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Course organization

Course materials: optml.mit.edu/teach/6881 Canvas

Instructor: Suvrit Sra
TAs: Kwangjun Ahn (kjahn@mit.edu)

Grading: Homework (45%), Project (50%), Peer Review (5%)
Homework: 5 HWs. 1st one going out today

The ideal project should be growable into a publishable

Project: . .
paper at a top-tier conference or journal.

Slack: mit-optml2021.slack.com

All this information in greater detail avail via course webpage
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foundations first-order methods  nonconvex focus other topics

1. Convex sets, functions

2. Convex conjugates, subdifferentials
3. Weak and strong duality

4. Optimality conditions - convex

5. Optimality conditions - nonconvex
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Basic terminology

min f(x)
CONSTR(x) = tr‘ue\

cost

variable %/_J objective
loss function

arameter ,
P constraints that must

weight vector e
J be satisfied, exactly or

approximately
(feasible set)
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Trend detection via total variation denoising
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min
X

Least-squares Regression
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Image Processing via “Dictionary Learning”
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—0
O
— S| A [+} ~0
E ) No
T ° No
T ° °
[+} )
[+} o

- o\ p=0.9
convolution + max pooling vec | o °

l nonlinearity | °
I |
convolution + pooling layers fully connected layers binary classification

R
min — ¢ (y;,net(x, a;))
T n =1
Model: convolutional neural net

Classification using CNNs Params x: weights of the network
Data (aiy): (¥ ,yes), e ,( '_’;“. no)

Note: This is the simplified Empirical Risk problem; ideally want to min loss over unseen data.
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If you bought this,
you may like to add ...

_et V be the set of all items.
_et current set of items be S.
~ind new item ‘I’ by solving:

max F(SU1i})

Recommender Systems  F: “value of information”
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Objective functions

min f(x)

Some questions:

= How to select?
= \Where does it come from?

= \What properties may be important?
= How to actually optimize it?
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AConvexfuncﬁons

min 21l Apr — b||2

Original

Noisy

e 7; Tivt1 — Xj

plot of a convex function
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Outline

Convex Sets
Convex Functions
Recognizing, Constructing cvxins

Important examples: indicators, vector & matrix norms

Exercises and Challenges
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Outline

m Convex Sets

m Convex Functions

m Recognizing, Constructing cvxins

m Important examples: indicators, vector & matrix norms

m Exercises and Challenges

Reading suggestion

cvx sets: Read BV Chapter 2
cvx func: Read BV Chapter 3
examples: Read BV Chapter 4
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Convex sets

Def. A set C C R? is called convex, if for any x,y € C, the
line-segment Ox + (1 — )y (here 0 < # < 1) also lies in C.
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Convex sets

Def. A set C C R? is called convex, if for any x,y € C, the
line-segment Ox + (1 — )y (here 0 < # < 1) also lies in C.

Combinations of vectors
» Linear: 61x + 6y for x,y € C
» Conic: if we restrict 61,6, > 0
» Convex: if we restrict 61,6, > 0and 07 + 6, = 1.
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Convex sets

Theorem. (Intersection).
Let C{, Cy be convex sets. Then, C; N Cs is also convex.
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Convex sets

Theorem. (Intersection).
Let C{, Cy be convex sets. Then, C; N Cs is also convex.

If C; N Cy = 0, then true vacuously. :
Let x,y € C; N Cy. Then, x,y € C; and x,y € Co. |
But C;, C; convex; hence 6x + (1 — 0)y in C; and in C,. |

Thus, Ox + (1 — 0)y € C; N Cy.
. (Inductively follows that N, C; is also convex.)

e — — — — — m— m— — e— e o m— e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e - m— —
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Convex sets: examples

Q Letx1,Xo, ..., X%y, € RY. Their convex hull is

CO(X1, ...y Xpy) 1= {ZZ 0ix; | 0; > O,Zi 0; =1}.
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Convex sets: examples

Q Letx1,Xo, ..., X%y, € RY. Their convex hull is

CO(X1, ...y Xpy) 1= {ZZ 0ix; | 0; > O,Zi 0; =1}.

O halfspace {x | a'x < b}.
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Convex sets: examples

Q Letx1,Xo, ..., X%y, € RY. Their convex hull is

CO(X1, ...y Xpy) 1= {ZZ 0ix; | 0; > O,Zi 0; =1}.

