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3. Nonconvex finite-sum problems
— Basics, background, difficulty of nonconvex
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4. Large-scale problems

— Data sparse parallel methods
— Distributed settings (high level)
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Nonconvex finite-sum problems
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Nonconvex finite-sum problems

min  g(0) = = 3" £:(0)

0cRd
Related work

- Original SGD paper (Robbins, Monro 1951)

(asymptotic convergence; no rates)

- SGD with scaled gradients (6; — 1, H;V f(0;)) + other tricks:
space dilation, (Shor, | 972); variable metric SGD (Uryasev 1988); AdaGrad
(Duchi, Hazan, Singer, 2012); Adam (Kingma, Ba, 2015), and many others...

(typically asymptotic convergence for nonconvex)

- Large number of other ideas, often for step-size tuning, initialization
(see e.g., blog post: by S. Ruder on gradient descent algorithms)

Our focus: going beyond SGD (theoretically; ultimately in practice too)
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Nonconvex finite-sum problems

0cRd

min  g(0) = = 3" £:(0)

Related work (subset)

(Solodov, 1997) Incremental gradient, smooth nonconvex

(asymptotic convergence; no rates proved)

(Bertsekas, Tsitsiklis, 2000) Gradient descent with errors; incremental

(see §2.4, Nonlinear Programming; no rates proved)

(Sra, 2012) Incremental nonconvex non-smooth

(asymptotic convergence only)

(Ghadimi, Lan, 201 3) SGD for nonconvex stochastic opt.

(first non-asymptotic rates to stationarity)

(Ghadimi et al., 2013) SGD for nonconvex non-smooth stoch. opt.

(non-asymptotic rates, but key limitations)
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Difficulty of nonconvex optimization

Difficult to optimize, but

v (9) — 0 necessary condition — local minima,
9 o maxima, saddle points satisfy it.
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Measuring efficiency of nonconvex opt.

Convex: @Lq(@t) — g*] < € (optimality gap)

‘ Vg (@t) H 2] S € (stationarity gap)

Nonconvex: 4, [

(Nesterov 2003, Chap 1);
(Ghadimi, Lan, 2012)

Incremental First-order Oracle (IFO) (Agarwal, Bottou, 2014)
(see also: Nemirovski, Yudin, 1983)

(fi(x), V fi(z))

Measure: #IFO calls to attain € accuracy
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IFO Example: SGD vs GD (nonconvex)

min g(0) = = 3" 1,0

gcRd

SGD GD
Orr1 = 0: —nV fi, (0r) Orv1 =z — NV g(0r)

» O(1) IFO calls per iter ? » O(n) IFO calls per liter
» O(1/€°) iterations » O(1/¢€) iterations

. ]
» Total: O(1/€2) IFO calls » Total: O(n/€) IFO calls
» iIndependent of n » depends strongly on n
(Ghadimi, Lan, 2013,2014) (Nesterov, 2003; Nesterov 2012)

assuming Lipschitz gradients

E[[[Vg(0:)°] < e

8

N .
Suvrit Sra (ml.mit.edu) Beyond stochastic gradients and convexity: Part 2 III|| Massachusotts Institte of Tochnology




Nonconvex finite-sum problems

. 1
min  g(0) = E;ﬁ(@)

SGD GD
Ory1 = 0 —nV fi, (0¢) Orr1 =2t — NV g(0:)

Do these benefits extend
to nomﬁmsﬁmw-esums?:

Analysis depends heavily on convexity
(especially for controlling variance)
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<

SVRG/SAGA work again!

(with new analysis)

|0
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Nonconvex SVRG

— for s=0 to S-1
05 < 05,
0%+ 05
— for 1=0 to m-1
Uniformly randomly pick (t) € {1,...,n}
. 1 — .
Ot = 07 = | Vi (05 7) = Vi (09) + — S V(6%
_ end =
— end

The same algorithm as usual SVRG (Johnson, Zhang, 201 3)
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Nonconvex SVRG

— for s=0 to S-1

— end
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Nonconvex SVRG

— for s=0 to S-1

s+1 S
— end
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Nonconvex SVRG

— for s=0 to S-1

s+1 S
S S
0° 0.
— end
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Nonconvex SVRG

— for t=0 to m-1
Uniformly randomly pick #(t) € {1 ,n}
Oy =0, — g {Vfi(w(@? ) =V fi) (6° ZW}, (6°) ]
— end

|5
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Nonconvex SVRG

— for 1=0 to m-1
Uniformly randomly pick (t) € {1,...,n}
. 1 — .
075 = 057 — e |V i (077) =V iy (6%) + = V(09|
_ end +

