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Course materials

http://suvrit.de/teaching.html
Some references:
� Introductory lectures on convex optimization – Nesterov
� Convex optimization – Boyd & Vandenberghe
� Nonlinear programming – Bertsekas
� Convex Analysis – Rockafellar
� Fundamentals of convex analysis – Urruty, Lemaréchal
� Lectures on modern convex optimization – Nemirovski
� Optimization for Machine Learning – Sra, Nowozin, Wright
� Theory of Convex Optimization for Machine Learning – Bubeck
� NIPS 2016 Optimization Tutorial – Bach, Sra

Some related courses:
� EE227A, Spring 2013, (Sra, UC Berkeley)
� 10-801, Spring 2014 (Sra, CMU)
� EE364a,b (Boyd, Stanford)
� EE236b,c (Vandenberghe, UCLA)

Venues: NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.
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Lecture Plan

– Introduction (3 lectures)
– Problems and algorithms (5 lectures)
– Non-convex optimization, perspectives (2 lectures)
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Introduction

Supervised machine learning

I Data: n observations (xi, yi)
n
i=1 ∈ X × Y

I Prediction function: h(x, θ) ∈ R parameterized by θ ∈ Rd

I Motivating examples:

• Linear predictions: h(x, θ) = θ>Φ(x) using features Φ(x)

• Neural networks: h(x, θ) = θ>mσ(θ>m−1σ(· · · θ>2 σ(θ>1 x))

I Estimating θ parameters is an optimization problem

Unsupervised and other ML setups

I Different formulations, but ultimately optimization at heart

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning 4 / 59



Introduction

Supervised machine learning

I Data: n observations (xi, yi)
n
i=1 ∈ X × Y

I Prediction function: h(x, θ) ∈ R parameterized by θ ∈ Rd

I Motivating examples:

• Linear predictions: h(x, θ) = θ>Φ(x) using features Φ(x)

• Neural networks: h(x, θ) = θ>mσ(θ>m−1σ(· · · θ>2 σ(θ>1 x))

I Estimating θ parameters is an optimization problem

Unsupervised and other ML setups

I Different formulations, but ultimately optimization at heart

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning 4 / 59



Introduction

Supervised machine learning

I Data: n observations (xi, yi)
n
i=1 ∈ X × Y

I Prediction function: h(x, θ) ∈ R parameterized by θ ∈ Rd

I Motivating examples:

• Linear predictions: h(x, θ) = θ>Φ(x) using features Φ(x)

• Neural networks: h(x, θ) = θ>mσ(θ>m−1σ(· · · θ>2 σ(θ>1 x))

I Estimating θ parameters is an optimization problem

Unsupervised and other ML setups

I Different formulations, but ultimately optimization at heart

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning 4 / 59



The Problem!

min
θ∈S

f (θ)

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning 5 / 59



The Problem!

min
θ∈S

f (θ)

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning 5 / 59



Convex analysis
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Convex sets

Def. Set C ⊂ Rn called convex, if for any x, y ∈ C, the line-
segment λx + (1− λ)y, where λ ∈ [0, 1], also lies in C.

Combinations of points

I Convex: λ1x + λ2y ∈ C, where λ1, λ2 ≥ 0 and λ1 + λ2 = 1.
I Linear: if restrictions on λ1, λ2 are dropped
I Conic: if restriction λ1 + λ2 = 1 is dropped

Different restrictions lead to different “algebra”
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Recognizing / constructing convex sets

Theorem. (Intersection).
Let C1, C2 be convex sets. Then, C1 ∩ C2 is also convex.

Proof.
→ If C1 ∩ C2 = ∅, then true vacuously.
→ Let x, y ∈ C1 ∩ C2. Then, x, y ∈ C1 and x, y ∈ C2.
→ But C1, C2 are convex, hence θx + (1− θ)y ∈ C1, and also in C2.

Thus, θx + (1− θ)y ∈ C1 ∩ C2.
→ Inductively follows that

⋂m
i=1 Ci is also convex.
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Convex sets

(psdcone image from convexoptimization.com, Dattorro)
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Convex sets

♥ Let x1, x2, . . . , xm ∈ Rn. Their convex hull is

co(x1, . . . , xm) :=
{∑

i
θixi | θi ≥ 0,

∑
i
θi = 1

}
.