O halfspace {x | a'x < b}.
O polyhedron {x | Ax < b,Cx = d}.
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Convex sets: examples

Q Letx1,Xo, ..., X%y, € RY. Their convex hull is

CO(Xl, e ,xm) L= {Zz Hl-xi ’ 91' > O,Zi (91' = 1}.

O halfspace {x | a'x < b}.
O polyhedron {x | Ax < b,Cx = d}.
O ellipsoid {x | (x — x0)"A(x — x0) < 1}, (A: semidefinite)
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Convex sets: examples

Q Letx1,Xo, ..., X%y, € RY. Their convex hull is

CO(X17 e 7xm) = {Z.Hixi ’ Hi > 07 Z(gl — 1}
O halfspace {x | a'x < b}.
O polyhedron {x | Ax < b,Cx = d}.
O ellipsoid {x | (x — x0)"A(x — x0) < 1}, (A: semidefinite)
O probability simplex {x | x > 0,> .x; =1}
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Convex sets: examples

Q Letxi,xo,...,%X, € R Their convex hull is

CO(Xl, e ,xm) L= {Z,Hixi ‘ (91' > O, Z@Z — 1}.
O halfspace {x | a'x < b}.
O polyhedron {x | Ax < b,Cx = d}.
O ellipsoid {x | (x — x0)"A(x — x0) < 1}, (A: semidefinite)
O probability simplex {x | x > 0,> .x; =1}

O Convex Cones. A convex set K C R" is called a cone if for

x € K, theray axisin K for all a > 0.
Examples: nonneg orthant R”;;
Lorentz cone {(x,t) € R" x Ry | ||x]2 < t};
PSD cone S, := {X € R™" | X = X", Eig(X) > 0}.
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Convex sets: examples

Q Letxi,xo,...,%X, € R Their convex hull is

CO(Xl, e ,xm) L= {Z,Hixi ‘ (91' > O, Z@Z — 1}.
O halfspace {x | a'x < b}.
O polyhedron {x | Ax < b,Cx = d}.
O ellipsoid {x | (x — x0)"A(x — x0) < 1}, (A: semidefinite)
O probability simplex {x | x > 0,> .x; =1}

O Convex Cones. A convex set K C R" is called a cone if for

x € K, theray axisin K for all a > 0.
Examples: nonneg orthant R”;;
Lorentz cone {(x,t) € R" x Ry | ||x]2 < t};
PSD cone S, := {X € R™" | X = X", Eig(X) > 0}.

O

Exercise: Prove that these sets are convex.
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Convex sets challenge (for fun)

____________________________________________________

These results imply tractability of some impt. nonconvex probs
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Exercises: verify the following

'» Intersection of arbitrary collection of cvx cones is a cvx cone

> Let {bj}jc be vectors in R". Then, {x € R" | (x, b;) <0, j€]}isa
- convex cone (if | is finite, then this cone is polyhedral).

> A cone K is convex if and only if K+ K C K.
> {(x,t) € R" x R4 | ||x|| < t} is a cone for any norm ||-||

> A real symmetric matrix A is called copositive if for every noneg-
ative vector x we have x! Ax > 0. Verity that the set CP,, of n x n
copositive matrices forms a convex cone.

> Spectrahedron: the set S := {x e R" | x{A1 +... +x,A, = 0} is
. convex for symmetric matrices A, ..., A, € R™*™. Additionally,

observe that the spectrahedron is the inverse image of S”! under
the affine map A(x) = > . xiA;.

» The convex hull of S = {xx’ | x € R"} is S".
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Convex functions

Def. A function f : R? — R is called convex if its domain
dom(f) is a convex set and for any x,y € dom(f) and 6 € [0, 1]
we have

f(O0x+ (1= 0)y) < 0f(x) + (1 = O)f (y).
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Convex functions

Def. A function f : R? — R is called convex if its domain
dom(f) is a convex set and for any x,y € dom(f) and 6 € [0, 1]
we have

f(O0x+ (1= 0)y) < 0f(x) + (1 = O)f (y).

Theorem. (J.LLW.V. Jensen). Let f : I — R be continuous.
Then, f is convex if and only if it is midpoint convex, i.e., if

f(%) < f(x)“;f(y) for all X, Y € I.

Exercise: Prove Jensen’s Theorem for f : X C R — R.

Note: Midpoint convexity often useful for checking convexity.

Explore: Check out Jensen’s original paper on convexity!
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Convex functions: curve lies below line

A

fAx+ (1 =A)y) < M(x) + (1 = A)f(y)
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Convex functions: curve above tangent
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Convex functions: increasing derivatives

z z=Xr+ (1= Ny Y

slope PQ < slope PR < slope QR
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Recognizing convex functions

& If f is continuous and midpoint convex, then it is convex.
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Recognizing convex functions

& If f is continuous and midpoint convex, then it is convex.