Ay
"j[At] =20
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Nonconvex SVRG

— for t=0 to m-1
Uniformly randomly pick #(t) € {1 ,n}
Oy =0, — g {VJ"%os)(@f+ ) =V firy (0°) + = ZW} (6°) }
_end . _ )

Full gradient, computed
once every epoch

|7
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Nonconvex SVRG

for s=0 to@
\ Key quantities that determine

how the method operates

—for t=0 to

6’?111 2 @sz(t) (651 sz(t) ) + — Zsz }

Full gradient, computed
once every epoch

|18
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Key ideas for analysis of nc-SVRG

Previous SVRG proofs rely on convexity to control variance

New proof technique — quite general; extends to SAGA,
to several other finite-sum nonconvex settings!

Larger step-size w» smaller inner loop
(full-gradient computation dominates epoch)

Smaller step-size = slower convergence
(longer inner loop)

(Carefully) trading-off #inner-loop iterations m with
step-size I leads to lower #IFO calls!

(Reddi, Hefny, Sra, Poczos, Smola, 201 6;Allen-Zhu, Hazan, 2016)
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Faster nonconvex optimization via VR

(Reddi, Hefny, Sra, Poczos, Smola, 2016; Reddi et al., 2016)

Algorithm  Nonconvex (Lipschitz smooth)
(%)
GD O(2)
SVRG O(n+ 22)
SAGA O(n + 22)
MSVRG O (min (&, 7))

E[[[Vg(0:)]°] < e

New results for convex case too; additional nonconvex results
For related results, see also (Allen-Zhu, Hazan, 2016)

Remarks
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Linear rates for nonconvex problems

win  g(6) = > £i(0)

0cRd

The Polyak-tojasiewicz (PL) class of functions

. 1
9(8) —9(0") < 7 VeI
(Polyak, 1963); (Lojasiewicz, 1963)

U-strongly convex = PL holds

Examples:  stochastic PCA, some large-scale
eigenvector problems

(More general than many other “restricted” strong convexity uses)

(Karimi, Nutini, Schmidt, 2016) ~ proximal extensions; references
(Attouch, Bolte, 2009) more general Kurdya-tojasiewicz class
(Bertsekas, 201 6) textbook, more “growth conditions”
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Linear rates for nonconvex problems

9(6) — g(67) < %Wg(e)u?

Algorithm Nonconvex

Tg(0;) —g'] < ¢ €2

Nonconvex-PL

Variant of nc-SVRG attains this fast convergence!

(Reddi, Hefny, Sra, Poczos, Smola, 2016; Reddi et al., 2016) 22
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Empirical results

Suvrit Sra (ml.mit.edu)

1.65 | | |
— SGD
1.60}
—  SVRG
> 1.55
C
[=
C 1.50|
AN
1.45]
0 100 200 300 400
# grad / n

CIFAR10 dataset; 2-layer NN

Beyond stochastic gradients and convexity: Part 2
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Empirical results

— sep |
— SVRGﬂ

0 100 200 300 400
# grad / n

CIFAR10 dataset; 2-layer NN
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Empirical results

0.54¢

0.52| — 5GD
20 —  SVRG

0.48}
0.46}
0.44}
0.42}
0.40}
0.38

Test Error

0 100 200 300 400
# grad/ n

CIFAR10 dataset; 2-layer NN
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Empirical results

1.65 101 ‘ ‘ ‘ :
0.54]
10°| — SGD || 0.52]
1.60| |
n f 0.50¢
: 10} — svrcl
— = 0.48}
> 1.55 , i
E — 10 ¢ E  0.46}1
£ &
0.42}
10 0.40|
1.45
‘ ‘ ‘ ‘ 5 ‘ | ‘ | 0.38 ‘ ‘ ‘ ‘
0 100 200 300 400 0% 100 200 300 400 ° H00 zqigorad /ioo o0
#grad/n #grad/n g

CIFARIO dataset; 2-layer NN
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Non-smooth surprises!

min % Z fi(0) + Q(0)

g cRd

Regularizer, e.g., || - ||; for enforcing sparsity of
weights (in a neural net, or more generally);
or an indicator function of a constraint set, etc.
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Nonconvex composite objective problems

min Z fi(0) + ©2(6)

_ convex

nonconvex

Prox-SGD Oi11 = proxy,q (0 —n:V fi, (01))
Prox-SGD. conver e hot P*
Rconyeraense not kpoway,)

prox: soft-thresholding for || - ||1; projection for indicator function

— Partial results: (Ghadimi, Lan, Zhang, 2014)
(using growing minibatches, shrinking step sizes)

* Except in special cases (where even rates may be available)

28
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Nonconvex composite objective problems

min Z fi(0) +Q(0)

o convex

nonconvex

Once again variance reduction to the rescue!