Example:

24 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .
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♥ Let A ∈ Rm×n, and b ∈ Rm. The set {x | Ax = b} is convex (it is
an affine space over subspace of solutions of Ax = 0).

♥ halfspace
{

x | aTx ≤ b
}

.
♥ polyhedron {x | Ax ≤ b,Cx = d}.
♥ ellipsoid

{
x | (x− x0)TA(x− x0) ≤ 1

}
, (A: semidefinite)

♥ convex cone x ∈ K =⇒ αx ∈ K for α ≥ 0 (and K convex)

◦

Exercise: Verify that these sets are convex.
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Challenge 1

Let A, B ∈ Rn×n be symmetric. Prove that

R(A,B) :=
{

(xTAx, xTBx) | xTx = 1
}

is a compact convex set for n ≥ 3.
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Convex functions

Def. A function f : Rd → R is convex if and only if its epigraph{
(x, t) ⊆ Rd+1 | x ∈ Rd, t ∈ R, f (x) ≤ t

}
is a convex set.

Def. Function f : I→ R on interval I called midpoint convex if

f
(

x+y
2

)
≤ f (x)+f (y)

2 , whenever x, y ∈ I.

Read: f of AM is less than or equal to AM of f .
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Convex functions

Def. A function f : Rn → R is called convex if its domain dom(f )
is a convex set and for any x, y ∈ dom(f ) and λ ≥ 0,

f ((1− λ)x + λy) ≤ (1− λ)f (x) + λf (y).

These functions also known as Jensen convex; named after
J.L.W.V. Jensen (after his influential 1905 paper).

Theorem. (J.L.W.V. Jensen). Let f : I→ R be continuous. Then, f
is convex if and only if it is midpoint convex.

Exercise: Prove Jensen’s theorem.
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Convex functions: Jensen’s inequality

x y

f (x)

f (y)

λf (x)
+ (1− λ)f

(y)

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)
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Convex functions: via gradients

f(y)

y x

f(x)

f(y
) +
〈∇f(

y), x
− y〉

f (x) ≥ f (y) + 〈∇f (y), x− y〉
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Convex functions: increasing slopes

x y

P

Q

R

z = λx+ (1− λ)y

slope PQ ≤ slope PR ≤ slope QR
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Recognizing convex functions

♠ If f is continuous and midpoint convex, then it is convex.
♠ If f is differentiable, then f is convex if and only if dom f is

convex and f (x) ≥ f (y) + 〈∇f (y), x− y〉 for all x, y ∈ dom f .
♠ If f is twice differentiable, then f is convex if and only if dom f

is convex and∇2f (x) � 0 at every x ∈ dom f .

♠ By showing f : dom(f )→ R is convex if and only if its
restriction to any line that intersects dom(f ) is convex. That
is, for any x ∈ dom(f ) and any v, the function g(t) = f (x + tv)
is convex (on its domain {t | x + tv ∈ dom(f )}).

♠ By showing f to be a pointwise max of convex functions
♠ See exercises (Ch. 3) in Boyd & Vandenberghe for more!
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Example: Quadratic

Let f (x) = xTAx + bTx + c, where A � 0, b ∈ Rn, and c ∈ R.

What is: ∇2f (x)?

∇f (x) = 2Ax + b,∇2f (x) = A � 0, hence f is convex.
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Examples

Exercise: Prove the convexity of the following functions in at least
two different ways

1 f (x, y) = x2/y for y > 0 on R× R++

2 f (x) = log(1 + e
∑

i aixi) on Rn (ai ∈ R for 1 ≤ i ≤ n).
3 Using 2 show that

det(X + Y)1/n ≥ det(X)1/n + det(Y)1/n

for X,Y ∈ Sn
++ (i.e., positive definite matrices).

4 Challenge: f (X) = X−1 on positive definite matrices. (This
question is about convexity/concavity over matrices, so we have to
replace the ≤ by the Löwner order �).
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Operations preserving convexity

Example. Let f : Rn → R be convex. Let A ∈ Rm×n, and b ∈ Rm.
Prove that g(x) = f (Ax + b) is convex.

Exercise: Verify!

Theorem. Let f : I1 → R and g : I2 → R, where range(f ) ⊆ I2. If
f and g are convex, and g is increasing, then g ◦ f is convex on I1

Proof. Let x, y ∈ I1, and let λ ∈ (0, 1).
f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

g(f (λx + (1− λ)y)) ≤ g
(
λf (x) + (1− λ)f (y)

)
≤ λg

(
f (x)

)
+ (1− λ)g

(
f (y)

)
.

