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Course materials

m http://suvrit.de/teaching.html

m Some references:

m [ntroductory lectures on convex optimization — Nesterov

m Convex optimization — Boyd & Vandenberghe

m Nonlinear programming — Bertsekas

m Convex Analysis — Rockafellar

m Fundamentals of convex analysis — Urruty, Lemaréchal

m Lectures on modern convex optimization — Nemirovski

m Optimization for Machine Learning — Sra, Nowozin, Wright
m Theory of Convex Optimization for Machine Learning — Bubeck
m NIPS 2016 Optimization Tutorial — Bach, Sra
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ome related courses:
EE227A, Spring 2013, (Sra, UC Berkeley)
10-801, Spring 2014 (Sra, CMU)
EE364a,b (Boyd, Stanford)
m EE236b,c (Vandenberghe, UCLA)

m Venues: NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.
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http://suvrit.de/teaching.html
http://suvrit.de/teach/ee227a/
http://www.cs.cmu.edu/~suvrit/teach/aopt.html

Lecture Plan

— Introduction (3 lectures)
— Problems and algorithms (5 lectures)

— Non-convex optimization, perspectives (2 lectures)
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Introduction

Supervised machine learning

» Data: n observations (x;,y;)’, € X x Y
» Prediction function: h(x,0) € R parameterized by 6 € R
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Introduction

Supervised machine learning
» Data: n observations (x;,y;)’, € X x Y
» Prediction function: h(x,0) € R parameterized by 6 € R
» Motivating examples:
e Linear predictions: i(x,0) = 0" ®(x) using features ®(x)
e Neural networks: h(x,0) = 0,,0(0] o(---6, o(6] x))

» Estimating 6 parameters is an optimization problem
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Introduction

Supervised machine learning

» Data: n observations (x;,y;)’, € X x Y
» Prediction function: h(x,0) € R parameterized by 6 € R

v

Motivating examples:

e Linear predictions: i(x,0) = 0" ®(x) using features ®(x)
e Neural networks: h(x,0) = 0,,0(0] o(---6, o(6] x))

» Estimating 6 parameters is an optimization problem
Unsupervised and other ML setups

» Different formulations, but ultimately optimization at heart
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The Problem!

min - f(0)

| [ [T



The Problem!

: 6
min (0)
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Convex analysis
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Convex sets

Def. Set C C R" called convex, if for any x,y € C, the line-
segment \x + (1 — \)y, where \ € [0, 1], also lies in C.
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Convex sets

Def. Set C C R" called convex, if for any x,y € C, the line-
segment \x + (1 — \)y, where \ € [0, 1], also lies in C.

Combinations of points

» Convex: \ix + Ay € C,where \;,\» > 0and A\ + X = 1.
» Linear: if restrictions on A, Ay are dropped
» Conic: if restriction A\ + Ao = 1 is dropped

Different restrictions lead to different “algebra”
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Recognizing / constructing convex sets

Theorem. (Intersection).
Let Cq, C; be convex sets. Then, C; N C; is also convex.

Proof.
— If C; N C; = 0, then true vacuously.
— Letx,y € C;NCy. Then, x,y € C; and x,y € Cs.
— But Cy, C; are convex, hence 6x + (1 — 0)y € Cy, and also in C,.
Thus, 6x + (1 — 0)y € C; N Cy.
— Inductively follows that (-, C; is also convex.
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Convex sets

(psdcone image from convexoptimization.com, Dattorro)
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Convex sets

QO Letxq,xs,...,x,; € R". Their convex hull is

Example: @

Let A € R™*", and b € R™. The set {x | Ax = b} is convex (it is
an affine space over subspace of solutions of Ax = 0).

halfspace {x | aTx < b}.

polyhedron {x | Ax < b,Cx = d}.

ellipsoid {x | (x — x0)TA(x — x0) < 1}, (A: semidefinite)
convex conex € K = ax € K for a > 0 (and K convex)

3

3IABABA

(¢]

Exercise: Verify that these sets are convex.
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Challenge 1

Let A, B € R"*" be symmetric. Prove that
R(A,B) := {(xTAx,xTBx) | xTx = 1}

is a compact convex set for n > 3.
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Convex functions

Def. A function f : RY — R is convex if and only if its epigraph
{(x,t) CR¥! | x e Rt € R,f(x) < t} is a convex set.
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Convex functions

Def. A function f : RY — R is convex if and only if its epigraph
{(x,t) CR¥! | x e Rt € R,f(x) < t} is a convex set.