Prox-SVRG/SAGA converge*
and that too
faster than both SGD and GD!

The same O (n+ ") once again!

* some care needed (Reddi, Sra, Poczos, Smola, 2016) -
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Empirical results: NN-PCA

covtype (581012,54) | , revl (§7\7399, 47236)

-SGD || —u ~SGD
wniemn, -—SAGAL 2 B —SAGA
I, e, SAGA, B S —avRal

-10 |
10719} 10

-15 . !
19 5 10 15
# grad/n

-15 1 1 1
10% 5 10 15 20
# grad/n

y-axis denotes distance f(6) — f(#)to an approximate optimum

Eigenvecs via SGD: (Oja, Karhunen 1985); via SVRG (Shamir, 2015,2016);
(Garber, Hazan, Jin, Kakade, Musco, Netrapalli, Sidford, 2016); and many more! .,
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Finite-sum problems with
nonconvex g(0) and params ©
lying on a known manifold

min  9(0) = > /0

e M

Example: eigenvector problems (the ||6||=1 constraint)
problems with orthogonality constraints
low-rank matrices
positive definite matrices / covariances
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Nonconvex optimization on manifolds

(Zhang, Reddi, Sra, 2016)

ocM

min  9(0) = = > fi(6)

Related work

— (Udriste, 1994) batch methods; textbook

— (Edelman, Smith, Arias, 1999) classic paper; orthogonality constraints
—  (Absil, Mahony, Sepulchre, 2009) textbook; convergence analysis

— (Boumal, 2014) phd thesis, algos, theory, examples

— (Mishra, 2014) phd thesis, algos, theory, examples

— manopt excellent matlab toolbox

— (Bonnabel, 2013) Riemannnian SGD, asymptotic convg.

— and many more!

Exploiting manifold structure yields speedups

32
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http://manopt.org

Example: Gaussian Mixture Model

g
Pmix (%) := Y mepa (@ S, pic)
k=1

Likelihood max HZ Prnix ()

Numerical challenge: positive definite constraint on 2

/ N\

Riemannian Cholesky

(new)
., EM
Si Algo

[Hosseini, Sra, 2015] 33
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Careful use of manifold geometry helps!

EM R-LBFGS

2 17s I 29.28 14s [ 29.28

S 202s | 32.07 117s I 32.07

10 2159s /[ 33.05 658s [ 33.06

Images dataset

d=35,
Riemannian-LBFGS (careful impl.) n=200,000

@ github.com/utvisionlab/mixest 34
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Careful use of manifold geometry helps!

101 | | | |
m— SGD (n=1, T=100)
memm M, Original MVN i
100 | LBFGS, Reformulated MVN | |
s CG, Reformulated MVN )

Averaged log-likelihood Difference
=
G
\
\

1073 -
104 -
10=° \ \ \ \ \ \ I I I

0 5 10 15 20 25 30 35 40 45 50

Iterations

Riemannian-SGD for GMMs (multi-epoch)
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Summary of honconvex VR methods

nc-SVRG/SAGA use fewer #IFO calls than SGD & GD
» Work well in practice

» Easier (than SGD) to use and tune:
can use constant step-sizes

v

» Proximal extension holds a few surprises
SGD and SVRG extend to Riemannian manifolds too

v
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Large-scale optimization

min g(0) = > (0

0cR4

Suvrit Sra (ml.mit.edu) Beyond stochastic gradients and convexity: Part 2 I||i|- assach
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Simplest setting: using mini-batches

Idea: Use ‘b’ stochastic gradients / IFO calls per iteration

useful in parallel and distributed settings
increases parallelism, reduces communication

SGD 6)15_|_1 — (975 (}t| Z Vf] ((915)
t

For batch size b, SGD takes a factor 1/ /b fewer iterations
(Dekel, Gilad-Bachrach, Shamir, Xiao, 2012)

rFor batch size b, SVRG takes a factor 1/b fewer iterationsw

. Theoretical linear speedup with parallelism

see also S2GD (convex case): (Konecny, Liu,Richtdrik, Takac, 20135) 38
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Asynchronous stochastic algorithms

SGD 041 = 0, ‘% Z Vi (6,)
t

» Inherently sequential algorithm
» Slow-downs in parallel/dist settings (synchronization)

Classic results in asynchronous optimization: (Bertsekas, Tsitsiklis, 1 987)

= Asynchronous SGD implementation (HogWild!)
Avoids need to sync, operates in a “lock-free” manner
= Key assumption: sparse data (often true in ML)

but

It is still SGD, thus has slow sublinear convergence
even for strongly convex functions

39
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Asynchronous algorithms: parallel

) Does variance reduction work with asynchrony?