I Check out several other important examples in BV!
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Constructing convex functions: sup

Example. The pointwise maximum of a family of convex functions
is convex. That is, if f (x; y) is a convex function of x for every y
in an arbitrary “index set” Y , then

f (x) := sup
y∈Y

f (x; y)

is a convex function of x.

Exercise: Verify!

Example. The `∞-norm ‖x‖∞ := max1≤i≤n |xi|

Exercise: Prove that |x| is a convex function.
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Constructing convex functions: joint inf

Theorem. Let Y be a nonempty convex set. Suppose L(x, y) is
convex in both (x, y), then,

f (x) := inf
y∈Y

L(x, y)

is a convex function of x, provided f (x) > −∞.

Proof. Let u, v ∈ dom f . Since f (u) = infy L(u, y), for each ε > 0, there is a
y1 ∈ Y , s.t. f (u) + ε

2 is not the infimum. Thus, L(u, y1) ≤ f (u) + ε
2 .

Similarly, there is y2 ∈ Y , such that L(v, y2) ≤ f (v) + ε
2 .

Now we prove that f (λu + (1− λ)v) ≤ λf (u) + (1− λ)f (v) directly.

f (λu + (1− λ)v) = inf
y∈Y

L(λu + (1− λ)v, y)

≤ L(λu + (1− λ)v, λy1 + (1− λ)y2)

≤ λL(u, y1) + (1− λ)L(v, y2)

≤ λf (u) + (1− λ)f (v) + ε.

Since ε > 0 is arbitrary, claim follows.
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Example: Schur complement

Let A,B,C be matrices such that C � 0, and let

Z :=

[
A B
BT C

]
� 0,

then the Schur complement A− BC−1BT � 0.

Proof. L(x, y) = [x, y]TZ[x, y] is convex in (x, y) since Z � 0

Observe that f (x) = infy L(x, y) = xT(A− BC−1BT)x is convex.

(We skipped ahead and solved∇yL(x, y) = 0 to minimize).

Exercise: Verify the above example!
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Convex functions – Indicator

Let 1X be the indicator function for X defined as:

1X (x) :=

{
0 if x ∈ X ,
∞ otherwise.

Note: 1X (x) is convex if and only if X is convex.

I Also called “extended value” convex function.
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Convex functions – norms

Let Ω : Rd → R be a function that satisfies
1 Ω(x) ≥ 0, and Ω(x) = 0 if and only if x = 0 (definiteness)
2 Ω(λx) = |λ|Ω(x) for any λ ∈ R (positive homogeneity)
3 Ω(x + y) ≤ Ω(x) + Ω(y) (subadditivity)

Such function called norms—usually denoted ‖x‖.
Theorem. Norms are convex.

Often used in “regularized” ML problems

min
θ

f (θ) + µΩ(θ).
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Norms and distances

Example. Let X be a convex set. Let x ∈ Rn be some point. The
distance of x to the set X is defined as

dist(x,X ) := inf
y∈X

‖x− y‖.

Exercise: Prove the above claim.
(Hint: argue that ‖x− y‖ is jointly convex in (x, y))
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Norms: important examples

Example. (`2-norm): ‖x‖2 =
(∑

i x2
i
)1/2

Example. (`p-norm): Let p ≥ 1. ‖x‖p =
(∑

i |xi|p
)1/p

Example. (`∞-norm): ‖x‖∞ = max1≤i≤n |xi|

Example. (Frobenius-norm): Let A ∈ Rm×n. ‖A‖F :=
√∑

ij |aij|2
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Mixed norms

Def. Let x ∈ Rn1+n2+···+nG be a vector partitioned into subvectors
xj ∈ Rnj , 1 ≤ j ≤ G. Let p := (p0, p1, p2, . . . , pG), where pj ≥ 1.
Consider the vector ξ := (‖x1‖p1 , · · · , ‖xG‖pG). Then, we define
the mixed-norm of x as

‖x‖p := ‖ξ‖p0 .

Example. `1,q-norm: Let x be as above.

‖x‖1,q :=
∑G

i=1
‖xi‖q.

