jointly |
Expectation and

1 D ~ L ZEk — I [ka] Variance computed
L = (aj ooy d ) — over training data set
\/V&I' [ka] (LeCun98— this speeds

(features at a layer) up training)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 26


mailto:suvrit@mit.edu?subject=

Batch Normalization
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Batch Normalization

Idea 1: Normalize features individually, not jointly
L :

1 A CE’ - 't ,CB

r=(x,...,2") ik |

- \/ Var[zk]

"]

(features at a layer)
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Batch Normalization

Idea 1: Normalize features individually, not jointly

Expectation and

_ (] D ~ L .Tk — I [lek] Variance computed
L = (ZB ooyl ) L = over training data set
\/V&I' [ka] (LeCun98 — this speeds

(features at a layer) up training)
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Batch Normalization

Idea 1: Normalize features individually, not jointly

Expectation and

_ (] D ~ L .Tk — I [lek] Variance computed
L = (ZE ooyl ) L = over training data set
\/V&I' [le‘k] (LeCun98 — this speeds

(features at a layer) up training)

Idea 1: mini-batch normalization

@
New
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Batch Normalization

Idea 1: Normalize features individually, not jointly

Expectation and

_ (] D ~ L .CIZk — I [le‘k] Variance computed
L = (33 ooyl ) L = over training data set
\/V&I' [ZEk] (LeCun98 — this speeds

(features at a layer) up training)

Input: Values of = over a mini-batch: B = {x1. . };
Parameters to be learned: v,

Output: {y; = BN, g(x;)}

Idea 1: mini-batch normalization

Q) n
N 1 .
UB — — Z T; // mini-batch mean
m 1 =1
BN transform applied to . :
activation x over a mini-batch 9B < Z(% — 1) // mini-batch variance
1=1
T; 4 Ti — 1B // normalize
\/ (7123 + €
Yi < vx; + 8 = BN, g(x;) // scale and shift

figure: [loffe, Szegedy, 2015]
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Batch Normalization

Idea 2: Restore representation
power” / Undo damage by
learning y and f

Suvrit Sra (suvrit@mit.edu)

Input: Values of z over a mini-batch: B = {z1. ., };
Parameters to be learned: ~, 3
Output: {y; = BNv,ﬁ(l’z‘)}

1 m
UB < E;%

1 m
oF — > (wi — )
1=1

AN aj _ B *
€T; 4 i M // normalize

‘ \/aé—l—e

yi < 7Z; + f = BN, g(z;)

// mini-batch mean

// mini-batch variance

// scale and shift

figure: [loffe, Szegedy, 2015]
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Batch Normalization

Idea 2: Restore representation
power” / Undo damage by
learning y and f

Suvrit Sra (suvrit@mit.edu)

Input: Values of z over a mini-batch: B = {z1. ., };
Parameters to be learned: ~, 3
Output: {y; = BNv,ﬂ(l’z‘)}

1 m
UB < E;%

1 m
oF — > (wi — )
1=1

AN aj _ B *
€T; 4 i M // normalize

1
2
RSO WAL O s

// mini-batch mean

// mini-batch variance

y; < vx; + B = BN, g(z;) // scale and shift |}

L — S

figure: [loffe, Szegedy, 2015]
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Batch Normalization

Idea 2: Restore representation
power” / Undo damage by
learning y and f

Suvrit Sra (suvrit@mit.edu)

Input: Values of z over a mini-batch: B = {z1. ., };
Parameters to be learned: ~, 3
Output: {y; = BNv,ﬂ(l’z‘)}

1 m
UB < E;%

1 m
oF — > (wi — )
1=1

AN aj _ B *
€T; 4 i M // normalize

1
2
RSO WAL O s

// mini-batch mean

// mini-batch variance

y; < vx; + B = BN, g(z;) // scale and shift |}

L — S

figure: [loffe, Szegedy, 2015]
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Batch Normalization

Input: Values of z over a mini-batch: B = {z1. ., };

Idea 2: Restore representation Parameters to be learned: v, 3
power” / Undo damage by Output: {y; = BN, 5(z;)}
learning y and o
o = ) // mini-batch
UB m ;CIZ mini-oatcn mean
0F E i(m — ug)? // mini-batch variance
y m 1=1 z
T, < Al // normalize