# If f is differentiable, then f is convex zf and only if domf is
convex and f(x) > f(y) + (Vf(y), x — y) for all x,y € domf.
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Recognizing convex functions

& If f is continuous and midpoint convex, then it is convex.

# If f is differentiable, then f is convex zf and only if domf is
convex and f(x) > f(y) + (Vf(y), x — y) for all x,y € domf.

& If f is twice differentiable, then f is convex if and only if dom f
is convex and V*f(x) = 0 at every x € dom .

& What if f is not twice differentiable? or not even C'?
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Matrix convexity

Recall the Lowner partial order: Let A and B be Hermitian. We
write A = BitA — B = 0.

Suppose f : S? — S%. We say f is matrix convex if

(L= N)X +AY) = (1= Nf(X) + M(Y).
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Matrix convexity

Recall the Lowner partial order: Let A and B be Hermitian. We
write A = BitA — B = 0.

Suppose f : S? — S%. We say f is matrix convex if

F(A=XXH+AY) (1 -=Xf(X)+ M(Y).

Example. For HPD matrices f(X) = X is matrix convex as is
f(X) = X~ 1. What about — log X and exp(X)?

r-r—-———---- - - - - -"-"=-"—-"—-"—-"-"-"-"--"-"-"-"-"-"-"-"-"-=--"=-"-"-="-"-"=-"=-"-~"=-—-"=-—-"=-"=-"=-—"=-=-=- = 1
|
|

Challenge C. X? is matrix convex for p € (1, 2). |

e — — — — — — — — — — — — — — — — — — — — — — w— — — — — — — — — — — — — — — — — — — — — — — — — — — —
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Matrix convexity

Recall the Lowner partial order: Let A and B be Hermitian. We
write A = BitA — B = 0.

Suppose f : S? — S%. We say f is matrix convex if

F(A=XXH+AY) (1 -=Xf(X)+ M(Y).

Example. For HPD matrices f(X) = X is matrix convex as is
f(X) = X~ 1. What about — log X and exp(X)?

r-r—-———---- - - - - -"-"=-"—-"—-"—-"-"-"-"--"-"-"-"-"-"-"-"-"-=--"=-"-"-="-"-"=-"=-"-~"=-—-"=-—-"=-"=-"=-—"=-=-=- = 1
|
|

Challenge C. X? is matrix convex for p € (1, 2). |

e — — — — — — — — — — — — — — — — — — — — — — w— — — — — — — — — — — — — — — — — — — — — — — — — — — —

More generally, convexity wrt a cone (see BV Chs 2,3).
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Fundamental example: pointwise sup

Example. The pointwise maximum of a family of convex
functions is convex. That is, if f(x; y) is a convex function of x
for every y in an arbitrary “index set” ), then

f(x) = max f(x;y)

yey

is a convex function of x (set ) is arbitrary).

Exercise: Verity this claim!
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Fundamental example: pointwise sup

Example. The pointwise maximum of a family of convex
functions is convex. That is, if f(x; y) is a convex function of x
for every y in an arbitrary “index set” ), then

f(x) = max f(x;y)

yey

is a convex function of x (set ) is arbitrary).

Exercise: Verity this claim!

Example. Let f : R? — R be convex. Let A € R™", and
b € R™. Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify this claim!
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Fundamental example: partial minimization

Theorem. Let ) be a nonempty convex set. Suppose L(x, y) is
convex in (x,vy), then,

fl) = inf L(xy)

is a convex function of x, provided f(x) > —oo.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/16/21; Lecture 1) II|" 27



Fundamental example: partial minimization

Theorem. Let ) be a nonempty convex set. Suppose L(x, y) is
convex in (x,vy), then,

f(x):=1inf L(x,y)

yey

is a convex function of x, provided f(x) > —oc.

] ' Proof. Let u,v € domf. Since f(u) = inf, L(u,y), for each € > 0, there is a
' 11 €, stf( u) + 5 is not the infimum. Thus L(u,y1) <f(u)+ 5.

. Similarly, there is yz c Y, such that L(v,12) < f(v) + 5.

. Now we prove that f(Au + (1 — \)v) < M (1) + (1 — X\)f(v) directly.

fOu+ (1 —X)v) mf L()\u + (1 —XMNv,vy)

L()\u + (1 = XNv, Ays + (1 — Ny2)
)‘L(”7y1) + (1 - )\)L(U,yz)
M(u)+ (1 —Nf(v) + e

Since € > 0 is arbitrary, claim follows.