This norm is popular in machine learning, statistics.
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Matrix Norms

Induced norm

Let A ∈ Rm×n, and let ‖·‖ be any vector norm. We define an
induced matrix norm as

‖A‖ := sup
‖x‖6=0

‖Ax‖
‖x‖ .

Verify that above definition yields a norm.

I Clearly, ‖A‖ = 0 iff A = 0 (definiteness)
I ‖αA‖ = |α| ‖A‖ (homogeneity)

I ‖A + B‖ = sup ‖(A+B)x‖
‖x‖ ≤ sup ‖Ax‖+‖Bx‖

‖x‖ ≤ ‖A‖ + ‖B‖.
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Operator norm

Example. Let A be any matrix. Then, the operator norm of A is

‖A‖2 := sup
‖x‖2 6=0

‖Ax‖2

‖x‖2
.

‖A‖2 = σmax(A), where σmax is the largest singular value of A.

• Warning! Generally, largest eigenvalue not a norm!
• ‖A‖1 and ‖A‖∞—max-abs-column and max-abs-row sums.
• ‖A‖p generally NP-Hard to compute for p 6∈ {1, 2,∞}
• Schatten p-norm: `p-norm of vector of singular value.
• Exercise: Let σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 be singular values of a matrix

A ∈ Rm×n. Prove that

‖A‖(k) :=
∑k

i=1
σi(A),

is a norm; 1 ≤ k ≤ n.
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Proof

Proof. By definition, the largest singular value is defined as

σmax(A) := max
x:‖x‖2≤1

‖Ax‖2.

We saw that norms are convex. We also saw that for convex f ,
f (Ax) is also convex. Thus, ‖Ax‖2 is convex.

Since the pointwise max of convex functions (over arbitrary
index sets) is convex—here we index over x ∈ Rn.

◦

Thus, σmax(A) is a norm. It is denoted as ‖A‖2 or just ‖A‖—
not to be confused with the Euclidean `2-norm of a vector!
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Dual norms

Def. Let ‖·‖ be a norm on Rn. Its dual norm is

‖u‖∗ := sup
{

uTx | ‖x‖ ≤ 1
}
.

Exercise: Verify that we may write ‖u‖∗ = supx6=0
uTx
‖x‖

Exercise: Verify that ‖u‖∗ is a norm.

I ‖u + v‖∗ = sup
{

(u + v)Tx | ‖x‖ ≤ 1
}

I But sup (A + B) ≤ sup A + sup B

Exercise: Let 1/p + 1/q = 1, where p, q ≥ 1. Show that ‖·‖q is
dual to ‖·‖p. In particular, the `2-norm is self-dual.

Hint: Use Hölder’s inequality: uTv ≤ ‖u‖p‖v‖q
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Challenge 2

Consider the following functions on strictly positive variables:

h1(x) :=
1
x

h2(x, y) :=
1
x
+

1
y
− 1

x + y

h3(x, y, z) :=
1
x
+

1
y
+

1
z
− 1

x + y
− 1

y + z
− 1

x + z
+

1
x + y + z

♥ Prove that hn(x) > 0 (easy)
♥ Prove that h1, h2, h3, and in general hn are convex (hard)
♥ Prove that in fact each 1/hn is concave (harder).
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f ∗(z) := sup
x∈dom f

xTz− f (x).

Exercise: Why is f ∗ convex? What if f (x) is nonconvex?

Example. Let f (x) = ‖x‖. We have f ∗(z) = 1‖·‖∗≤1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

I Consider two cases: (i) ‖z‖∗ > 1; (ii) ‖z‖∗ ≤ 1
I Case (i), by definition of dual norm (sup over zTu) there is a u s.t.
‖u‖ ≤ 1 and zTu > 1

I f ∗(z) = supx xTz− f (x). Rewrite x = αu, and let α→∞
I Then, zTx− ‖x‖ = αzTu− ‖αu‖ = α(zTu− ‖u‖);→∞
I Case (ii): Since zTx ≤ ‖x‖‖z‖∗, xTz− ‖x‖ ≤ ‖x‖(‖z‖∗ − 1) ≤ 0.
I x = 0 maximizes ‖x‖(‖z‖∗ − 1), hence f (z) = 0.
I Thus, f (z) = +∞ if (i), and 0 if (ii), as desired.
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I x = 0 maximizes ‖x‖(‖z‖∗ − 1), hence f (z) = 0.
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Fenchel conjugate

Example. f (x) = ax + b; then,
f ∗(z) = sup

x
zx− (ax + b)

= ∞, if (z− a) 6= 0.

