
Stochastic optimization: 
Beyond stochastic gradients and convexity

SUVRIT SRA 
Laboratory for Information & Decision Systems (LIDS)  

Massachusetts Institute of Technology

NIPS 2016, Barcelona

Joint tutorial with: Francis Bach, INRIA; ENS

Part 2

ml.mit.eduAcknowledgments: Sashank Reddi (CMU)

http://ml.mit.edu


Beyond stochastic gradients and convexity: Part 2Suvrit Sra (ml.mit.edu)

Outline

2
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– Strongly convex, convex, saddle point

2. Convex finite-sum problems

3. Nonconvex finite-sum problems  
– Basics, background, difficulty of nonconvex 
– nonconvex SVRG, SAGA  
– Linear convergence rates for nonconvex  
– Proximal surprises 
– Handling nonlinear manifolds (orthogonality, positivity, etc.)
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– Data sparse parallel methods 
– Distributed settings (high level)
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Nonconvex finite-sum problems
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Nonconvex finite-sum problems
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min
✓2Rd

g(✓) =
1

n

nX

i=1

fi(✓)

Related work

– Original SGD paper    (Robbins, Monro 1951)  
(asymptotic convergence; no rates)

– SGD with scaled gradients (                              ) + other tricks:  
space dilation, (Shor, 1972); variable metric SGD (Uryasev 1988);  AdaGrad 
(Duchi, Hazan, Singer, 2012);  Adam (Kingma, Ba, 2015), and many others… 
(typically asymptotic convergence for nonconvex)

– Large number of other ideas, often for step-size tuning, initialization  
(see e.g., blog post: by S. Ruder on gradient descent algorithms)

✓t � ⌘tHtrf(✓t)

Our focus: going beyond SGD (theoretically; ultimately in practice too)
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Nonconvex finite-sum problems

5

min
✓2Rd

g(✓) =
1

n

nX

i=1

fi(✓)

Related work (subset)

– (Solodov, 1997)                      Incremental gradient,  smooth nonconvex 
                                         (asymptotic convergence; no rates proved)

– (Bertsekas, Tsitsiklis, 2000)       Gradient descent with errors;  incremental  
                                         (see §2.4, Nonlinear Programming; no rates proved)

– (Sra, 2012)                           Incremental nonconvex non-smooth  
                                         (asymptotic convergence only)

– (Ghadimi, Lan, 2013)               SGD for nonconvex stochastic opt.  
                                          (first non-asymptotic rates to stationarity)

– (Ghadimi et al., 2013)              SGD for nonconvex non-smooth stoch. opt.  
                                          (non-asymptotic rates, but key limitations)                           
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Difficulty of nonconvex optimization

6

necessary condition – local minima,  
maxima, saddle points satisfy it.

Difficult to optimize, but

rg(✓) = 0

So, try to see how fast we can 
satisfy this necessary condition
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Measuring efficiency of nonconvex opt.
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(x, i) (fi(x),rfi(x))

(Agarwal, Bottou, 2014) 
(see also: Nemirovski, Yudin, 1983)

Measure: #IFO calls to attain 𝜖 accuracy

Incremental First-order Oracle (IFO)

Convex:

Nonconvex:
(Nesterov 2003,  Chap 1); 
(Ghadimi, Lan, 2012)

(optimality gap)

(stationarity gap)

E[g(✓t)� g⇤]  ✏

E[krg(✓t)k2]  ✏
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IFO Example: SGD vs GD (nonconvex)
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‣O(1) IFO calls per iter
‣O(1/𝜖2) iterations
‣ Total: O(1/𝜖2) IFO calls
‣ independent of n

‣O(n) IFO calls per liter
‣O(1/𝜖) iterations
‣ Total: O(n/𝜖) IFO calls
‣ depends strongly on n

 GDSGD

min
✓2Rd

g(✓) =
1

n

nX

i=1

fi(✓)

✓t+1 = ✓t � ⌘rfit(✓t)

(Ghadimi, Lan, 2013,2014) (Nesterov, 2003; Nesterov 2012) 

?
✓t+1 = xt � ⌘rg(✓t)

assuming Lipschitz gradients

E[krg(✓t)k2]  ✏
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Nonconvex finite-sum problems
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 GDSGD

min
✓2Rd

g(✓) =
1

n

nX

i=1

fi(✓)

SAG, SVRG, SAGA, et al.