Def. Functionf : I — R on interval I called midpoint convex if

f<v;7y) Sw’ whenever x,y € I.

Read: f of AM is less than or equal to AM of f.
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Convex functions

Def. A functionf : R" — Ris called convex if its domain dom(f)
is a convex set and for any x,y € dom(f) and A > 0,

F((1 = N+ ) < (1- NF) + M ().

These functions also known as Jensen convex; named after
J.L.W.V. Jensen (after his influential 1905 paper).

Theorem. (J.L.W.V. Jensen). Let f : I — R be continuous. Then, f
is convex if and only if it is midpoint convex.

Exercise: Prove Jensen’s theorem.
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Convex functions: Jensen’s inequality

fOx+ 1 =Ny) <M (x) + (1= Mf(y)
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Convex functions: via gradients
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Convex functions: increasing slopes

T z=Xx+(1=MNy y

slope PQ < slope PR < slope QR
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Recognizing convex functions

& If f is continuous and midpoint convex, then it is convex.

& If f is differentiable, then f is convex 1f and only if domf is
convex and f(x) > f(y) + (Vf(y), x —y) for all x,y € domf.

& If f is twice differentiable, then f is convex if and only if dom f
is convex and V?f(x) = 0 at every x € domf.
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Recognizing convex functions

& If f is continuous and midpoint convex, then it is convex.

& If f is differentiable, then f is convex 1f and only if domf is
convex and f(x) > f(y) + (Vf(y), x —y) for all x,y € domf.

& If f is twice differentiable, then f is convex if and only if dom f
is convex and V?f(x) = 0 at every x € domf.

& By showing f : dom(f) — R is convex if and only if its
restriction to any line that intersects dom(f) is convex. That
is, for any x € dom(f) and any v, the function g(t) = f(x + tv)
is convex (on its domain {t | x + fv € dom(f)}).
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Recognizing convex functions

& If f is continuous and midpoint convex, then it is convex.

& If f is differentiable, then f is convex 1f and only if domf is
convex and f(x) > f(y) + (Vf(y), x —y) for all x,y € domf.

& If f is twice differentiable, then f is convex if and only if dom f
is convex and V?f(x) = 0 at every x € domf.

& By showing f : dom(f) — R is convex if and only if its
restriction to any line that intersects dom(f) is convex. That
is, for any x € dom(f) and any v, the function g(t) = f(x + tv)
is convex (on its domain {t | x + fv € dom(f)}).

& By showing f to be a pointwise max of convex functions

& See exercises (Ch. 3) in Boyd & Vandenberghe for more!
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Example: Quadratic

Let f(x) = xTAx + bTx + ¢, where A = 0,b € R", and c € R.
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Example: Quadratic

Let f(x) = xTAx + bTx + ¢, where A = 0,b € R", and c € R.
What is: V2f(x)?
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Example: Quadratic

Let f(x) = xTAx + bTx + ¢, where A = 0,b € R", and c € R.
What is: V2f(x)?
Vf(x) = 2Ax + b, V*f(x) = A = 0, hence f is convex.
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Examples

Exercise: Prove the convexity of the following functions in at least
two different ways

flx,y) =x*/yfory >00onR x Ry
f(x) = log(1 + eXi%%) on R" (a; € Rfor 1 < i < n).
Using 2 show that

det(X + V)" > det(X)V/" + det(Y)"/"

for X,Y € S | (i.e., positive definite matrices).

Challenge: f(X) = X! on positive definite matrices. (This
question is about convexity/concavity over matrices, so we have to
replace the < by the Lowner order <).
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Operations preserving convexity

Example. Let f : R" — R be convex. Let A € R"*",and b € R™.
Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify!
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Operations preserving convexity

Example. Letf : R” — R be convex. Let A € R"*", and b € R™.
Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify!

Theorem. Letf : I; - Rand g : [, — R, where range(f) C L. If
f and g are convex, and g is increasing, then g o f is convex on I
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Operations preserving convexity

Example. Letf : R” — R be convex. Let A € R"*", and b € R™.
Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify!