Thus, dom f ∗ = {a}, and f ∗(a) = −b.

Example. Let a ≥ 0, and set f (x) = −
√

a2 − x2 if |x| ≤ a, and +∞
otherwise. Then, f ∗(z) = a

√
1 + z2.

Example. f (x) = 1
2 xTAx, where A � 0. Then, f ∗(z) = 1

2 zTA−1z.
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Fenchel conjugate – exercises

Exercise: If f (x) = max(0, 1− x) (hinge loss) then dom f ∗ is
[−1, 0], and within this domain, f ∗(z) = z.

If f ∗∗ = f , we say f is a closed convex function.

Exercise: Suppose f (x) = (
∑

i |xi|1/2)2. What is f ∗∗?

Exercise: Suppose f (x) = xTAx + bTx but A � 0; what is f ∗?

Exercise: For which functions is f ∗ = f ?
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Optimization
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Optimization problems

Let fi : Rn → R (0 ≤ i ≤ m). Generic nonlinear program

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
x ∈{dom f0 ∩ dom f1 · · · ∩ dom fm} .

Henceforth, we drop condition on domains for brevity.

• If fi are differentiable — smooth optimization
• If any fi is non-differentiable — nonsmooth optimization
• If all fi are convex — convex optimization
• If m = 0, i.e., only f0 is there — unconstrained minimization
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Convex optimization problems

Standard form

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
Ax = b.

Some observations

I All fi are convex
I Direction of inequality fi(x) ≤ 0 crucial
I The only equality constraints we allow are affine
I This ensures, set of feasible solutions is also convex
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Convex optimization problems

Def. We denote by X the feasible set

X := {x ∈ Rn | fi(x) ≤ 0, 1 ≤ i ≤ m, Ax = b}.

Def. We denote by p∗ the optimal value of the problem.
p∗ := inf {f0(x) | x ∈ X}

I If X is empty, we say problem is infeasible
I By convention, we set p∗ = +∞ for infeasible problems
I If p∗ = −∞, we say problem is unbounded below.
I Example, min x on R, or min− log x on R++

I Sometimes minimum doesn’t exist (as x→ ±∞)
I Say f0(x) = 0, problem is called convex feasibility
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Optimality

Def. A point x∗ ∈ X is locally optimal if f (x∗) ≤ f (x) for all x in
a neighborhood of x∗. Global if f (x∗) ≤ f (x) for all x ∈ X .

Theorem. For convex problems, local =⇒ global!

Exercise: Prove this theorem (Hint: try contradiction)

I Let x∗ be a local minimizer of f (x) on X that is not global
I Then there is a point y ∈ X such that f (y) < f (x∗)
I X is cvx., so we have xθ = θy + (1− θ)x∗ ∈ X for θ ∈ (0, 1)
I Since f is cvx, and x∗, y ∈ dom f , we have

f (xθ)− f (x∗) ≤ θ(f (y)− f (x∗)).

I Since x∗ is a local minimizer, for small enough θ > 0, lhs ≥ 0.
I But the rhs is negative, which is a contradiction.
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First-order optimality conditions

Theorem. Let f : Rn → R be continuously differentiable in an
open set S containing x∗, a local min of f . Then,∇f (x∗) = 0.

Proof: Consider function g(t) = f (x∗ + td), where d ∈ Rn; t > 0.
Since x∗ is a local min, for small enough t, f (x∗ + td) ≥ f (x∗).

0 ≤ lim
t↓0

f (x∗ + td)− f (x∗)
t

=
dg(0)

dt
= 〈∇f (x∗), d〉.

Similarly, using −d it follows that 〈∇f (x∗), d〉 ≤ 0, so
〈∇f (x∗), d〉 = 0 must hold. Since d is arbitrary,∇f (x∗) = 0.

Exercise: Prove that if f is convex, then∇f (x∗) = 0 is actually
sufficient for global optimality! For general f this is not true.
(This property that makes convex optimization special!)
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Proof: Consider function g(t) = f (x∗ + td), where d ∈ Rn; t > 0.
Since x∗ is a local min, for small enough t, f (x∗ + td) ≥ f (x∗).

0 ≤ lim
t↓0

f (x∗ + td)− f (x∗)
t

=
dg(0)

dt
= 〈∇f (x∗), d〉.