Analysis depends heavily on convexity 
(especially for controlling variance)

Do these benefits extend 
to nonconvex finite-sums?

✓t+1 = ✓t � ⌘rfit(✓t) ✓t+1 = xt � ⌘rg(✓t)
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SVRG/SAGA work again!  
(with new analysis)
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Nonconvex SVRG
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for s=0 to S-1
✓s+1
0  ✓sm

✓̃s  ✓sm

i(t) 2 {1, . . . , n}
✓s+1
t+1 = ✓s+1

t � ⌘t
h
rfi(t)(✓

s+1
t )�rfi(t)(✓̃

s) +
1

n

nX

i=1

rfi(✓̃
s)
i

for t=0 to m-1

Uniformly randomly pick 


end
end

The same algorithm as usual SVRG (Johnson, Zhang, 2013)
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Nonconvex SVRG
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for s=0 to S-1
✓s+1
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✓̃s  ✓sm
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Nonconvex SVRG
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Nonconvex SVRG
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for s=0 to S-1
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✓̃s  ✓sm

end

for t=0 to m-1

Uniformly randomly pick 
i(t) 2 {1, . . . , n}
✓s+1
t+1 = ✓s+1

t � ⌘t
h
rfi(t)(✓

s+1
t )�rfi(t)(✓̃

s) +
1

n

nX

i=1

rfi(✓̃
s)
i

end



Beyond stochastic gradients and convexity: Part 2Suvrit Sra (ml.mit.edu)

Nonconvex SVRG
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for t=0 to m-1

Uniformly randomly pick 
i(t) 2 {1, . . . , n}

end
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Nonconvex SVRG
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for t=0 to m-1

Uniformly randomly pick 
i(t) 2 {1, . . . , n}

end
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Nonconvex SVRG
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for t=0 to m-1

Uniformly randomly pick 
i(t) 2 {1, . . . , n}

end

for s=0 to S-1
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Full gradient, computed
once every epoch
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Nonconvex SVRG
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for t=0 to m-1

Uniformly randomly pick 
i(t) 2 {1, . . . , n}

end
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Full gradient, computed
once every epoch

Key quantities that determine
how the method operates
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Key ideas for analysis of nc-SVRG
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Previous SVRG proofs rely on convexity to control variance

(Reddi, Hefny, Sra, Poczos, Smola, 2016; Allen-Zhu, Hazan, 2016)

New proof technique – quite general; extends to SAGA, 
to several other finite-sum nonconvex settings!

Larger step-size  ➥ smaller inner loop  
(full-gradient computation dominates epoch)  

Smaller step-size ➥ slower convergence
(longer inner loop)

(Carefully) trading-off #inner-loop iterations m with
step-size η leads to lower #IFO calls!
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Faster nonconvex optimization via VR

20

New results for convex case too; additional nonconvex results
For related results, see also (Allen-Zhu, Hazan, 2016)

Algorithm Nonconvex (Lipschitz smooth)

SGD

GD

SVRG

SAGA

MSVRG

O
�

1
✏2

�

O
�
n
✏

�

O
�
n+ n2/3

✏

�

O
�
n+ n2/3

✏

�

(Reddi, Hefny, Sra, Poczos, Smola, 2016; Reddi et al., 2016)

Remarks

O
⇣
min

⇣
1
✏2 ,

n2/3

✏

⌘⌘

E[krg(✓t)k2]  ✏
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Linear rates for nonconvex problems
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The Polyak-Łojasiewicz (PL) class of functions

min
✓2Rd

g(✓) =
1

n

nX

i=1

fi(✓)

g(✓)� g(✓⇤)  1

2µ
krg(✓)k2

(Polyak, 1963); (Łojasiewicz, 1963)

(More general than many other “restricted” strong convexity uses)

(Karimi, Nutini, Schmidt, 2016) proximal extensions; references
(Attouch, Bolte, 2009) more general Kurdya-Łojasiewicz class
(Bertsekas, 2016) textbook, more “growth conditions”