Theorem. Letf : I; - Rand g : [, — R, where range(f) C L. If
f and g are convex, and g is increasing, then g o f is convex on I

Proof. Letx,y € I, and let A € (0,1).

fOx+(1=Ny) < M)+ (1 -Nf(y)
S+ (1=Ny) < g(M(x)+ ( )f(y))
< () + 1 - Ng(fy)-

» Check out several other important examples in BV!
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Constructing convex functions: sup

Example. The pointwise maximum of a family of convex functions
is convex. That is, if f(x;y) is a convex function of x for every y
in an arbitrary “index set” ), then

f(x) :=sup f(x;y)

yeY

is a convex function of x.

Exercise: Verify!

Example. The {o-norm ||x||» := maxj<i<y ||

Exercise: Prove that |x| is a convex function.
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Constructing convex functions: joint inf

Theorem. Let ) be a nonempty convex set. Suppose L(x,y) is
convex in both (x,y), then,

f@) = inf - L(x.y)

is a convex function of x, provided f(x) > —oo.
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Constructing convex functions: joint inf

Theorem. Let ) be a nonempty convex set. Suppose L(x,y) is
convex in both (x,y), then,

f@) = inf - L(x.y)

is a convex function of x, provided f(x) > —oo.

Proof. Let u,v € domf. Since f(u) = inf, L(u, y), for each € > 0, there is a
y1 € Y, s.t. f(u) + 5 is not the infimum. Thus, L(u,y1) < f(u) + 5.
Similarly, there is y» € ), such that L(v, y2) < f(v) + 5.

Now we prove that f(Au + (1 — X\)v) < M (1) + (1 — X)f(v) directly.

fOu+1-Nov) = yig)f}L()\u +(1-=Xv,y)

Lwu+ (1 — X))o, Ay + (1 — Ny2)
)‘L(u7.1/1) + (1 - )‘)L(vaz)
M)+ (1= N)f(v) + e

Since € > 0 is arbitrary, claim follows.

ININIA

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning IHT s 21 /59



Example: Schur complement

Let A, B, C be matrices such that C > 0, and let

A B

then the Schur complement A — BC~IBT » 0.
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Example: Schur complement

Let A, B, C be matrices such that C > 0, and let

A B

then the Schur complement A — BC~IBT » 0.
Proof. L(x,y) = [x,y]T Z[x,y] is convex in (x,) since Z = 0
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Example: Schur complement

Let A, B, C be matrices such that C > 0, and let

A B

then the Schur complement A — BC~IBT » 0.
Proof. L(x,y) = [x,y]T Z[x,y] is convex in (x,) since Z = 0

Observe that f(x) = inf, L(x,y) = x" (A — BC~!BT)x is convex.

(We skipped ahead and solved V,L(x,y) = 0 to minimize).

Exercise: Verify the above example!
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Convex functions — Indicator

Let 1x be the indicator function for X defined as:

1e(x) 0 ifxeX,
x) =
v oo otherwise.

Note: 1x(x) is convex if and only if X is convex.

» Also called “extended value” convex function.
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Convex functions — norms

Let Q : R? — R be a function that satisfies
Q(x) > 0, and Q(x) = 0if and only if x = 0 (definiteness)
Q(Ax) = [A|Q(x) for any A € R (positive homogeneity)
Qx+y) < Q(x) + Qy) (subadditivity)

Such function called norms—usually denoted ||x||.

’ Theorem. Norms are convex. ‘
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Convex functions — norms

Let Q : R? — R be a function that satisfies
Q(x) > 0, and Q(x) = 0if and only if x = 0 (definiteness)
Q(Ax) = [A|Q(x) for any A € R (positive homogeneity)
Qx+y) < Q(x) + Qy) (subadditivity)

Such function called norms—usually denoted ||x||.

’ Theorem. Norms are convex. ‘

Often used in “regularized” ML problems

n19in £(0) + u$2(6).
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Norms and distances

Example. Let X be a convex set. Let x € R" be some point. The
distance of x to the set A" is defined as

dist(x, X) := inf |x—yl|.
ist(x, ) == inf lx—yl

Exercise: Prove the above claim.
(Hint: argue that ||x — y|| is jointly convex in (x,y))
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Norms: important examples

Example. ({,-norm): |[x||, = (3, xiz)l/z

Example. (£,-norm): Letp > 1. [|x||, = (3, [x,]")""

Example. ({so-norm): ||x||oc = maxj<i<, |x;|

Example. (Frobenius-norm): Let A € R™". [|Allp := />~ [ajj|?
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Mixed norms