1
2
i 4 2y b - . s

y; < vx; + B = BN, g(z;) // scale and shift

| T— R

Intuition: Allow the transformation to represent the identity (this idea recurs)

figure: [loffe, Szegedy, 2015]
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Batch Normalization

Input: Values of z over a mini-batch: B = {z1. ., };

Idea 2: Restore representation Parameters to be learned: v, 3
power” / Undo damage by Output: {y; = BN, 5(z;)}
learning y and o
o = ) // mini-batch
UB m ;CIZ mini-oatcn mean
0F E i(m — ug)? // mini-batch variance
y m 1=1 z
T, < Al // normalize

1
2
i 4 2y b - . s

y; < vx; + B = BN, g(z;) // scale and shift

S

Intuition: Allow the transformation to represent the identity (this idea recurs)

Exercise: Derive backprop rules to figure out how to update scale y and shift f

figure: [loffe, Szegedy, 2015]
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Batch Normalization

0.8

-

— = = Inception (several other speedups

..... —_ li [
....... oo seine enabled, and used for this plot)
BN-x30
4+ BN-x5-Sigmoid

4 Steps to match Inception

|
10M 15M 20M 25M 30M

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

figure: [loffe, Szegedy, 2015]
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Batch Normalization

v BN layer can be added to many networks (e.g., CNNs, Resnets, etc.)

= Current Challenge: BN for RNNs; also, is BN truly necessary?
v BN enables higher learning rates: backprop through a BN layer is
unaffected by the scale of its parameters, BN(Wx)=BN( (aW)x)
v BN has a regularizing effect (Dropout can even be dropped out)

v Challenge: Formally understand and explain BN

0.8

. == - emmmmmmm-- -4
{4 l
= = = Inception (several other speedups
————— BN-Baseli .
....... BN enabled, and used for this plot)
BN-x30
+ 4 BN-x5-Sigmoid
4 Steps to match Inception

| |
10M 15M 20M 25M 30M

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

figure: [loffe, Szegedy, 2015]
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Residual Networks (Resnets)
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Residual Networks (Resnets)

ZIZHhLOhL_lo---Ohl(ZC)
hi(z) :==z+oc(W;z+ b;)

Note: Without the Identity map (Id), we are back to the usual model
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Why resnets?

CIFAR-10
20r
56-layer
44-layer
S 32-layer
= == 20-layer

._plain-Z N AN
plain-3 O Ve— /o /
— o . . . \. ° .
e Nimtc 2 solid: test/val
O ' ] | ] ] ] .
0 ! 2 e ey 3 6 dashed: train
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Why resnets?

CIFAR-10
ayer
ayer
9 X ayer
8 10 \'\ T
g YA 20-layer
| i N
plain-2 APEN
_p1a¥n—3 Ve— / ‘\‘/ .
O . S | | | | solid: test/val
0 ! 2 el : 6 dashed:train

Making network deeper does not necessarily work better

Limits on what initialization and batch normalization give us
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Key idea: Identity maps

"
weight layer
any two
stacked layers l relu

weight layer

rel
HOx) leu

Aim: Learn map H(x).
Approach: Hope the deep net fits H(x)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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Key idea: Identity maps

X |

v

weight layer

Aresidual block  F(x) | relu identity

weight layer X

H(x)=F(x)+ x |

Aim: Learn map H(x) = F(x)+x
Approach: Hope the deep net fits F(x)

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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Key idea: Identity maps

X I
v
weight layer
Aresidual block  F(x) | relu identity
weight layer X

H(x)=F(x)+x

relu If identity were optimal easyé
to fit by setting weights=0
Aim: Learn map H(x) = F(X)+x - By adding Id, increasing
Approach: Hope the deep net fits F(x) - depth should not hurt

performance...