μ-strongly convex ⇒ PL holds

Stochastic PCA, some large-scale 
eigenvector problems

Examples:
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Linear rates for nonconvex problems

22(Reddi, Hefny, Sra, Poczos, Smola, 2016; Reddi et al., 2016)

g(✓)� g(✓⇤)  1

2µ
krg(✓)k2

Algorithm Nonconvex Nonconvex-PL

SGD

GD

SVRG

SAGA

MSVRG ––

O
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�
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✏
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�
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✏

�

O
⇣
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�
1
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�
, n2/3

✏

⌘

O
�
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�

O
⇣

n
2µ log
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✏

⌘

O
⇣
(n+

n2/3

2µ ) log

1
✏

⌘

O
⇣
(n+

n2/3

2µ ) log

1
✏

⌘

Variant of nc-SVRG attains this fast convergence!

E[g(✓t)� g⇤]  ✏
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Empirical results

23
CIFAR10 dataset; 2-layer NN
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Empirical results
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CIFAR10 dataset; 2-layer NN
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Empirical results
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CIFAR10 dataset; 2-layer NN
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Empirical results

26

CIFAR10 dataset; 2-layer NN
kr

f
(✓

t)
k2
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Regularizer, e.g.,        for enforcing sparsity of
weights (in a neural net, or more generally); 
or an indicator function of a constraint set, etc.

27

Non-smooth surprises!
min
✓2Rd

1

n

nX

i=1

fi(✓) + ⌦(✓)

k · k1
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Nonconvex composite objective problems
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convex

– Partial results: (Ghadimi, Lan, Zhang, 2014)  
            (using growing minibatches, shrinking step sizes)

min
✓2Rd

1

n

nX

i=1

fi(✓) + ⌦(✓)

Prox-SGD convergence not known!*
prox�⌦(v) := argminu

1

2

ku� vk2 + �⌦(u)

Prox-SGD ✓t+1 = prox�t⌦ (✓t � ⌘trfit(✓t))

nonconvex
| {z }

prox: soft-thresholding for        ; projection for indicator functionk · k1

* Except in special cases (where even rates may be available)
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Nonconvex composite objective problems

29

Once again variance reduction to the rescue?

Prox-SVRG/SAGA converge* 
and that too 

faster than both SGD and GD!

convex
min
✓2Rd

1

n

nX

i=1

fi(✓) + ⌦(✓)

nonconvex
| {z }

(Reddi, Sra, Poczos, Smola, 2016)

The same                   once again! O
⇣
n+ n2/3

✏

⌘

* some care needed
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Empirical results: NN-PCA
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min
kwk1, w�0

�1

2
w

>

 
nX

i=1

xix
>
i

!
w

Eigenvecs via SGD: (Oja, Karhunen 1985); via SVRG (Shamir, 2015,2016);  
(Garber, Hazan, Jin, Kakade, Musco, Netrapalli, Sidford, 2016); and many more!

# grad/n
0 5 10 15

f
(x

)
!

f
(x̂

)

10-15
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10-5

SGD
SAGA
SVRG

rcv1 (677399, 47236)covtype (581012,54)

# grad/n
0 5 10 15 20

f
(x

)
!

f
(x̂

)

10-15

10-10

10-5

SGD
SAGA
SVRG

y-axis denotes distance                 to an approximate optimumf(✓)� f(✓̂)



Beyond stochastic gradients and convexity: Part 2Suvrit Sra (ml.mit.edu)

31

Finite-sum problems with
nonconvex g(θ) and params θ
lying on a known manifold  

min
✓2M

g(✓) =
1

n

nX

i=1

fi(✓)

Example: eigenvector problems (the ||θ||=1 constraint)

                 problems with orthogonality constraints

                 low-rank matrices

                 positive definite matrices / covariances 
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Nonconvex optimization on manifolds
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min
✓2M

g(✓) =
1

n

nX

i=1

fi(✓)

(Zhang, Reddi, Sra, 2016)

Related work
– (Udriste, 1994)                       batch methods; textbook
– (Edelman, Smith, Arias, 1999)        classic paper; orthogonality constraints
– (Absil, Mahony, Sepulchre, 2009)   textbook; convergence analysis
– (Boumal, 2014)                           phd thesis, algos, theory, examples
– (Mishra, 2014)                            phd thesis, algos, theory, examples 
– manopt                            excellent matlab toolbox
– (Bonnabel, 2013)                     Riemannnian SGD, asymptotic convg.
– and many more!