Similarly, using −d it follows that 〈∇f (x∗), d〉 ≤ 0, so
〈∇f (x∗), d〉 = 0 must hold. Since d is arbitrary,∇f (x∗) = 0.

Exercise: Prove that if f is convex, then∇f (x∗) = 0 is actually
sufficient for global optimality! For general f this is not true.
(This property that makes convex optimization special!)
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Descent methods

minx f (x)

x∗ ∇f(x∗) = 0

xk

xk+1

. . .
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Descent methods

∇f(x)

−∇f(x)

x
x− α∇f(x)

x− δ∇f(x)
d

x+ α2d
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Iterative Algorithm

1 Start with some guess x0;
2 For each k = 0, 1, . . .

“Guess” αk and dk

xk+1 ← xk + αkdk

Check when to stop (e.g., if∇f (xk+1) ≈ 0)
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(Batch) Gradient methods

xk+1 = xk + αkdk, k = 0, 1, . . .

stepsize αk ≥ 0, usually ensures f (xk+1) < f (xk)

Descent direction dk satisfies

〈∇f (xk), dk〉 < 0

Numerous ways to select αk and dk

Usually (batch) methods seek monotonic descent

f (xk+1) < f (xk)
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Gradient methods – direction

xk+1 = xk + αkdk, k = 0, 1, . . .

I Different choices of direction dk

◦ Scaled gradient: dk = −Dk∇f (xk), Dk � 0
◦ Newton’s method: (Dk = [∇2f (xk)]−1)
◦ Quasi-Newton: Dk ≈ [∇2f (xk)]−1

◦ Steepest descent: Dk = I

◦ Diagonally scaled: Dk diagonal with Dk
ii ≈

(
∂2f (xk)
(∂xi)2

)−1

◦ Discretized Newton: Dk = [H(xk)]−1, H via finite-diff.

◦ . . .
Exercise: Verify that 〈∇f (xk), dk〉 < 0 for above choices
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Gradient methods – stepsize

I Exact: αk := argmin
α≥0

f (xk + αdk)

I Limited min: αk = argmin
0≤α≤s

f (xk + αdk)

I Armijo-rule. Given fixed scalars, s, β, σ with 0 < β < 1 and
0 < σ < 1 (chosen experimentally). Set

αk = βmks,

where we try βms for m = 0, 1, . . . until sufficient descent

f (xk)− f (x + βmsdk) ≥ −σβms〈∇f (xk), dk〉

I Constant: αk = 1/L (for suitable value of L)
I Diminishing: αk → 0 but

∑
k αk =∞.
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Convergence

Assumption: Lipschitz continuous gradient; denoted f ∈ C1
L

‖∇f (x)−∇f (y)‖2 ≤ L‖x− y‖2

f1(x)

f2(x)

f(x)

y

♣ Gradient vectors of closeby points are close to each other
♣ Objective function has “bounded curvature”
♣ Speed at which gradient varies is bounded
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Convergence

Assumption: Lipschitz continuous gradient; denoted f ∈ C1
L

‖∇f (x)−∇f (y)‖2 ≤ L‖x− y‖2

Lemma (Descent). Let f ∈ C1
L. Then,

f (y) ≤ f (x) + 〈∇f (x), y− x〉+ L
2‖y− x‖2

2

Theorem. Let f ∈ C1
L be convex, and

{
xk} is sequence generated

as above, with αk = 1/L. Then, f (xk+1)− f (x∗) = O(1/k).

Remark: f ∈ C1
L is “good” for nonconvex too, except for f − f ∗.
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Strong convexity (faster convergence)

Assumption: Strong convexity; denote f ∈ S1
L,µ

f (x) ≥ f (y) + 〈∇f (y), x− y〉+ µ
2 ‖x− y‖2

2

I A twice diff. f : Rd → R is convex if and only if

∀x ∈ Rd, eigenvalues
[
∇2f (x)

]
> 0.

I A twice diff. f : Rd → R is µ-strongly convex if and only if

∀x ∈ Rd, eigenvalues
[
∇2f (x)

]
> µ.

Condition number: κ := L
µ ≥ 1 influences convergence speed.