Def. Let x € R 2% #1G be a vector partitioned into subvectors
xj € R, 1<j<G. Letp := (po,p1,p2;---,Pc), where p; > 1.
Consider the vector £ := (|[x1]|p,,- - , | %Gllpc)- Then, we define
the mixed-norm of x as

1%l == 1€ ]lpo-
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Mixed norms

Def. Let x € R 2% #1G be a vector partitioned into subvectors
xj € R, 1<j<G. Letp := (po,p1,p2;---,Pc), where p; > 1.
Consider the vector £ := (|[x1]|p,,- - , | %Gllpc)- Then, we define
the mixed-norm of x as

1%l == 1€ ]lpo-

Example. {1 ;-norm: Let x be as above.

G
Iollg == 3 il

This norm is popular in machine learning, statistics.
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Matrix Norms

Induced norm

Let A € R™*", and let ||-|| be any vector norm. We define an
induced matrix norm as

4] = sup 1221
o 1l
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Matrix Norms

Induced norm

Let A € R™*", and let ||-|| be any vector norm. We define an
induced matrix norm as

4] = sup 1221
o 1l

Verify that above definition yields a norm.
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Matrix Norms

Induced norm

Let A € R™*", and let ||-|| be any vector norm. We define an
induced matrix norm as

x|
]

|A]l := sup
Il 0

’ Verify that above definition yields a norm.
» Clearly, ||A|| = 0iff A = 0 (definiteness)
> [laA]l = [a] |/A]] (homogeneity)

A+B A B
> [|A+ B = sup 147 < sup I < 4] 4+ 8.
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Operator norm

Example. Let A be any matrix. Then, the operator norm of A is

A
Al = sup 12
Iefao 1112

|All2 = 0max(A), where omay is the largest singular value of A.
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Operator norm

Example. Let A be any matrix. Then, the operator norm of A is

A
Al = sup 12
Iefao 1112

|All2 = 0max(A), where omay is the largest singular value of A.

e Warning! Generally, largest eigenvalue not a norm!
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Operator norm

Example. Let A be any matrix. Then, the operator norm of A is

A
Al = sup 12
Iefao 1112

|All2 = omax(A), where omay is the largest singular value of A.

e Warning! Generally, largest eigenvalue not a norm!
o ||Al]; and ||A]|co—max-abs-column and max-abs-row sums.
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Operator norm

Example. Let A be any matrix. Then, the operator norm of A is

A
Al = sup 12
Iefao 1112

|All2 = omax(A), where omay is the largest singular value of A.

e Warning! Generally, largest eigenvalue not a norm!
o ||Al]; and ||A]|co—max-abs-column and max-abs-row sums.
e [|A||, generally NP-Hard to compute for p ¢ {1,2,00}
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Operator norm

Example. Let A be any matrix. Then, the operator norm of A is

A
Al = sup 12
Iefao 1112

|All2 = omax(A), where omay is the largest singular value of A.

Warning! Generally, largest eigenvalue not a norm!

lA]l; and ||A||coc—max-abs-column and max-abs-row sums.

|All, generally NP-Hard to compute for p ¢ {1,2, oo}

Schatten p-norm: £,-norm of vector of singular value.
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Operator norm

Example. Let A be any matrix. Then, the operator norm of A is

A
Al = sup 12
Iefao 1112

|All2 = omax(A), where omay is the largest singular value of A.

Warning! Generally, largest eigenvalue not a norm!

lA]l; and ||A||coc—max-abs-column and max-abs-row sums.
|All, generally NP-Hard to compute for p ¢ {1,2, oo}
Schatten p-norm: £,-norm of vector of singular value.

Exercise: Let o1 > 02 > - -+ > 0,, > 0 be singular values of a matrix
A € R"™*" Prove that

k
Allgy = ., oilA),

isanorm;1 <k <n.
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Proof

Proof. By definition, the largest singular value is defined as

Omax(A) := max |[|Ax|>.
x:|x]|2<1

We saw that norms are convex. We also saw that for convex f,
f(Ax) is also convex. Thus, ||Ax||2 is convex.