Exploiting manifold structure yields speedups

http://manopt.org
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Example: Gaussian Mixture Model

33

LLT
Cholesky

EM  
Algo

p

mix

(x) :=
KX

k=1

⇡kpN (x;⌃k, µk)

Sd+

X

TX

⇠X

Riemannian
(new)

[Hosseini, Sra, 2015]

max

Y
i
p

mix

(xi)

Numerical challenge: positive definite constraint on Σk

Likelihood
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Careful use of manifold geometry helps!

34

K EM R-LBFGS

2 17s ⫽ 29.28 14s ⫽ 29.28

5 202s ⫽ 32.07 117s ⫽ 32.07

10 2159s ⫽ 33.05 658s ⫽ 33.06

images dataset 
d=35, 
n=200,000

github.com/utvisionlab/mixest

Riemannian-LBFGS (careful impl.)
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Careful use of manifold geometry helps!
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Fig. 3: Best ALL minus current ALL values with number of function and gradient evalu-

ations. Left: ‘magic telescope’ (K = 5, d = 10). Middle: ‘year predict’ (K = 6, d = 90).

Right: natural images (K = 10, d = 35).

Table 4: Speed and ALL comparisons for natural image data d = 35.

EM Algorithm LBFGS Reparametrized CG Reparametrized CG Usual

Time (s) ALL Time (s) ALL Time (s) ALL Time (s) ALL

K = 2 16.61 29.28 14.23 29.28 17.52 29.28 947.35 29.28

K = 3 90.54 30.95 38.29 30.95 54.37 30.95 3051.89 30.95

K = 4 165.77 31.65 106.53 31.65 153.94 31.65 6380.01 31.64

K = 5 202.36 32.07 117.14 32.07 140.21 32.07 5262.27 32.07

K = 6 228.80 32.36 245.74 32.35 281.32 32.35 10566.76 32.33

K = 7 365.28 32.63 192.44 32.63 318.95 32.63 10844.52 32.63

K = 8 596.01 32.81 332.85 32.81 536.94 32.81 14282.80 32.58

K = 9 900.88 32.94 657.24 32.94 1449.52 32.95 15774.88 32.77

K = 10 2159.47 33.05 658.34 33.06 1048.00 33.06 17711.87 33.03

algorithmic avenues for mixture modeling.

Several strands of practical value are immediate from our work (and are a part
of our ongoing e↵orts): (i) extension to large-scale mixtures (both large n and large
K) through stochastic manifold optimization [6], especially given the importance of
stochastic methods in the Euclidean setting; (ii) use of richer classes of priors with
GMMs than the usual inverse Wishart priors (which are common, as they leave the

16

Riemannian-SGD for GMMs (multi-epoch)
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Summary of nonconvex VR methods

36

‣ nc-SVRG/SAGA use fewer #IFO calls than SGD & GD
‣ Work well in practice
‣ Easier (than SGD) to use and tune:  

        can use constant step-sizes
‣ Proximal extension holds a few surprises
‣ SGD and SVRG extend to Riemannian manifolds too
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37

Large-scale optimization

min
✓2Rd

g(✓) =
1

n

nX

i=1

fi(✓)
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Simplest setting: using mini-batches

38

useful in parallel and distributed settings
increases parallelism, reduces communication

Idea: Use ‘b’ stochastic gradients / IFO calls per iteration

✓t+1 = ✓t �
⌘t
|It|

X

j2It

rfj(✓t)SGD

For batch size b, SGD takes a factor          fewer iterations1/
p
b

(Dekel, Gilad-Bachrach, Shamir, Xiao, 2012)

For batch size b, SVRG takes a factor 1/b fewer iterations

Theoretical linear speedup with parallelism

see also S2GD (convex case): (Konečný, Liu,Richtárik,Takáč, 2015)
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Asynchronous stochastic algorithms

39

✓t+1 = ✓t �
⌘t
|It|

X

j2It

rfj(✓t)SGD

‣ Inherently sequential algorithm
‣ Slow-downs in parallel/dist settings (synchronization)

Classic results in asynchronous optimization: (Bertsekas, Tsitsiklis, 1987)

➡ Asynchronous SGD implementation (HogWild!)  
Avoids need to sync, operates in a “lock-free” manner

➡ Key assumption: sparse data (often true in ML)

but
It is still SGD, thus has slow sublinear convergence

even for strongly convex functions
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Asynchronous algorithms: parallel

40

Does variance reduction work with asynchrony?