ASVRG (Reddi, Hefny, Sra, Poczos, Smola, 201 5)
Yes! ASAGA (Leblond, Pedregosa, Lacoste-Julien, 201 6)
Perturbed iterate analysis (Mania et al, 2016)

— a few subtleties involved
— some gaps between theory and practice
— more complex than async-SGD

Bottomline: on sparse data, can get almost linear speedup
due to parallelism (TT machines lead to ~ TT speedup)

40
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https://arxiv.org/find/math/1/au:+Leblond_R/0/1/0/all/0/1

Asynchronous algorithms: distributed

server nodes: ( J
common parameter
: push pull
server architecture

worker nodes: [

(Li, Andersen, Smola,Yu, 2014) {,_4}\3 scheduler
d

Classic ref: (Bertsekas, Tsitsiklis, 1 987) e @A\@ @

— workers compute (stochastic) gradients

— server computes parameter update

— widely used (centralized) design choice
— can have quite high communication cost

D-SGD:

Asynchrony via: servers use delayed / stale gradients from workers

(Nedic, Bertsekas, Borkar, 2000;Agarwal, Duchi 201 I) and many others

(Shamir, Srebro 2014) — nice overview of distributed stochastic optimization
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Asynchronous algorithms: distributed

To reduce communication, following idea is useful:

Worker nodes

solve compute
_________________________________________________________________________________ intensive

i subproblems
Workers [W1j [sz [Wm] §

---------------------------------------------------------------------------------

____________ II Servers perform

| ; simple aggregation
Servers [ S1 j [ Sk ] (eg. full-gradients for

TN : distributed SVRG)

DANE (Shamir, Srebro, Zhang, 201 3): distributed Newton,

view as having an SVRG-like gradient correction
42
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Asynchronous algorithms: distributed

Key point: Use SVRG (or related fast method)
to solve suitable subproblems at workers; reduce
#rounds of communication; (or just do D-SVRG)

Some related work
D-SVRG, and accelerated version

(Lee, Lin, Ma,Yang, 2015) for some special cases (applies in
smaller condition number regime)

CoCoA+: (updates m local dual variables
using m local data points; any local opt.
method can be used); higher runtime+comm.

(Ma, Smith, Jaggi, Jordan,
Richtarik, Takac, 2015)

D-SVRG via cool application of without
(Shamir, 2016) replacement SVRG! regularized
least-squares problems only for now

Several more: DANE, DISCO, AIDE, etc. 43
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Summary

* VR stochastic methods for nonconvex problems
* Surprises for proximal setup

* Nonconvex problems on manifolds

* Large-scale: parallel + sparse data

* Large-scale: distributed; SVRG benefits, limitations

If there is a finite-sum structure, can use VR ideas!

44
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Perspectives: did not cover these!

w Stochastic quasi-convex optim. (Hazan, Levy, Shalev-Shwartz, 2015)

Nonlinear eigenvalue-type problems (Belkin, Rademacher,Voss, 2016)

w Frank-Wolfe + SVRG: (Reddi, Sra, Poczos, Smola,2016)

w Newton-type methods: (Carmon, Duchi, Hinder, Sidford, 2016); (Agarwal,
Allen-Zhu, Bullins, Hazan, Ma, 2016);

W many more, including robust optimization,
w infinite dimensional nonconvex problems
w geodesic-convexity for global optimality
w polynomial optimization

» many more... it’s a rich field!

45
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Perspectives

* Impact of non-convexity on generalization

* Non-separable problems (e.g., minimize AUC); saddle
point problems (Balamurugan, Bach 2016)

* Convergence theory, local and global

* Lower-bounds for nonconvex finite-sums

* Distributed algorithms (theory and implementations)

* New applications (e.g., of Riemannian optimization)

* Search for other more “tractable” nonconvex models

* Specialization to deep networks, software toolkits

46
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