Since the pointwise max of convex functions (over arbitrary
index sets) is convex—here we index over x € R".

o

Thus, omax(A) is a norm. It is denoted as ||A|| or just ||A|| —
not to be confused with the Euclidean ¢,-norm of a vector!
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Dual norms

Def. Let ||-|| be a norm on R". Its dual norm is

Jull. = sup {u"x | x| <1}
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Dual norms

Def. Let ||-|| be a norm on R". Its dual norm is

Jull. = sup {u"x | x| <1}

Exercise: Verify that we may write [Jul]. = sup,_ ﬁ
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Dual norms

Def. Let ||-|| be a norm on R". Its dual norm is

Jull. = sup {u"x | x| <1}

Exercise: Verify that we may write ||u||, = sup, 40 ﬁ

T
X
Exercise: Verify that ||u||, is a norm.

> [lu+oll =sup {(u+0v)Tx||x] <1}
» Butsup (A+B) <supA +supB

Exercise: Let 1/p +1/q = 1, where p,q > 1. Show that |[|-||; is
dual to [|-||,. In particular, the /,-norm is self-dual.

Hint: Use Holder’s inequality: u™v < ||ul|,||v||,
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Challenge 2

Consider the following functions on strictly positive variables:

1
hl(x) = ;
1 1 1
hz(X,]/) = ;+g* Xty
h3(x,y,z) = 1—&-1—%1— r 1t 1 !
Y, T x y z x+ty y+z x+z x+ytz

O Prove that h,(x) > 0 (easy)
O Prove that Iy, hy, h3, and in general &, are convex (hard)
O Prove that in fact each 1/h, is concave (harder).
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z):= sup  xTz—f(x).

xedomf

Exercise: Why is f* convex? What if f(x) is nonconvex?

Example. Let f(x) = [|x|. We have f*(z) = 1., <1(z). That is,
conjugate of norm is the indicator function of dual norm ball.
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z):= sup  xTz—f(x).

xedomf

Exercise: Why is f* convex? What if f(x) is nonconvex?

Example. Let f(x) = [|x|. We have f*(z) = 1., <1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

» Consider two cases: (i) ||z]|« > 1; (i) ||z« <1
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z):= sup  xTz—f(x).

xedomf

Exercise: Why is f* convex? What if f(x) is nonconvex?

Example. Let f(x) = [|x|. We have f*(z) = 1., <1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

» Consider two cases: (i) ||z]|« > 1; (i) ||z« <1
» Case (i), by definition of dual norm (sup over z'u) there is a u s.t.
lul| <1land z'u > 1
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z):= sup  xTz—f(x).

xedomf

Exercise: Why is f* convex? What if f(x) is nonconvex?

Example. Let f(x) = [|x|. We have f*(z) = 1., <1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

» Consider two cases: (i) ||z]|« > 1; (i) ||z« <1

» Case (i), by definition of dual norm (sup over z'u) there is a u s.t.
lul| <1land z'u > 1

» f*(z) = sup, x"z — f(x). Rewrite x = au, and let o — oo
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z):= sup  xTz—f(x).

xedomf

Exercise: Why is f* convex? What if f(x) is nonconvex?

Example. Let f(x) = [|x|. We have f*(z) = 1., <1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

» Consider two cases: (i) ||z]|« > 1; (i) ||z« <1

» Case (i), by definition of dual norm (sup over z'u) there is a u s.t.
lul| <1land z'u > 1

» f*(z) = sup, x"z — f(x). Rewrite x = au, and let o — oo

» Then, z'x — ||x|| = azTu — ||au| = a(zTu — ||ul|);
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z):= sup  xTz—f(x).

xedomf

Exercise: Why is f* convex? What if f(x) is nonconvex?

Example. Let f(x) = [|x|. We have f*(z) = 1., <1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

» Consider two cases: (i) ||z]|« > 1; (i) ||z« <1

» Case (i), by definition of dual norm (sup over z'u) there is a u s.t.
lul| <1land z'u > 1

» f*(z) = sup, x"z — f(x). Rewrite x = au, and let o — oo

» Then, z'x — ||x|| = azTu — ||au| = a(zTu — ||ul]); = =
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z):= sup  xTz—f(x).

xedomf

Exercise: Why is f* convex? What if f(x) is nonconvex?