VAN VANIVAN
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Cool application: Schur complements

Let A, B, C be matrices such that C = 0, and let

/=

AR

BT C

~ 0

—_— )

then the Schur complement! A — BC~!B! > 0.

'Extremely important object in linear algebra and matrix theory.
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Cool application: Schur complements

Let A, B, C be matrices such that C = 0, and let

/=

-
_BT C_

~ 0

—_ )

then the Schur complement! A — BC~!B! > 0.

' Proof (Skip ahead and solve V,L(x,y) = 0 to minimize!)

: L(x,y) = [x,y]' Z[x, y] is convex in (x, ) since Z > 0.

. Observe that f(x) = inf, L(x,y) = x' (A — BC~'B")x is convex.
A —BC B »0.

. Thus, its Hessian V2f(x )

'Extremely important object in linear algebra and matrix theory.

Suvrit Sra (suvrit@mit.edu)
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Fundamental example: indicator function

Let 1y be the indicator function for X defined as:

0 ifx € X,

1v(x) := <
x (%) |00 otherwise.

Exercise: Verify 1x(x) is convex if and only if X" is convex.
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Fundamental example: indicator function

Let 1y be the indicator function for X defined as:

)
0 ifxe X,

1v(x) := <
x (%) |00 otherwise.

Exercise: Verify 1x(x) is convex if and only if X" is convex.

Example. Using 1y (x) we can rewrite the constrained problem

min f(x), xé&€ X,

X

as the following unconstrained problem

min f(x) 4+ 1y (x).

X
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Important example: Norms

Let f : R — R be a function that satisfies
f(x) > 0,and f(x) = 0 if and only if x = 0 (definiteness)
f(Ax) = |Af(x) for any A € R (positive homogeneity)
fix+vy) <f(x)+f(y) (subadditivity)

Such a function is called a norm.
We usually denote norms by ||-||.

Theorem. Norms are convex.

Proof. Immediate from subadditivity and positive homogeneity.
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Important example: Distance function

Example. Let Y be a convex set. Let x € RY be some point.
The distance of x to the set ) is defined as

dist(x,)) := inf —y||.
ist(x, ) inf |x =yl

Because ||x —y| is jointly convex in (x,y), the function
dist(x, )) is a convex function of x.
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Vector norms

2)1/2

Example. The Euclidean or /,-norm is ||x[[ = (D, x;

1

Example. Letp > 1; {y-norm is [|x||, = (>, |xi]")

Exercise: Verify that ||x||, is indeed a norm.
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Vector norms

2)1/2

Example. The Euclidean or /,-norm is ||x[[ = (D, x;

i

Example. Letp > 1; {y-norm is [|x||, = (>, |xi]")

Exercise: Verify that ||x||, is indeed a norm.

Example. ({oo-norm): ||x||oc = maxj<j<, |x;
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Vector norms

2)1/2

Example. The Euclidean or /,-norm is ||x[[ = (D, x;

1

Example. Letp > 1; {y-norm is [|x||, = (>, |xi]")

Exercise: Verify that ||x||, is indeed a norm.

Example. ({oo-norm): ||x||oc = maxj<j<, |x;

Example. (Frobenius-norm): Let A € C"*". The Frobenius
norm of A is ||Al|f := \/Zi]- a;i|%; that is, ||Allp = /Tr(A*A).
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Mixed norms

Def. Let x € RMt™116 be a vector partitioned into subvec-
torsx; € R, 1 <j < G. Letp := (po,p1,p2,--.,PG), Where
p; > 1. We define the mixed-norm of x as

xllp = ([l - %6l -
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Mixed norms

Def. Let x € RMt™116 be a vector partitioned into subvec-
torsx; € R, 1 <j < G. Letp := (po,p1,p2,--.,PG), Where
p; > 1. We define the mixed-norm of x as

xllp = ([l - %6l -

Example. /1 ;-norm: Let x be as above.

G
1:= ) IIillg:

Used in machine learning (e.g., in multi-task learning). Also
shows up in combinatorics, Banach space theory, statistics,
and other areas!