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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Key idea: Identity maps

QZI%hLOI’LL_lo---Ohl(ZEJ
b

hi(z) := z—|—a(Wiz—|—bZ—)J i)
weight layer
Aresidual block  F(x) | relu identity
weight layer X

Hx)=F(x)+x

relu If identity were optimal easyé
to fit by setting weights=0
Aim: Learn map H(x) = F(X)+x - By adding Id, increasing
Approach: Hope the deep net fits F(x) - depth should not hurt

. performance... |
F(x) is a residual mapping wrt identity oo

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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Key idea: Identity maps

QZI%hLOI’LL_lo---Ohl(ZEJ

hi(2) i= 2 + o (Wiz + b;) X i
weight layer
Aresidual block  F(x) | relu identity
weight layer X

H(x)=F(x)+x

relu If identity were optimal easyé
to fit by setting weights=0
Aim: Learn map H(x) = F(X)+x - By adding Id, increasing
Approach: Hope the deep net fits F(x) - depth should not hurt

. performance... |
F(x) is a residual mapping wrt identity oo

Explore: Try residual wrt other distinguished (i.e., not Id) mappings

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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CIFAR-10

20- .......... .\. .............. . ...... .\...X‘ ....\ .............................................................................
M YR \ 56-layer
\ . .
N W Z
o YN 44-layer
S RANTERRNG : ‘: 32-layer
8 111 LTI IR ‘_/N.\',\/x\“ ‘ R
£ ~\_.\_\ VAN 20-layer
i ~
AT \'/‘/"\. .t
sh— A A — S At Tl
plain-2 N RV TR\
“~plain-3 "\,\ :_x Vie—_ /.\ /
~plain-4 IR WO 1A -
| e | | il solid: test/val
0 ! 2 e el : . dashed:train

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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CIFAR-10 ResNets

20 I ‘- ...........................................................................................................................
ResNet-20

ResNet-32
=== ResNet-44

== ResNet-56
= ResNet-11(

20-layer
32-layer
44-layer
56-layer
110-layer

e

0 ! 1 1 '.yl\mi";‘"“’wm
0 | 2 3 4 5 6
iter. (1e4)

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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Recent theory on ResNets

» Bartlett et al, 2018. Optimization properties of deep residual networks.
» Hardt, Ma 2017. Global optimality of deep linear resnets y={1+W)(I+Wi-1)...(I+W1)x
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Recent theory on ResNets

» Bartlett et al, 2018. Optimization properties of deep residual networks.
» Hardt, Ma 2017. Global optimality of deep linear resnets y={1+W)(I+Wi-1)...(I+W1)x

» Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal
Approximator (deep Resnet with one neuron per hidden layer and RelLU activation).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/21 Lecture 19) |||"' 35


mailto:suvrit@mit.edu?subject=

Recent theory on ResNets

» Bartlett et al, 2018. Optimization properties of deep residual networks.
» Hardt, Ma 2017. Global optimality of deep linear resnets y={1+W)(I+Wi-1)...(I+W1)x

» Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal
Approximator (deep Resnet with one neuron per hidden layer and RelLU activation).

» Shamir, 2018. Considers x » wl(x + VFy(x)) and shows that every local optimum of this
Resnet (with final purely linear layer) is “better than” a simple linear model. Presents some
conditions under which one can prove that adding the Id map does not hurt performance.
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Recent theory on ResNets

» Bartlett et al, 2018. Optimization properties of deep residual networks.
» Hardt, Ma 2017. Global optimality of deep linear resnets y={1+W)(I+Wi-1)...(I+W1)x

» Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal
Approximator (deep Resnet with one neuron per hidden layer and RelLU activation).

» Shamir, 2018. Considers x » wl(x + VFy(x)) and shows that every local optimum of this
Resnet (with final purely linear layer) is “better than” a simple linear model. Presents some
conditions under which one can prove that adding the Id map does not hurt performance.

» Yun, Sra, Jadbabaie, 2019. Deep ResNet can be provably better than linear models
(provides a “deep” version of Shamir’s result above, result leaves open problems.
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Recent theory on ResNets

» Bartlett et al, 2018. Optimization properties of deep residual networks.
» Hardt, Ma 2017. Global optimality of deep linear resnets y={1+W)(I+Wi-1)...(I+W1)x

» Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal
Approximator (deep Resnet with one neuron per hidden layer and RelLU activation).

» Shamir, 2018. Considers x » wl(x + VFy(x)) and shows that every local optimum of this
Resnet (with final purely linear layer) is “better than” a simple linear model. Presents some
conditions under which one can prove that adding the Id map does not hurt performance.

» Yun, Sra, Jadbabaie, 2019. Deep ResNet can be provably better than linear models
(provides a “deep” version of Shamir’s result above, result leaves open problems.

» Allen-Zhu, Li, 2019. “What can ResNet learn efficiently, Going beyond Kernels?”
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