Setting αk = 2
µ+L yields linear rate (µ > 0) for gradient

descent. That is, f (xk)− f (x∗) = O(e−k).
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Strong convexity – linear rate

Theorem. If f ∈ S1
L,µ, 0 < α < 2/(L + µ), then the gradient

method generates a sequence
{

xk} that satisfies

‖xk − x∗‖2
2 ≤

(
1− 2αµL

µ+ L

)k

‖x0 − x∗‖2.

Moreover, if α = 2/(L + µ) then

f (xk)− f ∗ ≤ L
2

(
κ− 1
κ+ 1

)2k

‖x0 − x∗‖2
2,

where κ = L/µ is the condition number.
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Gradient methods – lower bounds

xk+1 = xk − αk∇f (xk)

Theorem. Lower bound I (Nesterov) For any x0 ∈ Rn, and 1 ≤
k ≤ 1

2(n− 1), there is a smooth f , s.t.

f (xk)− f (x∗) ≥ 3L‖x0 − x∗‖2
2

32(k + 1)2

Theorem. Lower bound II (Nesterov). For class of smooth,
strongly convex, i.e., S∞L,µ (µ > 0, κ > 1)

f (xk)− f (x∗) ≥ µ

2

(√
κ− 1√
κ+ 1

)2k

‖x0 − x∗‖2
2.
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Faster methods∗
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Optimal gradient methods

♠ We saw efficiency estimates for the gradient method:

f ∈ C1
L : f (xk)− f ∗ ≤ 2L‖x0 − x∗‖2

2
k + 4

f ∈ S1
L,µ : f (xk)− f ∗ ≤ L

2

(
L− µ
L + µ

)2k

‖x0 − x∗‖2
2.

♠ We also saw lower complexity bounds

f ∈ C1
L : f (xk)− f (x∗) ≥ 3L‖x0 − x∗‖2

2
32(k + 1)2

fS∞L,µ : f (xk)− f (x∗) ≥ µ

2

(√
L−√µ√
L +
√
µ

)2k

‖x0 − x∗‖2
2.
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Optimal gradient methods

♠ Subgradient method upper and lower bounds

f (xk)− f (x∗) ≤ O(1/
√

k)

f (xk)− f (x∗) ≥ LD
2(1+

√
k+1)

.

♠ Composite objective problems: proximal gradient gives
same bounds as gradient methods.
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Gradient with “momentum”

Polyak’s method (aka heavy-ball) for f ∈ S1
L,µ

xk+1 = xk − αk∇f (xk) + βk(xk − xk−1)

I Converges (locally, i.e., for ‖x0 − x∗‖2 ≤ ε) as

‖xk − x∗‖2
2 ≤

(√
L−√µ√
L +
√
µ

)2k

‖x0 − x∗‖2
2,

for αk = 4
(
√

L+
√
µ)2 and βk =

(√
L−√µ√
L+
√
µ

)2
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Nesterov’s optimal gradient method

minx f (x), where S1
L,µ with µ ≥ 0

1. Choose x0 ∈ Rn, α0 ∈ (0, 1)

2. Let y0 ← x0; set q = µ/L
3. k-th iteration (k ≥ 0):

a). Compute intermediate update

xk+1 = yk − 1
L∇f (yk)

b). Compute stepsize αk+1 by solving

α2
k+1 = (1− αk+1)α2

k + qαk+1

c). Set βk = αk(1− αk)/(α
2
k + αk+1)

d). Update solution estimate

yk+1 = xk+1 + βk(xk+1 − xk)
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Optimal gradient method – rate

Theorem. Let
{

xk} be sequence generated by above algorithm.
If α0 ≥

√
µ/L, then

f (xk)− f (x∗) ≤ c1 min
{(

1−
√
µ

L

)k
,

4L
(2
√

L + c2k)2

}
,

where constants c1, c2 depend on α0, L, µ.
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Strongly convex case – simplification

If µ > 0, select α0 =
√
µ/L. The two main steps get simplified:

1. Set βk = αk(1− αk)/(α
2
k + αk+1)

2. yk+1 = xk+1 + βk(xk+1 − xk)

αk =
√

µ
L βk =

√
L−√µ√
L +
√
µ
, k ≥ 0.

Optimal method simplifies to
1. Choose y0 = x0 ∈ Rn

2. k-th iteration (k ≥ 0):
a). xk+1 = yk − 1

L∇f (yk)

b). yk+1 = xk+1 + β(xk+1 − xk)

Notice similarity to Polyak’s method!
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