Ix]
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Matrix Norms: induced norm

Let A € R™*", and let ||-|| be any vector norm. We define an
induced matrix norm as

A
JA] = sup 12X
[x]] £0 |x]]
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Matrix Norms: induced norm

Let A € R™*", and let ||-|| be any vector norm. We define an
induced matrix norm as

A
JA] = sup 12X
[x]] £0 |x]]

| Verlfy it is a norm

'> Clearly, ||A]| = 0iff A = 0 (definiteness)
» |leA|| = |af |A|| (homogeneity)

> A + B|| = sup (A + B)x H Sup IIAXH;CFHBXH < Al + ||B]|.

____________________________________________________

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/16/21; Lecture 1) II|" 34



Operator norm

Example. Let A be any matrix. Its operator norm is

largest singular value of A.

Ax )
Al = sup 12212
el [1x]]2
It can be shown that ||Al2 = omax(A), where onax is the
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Operator norm

Example. Let A be any matrix. Its operator norm is

largest singular value of A.

Ax )
Al = sup 12
Ixllb0 [1X]]2
It can be shown that ||Al2 = omax(A), where onax is the

e Warning! Generally, largest eigenvalue not a norm!
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Operator norm

Example. Let A be any matrix. Its operator norm is

largest singular value of A.

Ax )
Al = sup 12
Ixllb0 [1X]]2
It can be shown that ||Al2 = omax(A), where onax is the

e Warning! Generally, largest eigenvalue not a norm!
e |A||; and ||A||cc—max-abs-column and max-abs-row sums.
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Operator norm

Example. Let A be any matrix. Its operator norm is

largest singular value of A.

Ax )
Al = sup 12212
el [1x]]2
It can be shown that ||Al2 = omax(A), where onax is the

e Warning! Generally, largest eigenvalue not a norm!
o ||A|l; and ||A||cc—max-abs-column and max-abs-row sums.
o ||A|l, generally NP-Hard to compute for p € {1,2, 00}
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Operator norm

Example. Let A be any matrix. Its operator norm is

Ax )
Al = sup 12212
el [1x]]2
It can be shown that ||Al2 = omax(A), where onax is the

largest singular value of A.

Warning! Generally, largest eigenvalue not a norm!

|A||1 and ||A||.c—max-abs-column and max-abs-row sums.
|A|lp generally NP-Hard to compute for p € {1,2, 00}
Schatten p-norm: £,-norm of vector of singular value.
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Operator norm

Example. Let A be any matrix. Its operator norm is

Ax )
Al = sup 12212
el [1x]]2
It can be shown that ||Al2 = omax(A), where onax is the

largest singular value of A.

Warning! Generally, largest eigenvalue not a norm!

|A||1 and ||A||.c—max-abs-column and max-abs-row sums.
|A|lp generally NP-Hard to compute for p € {1,2, 00}
Schatten p-norm: £,-norm of vector of singular value.
Exercise: Let 01 > 09 > --- > 0, > 0 be singular values of a
matrix A € R"*". Prove that

k
Al =Y i(A),

1Isanorm; 1 <k <n.
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Dual norms

Def. Let ||-|| be a norm on R%. Its dual norm is

Jul := sup {ux | x| <1},
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Dual norms

Def. Let ||-|| be a norm on R%. Its dual norm is

Jul := sup {ux | x| <1},

Exercise: Verify that ||u||. is a norm.
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Dual norms

Def. Let ||-|| be a norm on R%. Its dual norm is

Jul := sup {ux | x| <1},

Exercise: Verify that ||u||. is a norm.

Note. The generalized Holder inequality u'x < |ju|||x||+ fol-
lows immediately directly from definition of dual norm!

Exercise: Let1/p +1/q = 1, where p, g > 1. Show that ||-||; is
dual to ||-||;. In particular, the ¢,-norm is self-dual.
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Exercises and Challenges
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Exercises

Prove that the following functions are convex.
O fx,y) =x*/yfory >00onR x Ry |
O f7(Y) = suPredom (X, ) — f(X)

$ Trf(X), where f is scalar cvx, X Hermitian

= log(1 + ¢*) — logistic loss, on R

- alx d
= __og(Z- e’ ") —log-sum-exp on R

O f(X) = —logdet(X) on positive definite matrices :

(x)
()

O f(x) =log =% (0,1)
(x) =log [+ le tdt onx >0
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Challenges

Prove or disprove the following:
O f(x) = log Tr(e?~*B) for symmetric A, Bis convex on x € R
O f(X) =A/det(A) is convex in matrix-order

O The function 1/f is concave for

o =3 (Y %) xerr,

=1 |S|=i,5C[n]
JES

1X40x 1 ... 1)* .
O Open problem: x — +1x:,:(:x+ S is log-convex on R

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I n I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
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