Yes!
ASVRG (Reddi, Hefny, Sra, Poczos, Smola, 2015)
ASAGA (Leblond, Pedregosa, Lacoste-Julien, 2016)
Perturbed iterate analysis (Mania et al, 2016)

– a few subtleties involved 
– some gaps between theory and practice
– more complex than async-SGD

Bottomline: on sparse data, can get almost linear speedup
due to parallelism (π machines lead to ~ π speedup)

https://arxiv.org/find/math/1/au:+Leblond_R/0/1/0/all/0/1
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Asynchronous algorithms: distributed

41

– workers compute (stochastic) gradients
– server computes parameter update
– widely used (centralized) design choice
– can have quite high communication cost

common parameter
server architecture

(Li,  Andersen, Smola, Yu, 2014)

Classic ref: (Bertsekas, Tsitsiklis, 1987)

D-SGD:

Asynchrony via:  servers use delayed / stale gradients from workers

(Nedic, Bertsekas, Borkar, 2000; Agarwal, Duchi 2011) and many others

(Shamir, Srebro 2014) – nice overview of distributed stochastic optimization
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Asynchronous algorithms: distributed

42

To reduce communication, following idea is useful:

S1 Sk…

W1 W2 Wm…

D2D1 DmData

Workers

Servers

Worker nodes
solve compute
intensive
subproblems

Servers perform
simple aggregation
(eg. full-gradients for
distributed SVRG)

DANE (Shamir, Srebro, Zhang, 2013): distributed Newton,  
view as having an SVRG-like gradient correction
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Asynchronous algorithms: distributed
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Key point: Use SVRG (or related fast method)
to solve suitable subproblems at workers;  reduce  
#rounds of communication; (or just do D-SVRG)

(Lee, Lin, Ma, Yang, 2015)
D-SVRG, and accelerated version
for some special cases (applies in 
smaller condition number regime)

Some related work

Several more: DANE, DISCO, AIDE, etc.

(Ma, Smith, Jaggi, Jordan,  
  Richtárik, Takáč, 2015)

CoCoA+: (updates m local dual variables
using m local data points; any local opt.
method can be used); higher runtime+comm.

(Shamir, 2016)
D-SVRG via cool application of without  
replacement SVRG! regularized
least-squares problems only for now



Beyond stochastic gradients and convexity: Part 2Suvrit Sra (ml.mit.edu)

Summary
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VR stochastic methods for nonconvex problems
Surprises for proximal setup
Nonconvex problems on manifolds
Large-scale: parallel + sparse data
Large-scale: distributed; SVRG benefits, limitations

If there is a finite-sum structure, can use VR ideas!
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Perspectives: did not cover these!
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Stochastic quasi-convex optim. (Hazan, Levy, Shalev-Shwartz, 2015)  
Nonlinear eigenvalue-type problems (Belkin, Rademacher, Voss, 2016)

Frank-Wolfe + SVRG: (Reddi, Sra, Poczos, Smola,2016)

Newton-type methods: (Carmon, Duchi, Hinder, Sidford, 2016); (Agarwal, 

Allen-Zhu, Bullins, Hazan, Ma, 2016);

many more, including robust optimization,

infinite dimensional nonconvex problems

geodesic-convexity for global optimality

polynomial optimization

many more… it’s a rich field!
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Perspectives
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Impact of non-convexity on generalization

Non-separable problems (e.g., minimize AUC); saddle  
 point problems (Balamurugan, Bach 2016)

Convergence theory, local and global

Lower-bounds for nonconvex finite-sums

Distributed algorithms (theory and implementations)

New applications (e.g., of Riemannian optimization)

Search for other more “tractable” nonconvex models

Specialization to deep networks, software toolkits