Example. Let f(x) = [|x|. We have f*(z) = 1., <1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

» Consider two cases: (i) ||z]|« > 1; (i) ||z« <1

» Case (i), by definition of dual norm (sup over z'u) there is a u s.t.
lul| <1land z'u > 1

» f*(z) = sup, x"z — f(x). Rewrite x = au, and let o — oo

» Then, z'x — ||x|| = azTu — ||au| = a(zTu — ||ul]); = =

» Case (ii): Since z"x < ||x||||z[|«,
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z):= sup  xTz—f(x).

xedomf

Exercise: Why is f* convex? What if f(x) is nonconvex?

Example. Let f(x) = [|x|. We have f*(z) = 1., <1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

» Consider two cases: (i) ||z]|« > 1; (i) ||z« <1

» Case (i), by definition of dual norm (sup over z'u) there is a u s.t.
lul| <1land z'u > 1

» f*(z) = sup, x"z — f(x). Rewrite x = au, and let o — oo

» Then, z'x — ||x|| = azTu — ||au| = a(zTu — ||ul]); = =

» Case (ii): Since z'x < [|x|[llz]l., x"z— x| < [lx[|(l|zll. — 1) < 0.
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z):= sup  xTz—f(x).

xedomf

Exercise: Why is f* convex? What if f(x) is nonconvex?

Example. Let f(x) = [|x|. We have f*(z) = 1., <1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

» Consider two cases: (i) ||z]|« > 1; (i) ||z« <1

» Case (i), by definition of dual norm (sup over z'u) there is a u s.t.
lul| <1land z'u > 1

» f*(z) = sup, x"z — f(x). Rewrite x = au, and let o — oo

» Then, z'x — ||x|| = azTu — ||au| = a(zTu — ||ul]); = =

» Case (ii): Since z'x < [|x|[llz]l., x"z—|[lx]| < [lx[|(l|zll. —1) <0.

» x = 0 maximizes ||x||(||z]« — 1), hence f(z) = 0.
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z):= sup  xTz—f(x).

xedomf

Exercise: Why is f* convex? What if f(x) is nonconvex?

Example. Let f(x) = [|x|. We have f*(z) = 1., <1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

» Consider two cases: (i) ||z]|« > 1; (i) ||z« <1

» Case (i), by definition of dual norm (sup over z'u) there is a u s.t.
lul| <1land z'u > 1

» f*(z) = sup, x"z — f(x). Rewrite x = au, and let o — oo

» Then, z'x — ||x|| = azTu — ||au| = a(zTu — ||ul]); = =

» Case (ii): Since z'x < [|x|[llz]l., x"z—|[lx]| < [lx[|(l|zll. —1) <0.

» x = 0 maximizes ||x||(||z]« — 1), hence f(z) = 0.

» Thus, f(z) = +oo if (i), and 0 if (ii), as desired.
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Fenchel conjugate

Example. f(x) = ax + b; then,
f*(z) = supzx— (ax+Db)
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Fenchel conjugate

Example. f(x) = ax + b; then,
f*(z) = supzx— (ax+Db)

= oo, Iif(z—a)#0.
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Fenchel conjugate

Example. f(x) = ax + b; then,
f*(z) = supzx— (ax+Db)

= oo, if(z—a)#0.

Thus, domf* = {a}, and f*(a) = —b.
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Fenchel conjugate

Example. f(x) = ax + b; then,
f*(z) = supzx— (ax+Db)

= oo, if(z—a)#0.

Thus, domf* = {a}, and f*(a) = —b.

Example. Leta > 0, and set f(x) = —va? — x2 if x| < a,and +o0
otherwise. Then, f*(z) = av/1 + z2.
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Fenchel conjugate

Example. f(x) = ax + b; then,
f*(z) = supzx— (ax+Db)

= oo, Iif(z—a)#0.

Thus, domf* = {a}, and f*(a) = —b.

Example. Leta > 0, and set f(x) = —va? — x2 if x| < a,and +o0
otherwise. Then, f*(z) = av/1 + z2.

Example. f(x) = %xTAx, where A > 0. Then, f*(z) = %ZTA_lz.
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Fenchel conjugate — exercises

Exercise: If f(x) = max(0,1 — x) (hinge loss) then dom f* is
[—1, 0], and within this domain, f*(z) = z.

’ If f** = f, we say f is a closed convex function. ‘

Exercise: Suppose f(x) = (3, |x;|"/?)%. What is f**?
Exercise: Suppose f(x) = xT Ax + bTx but A = 0; what is f*?

Exercise: For which functions is f* = f?
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Optimization
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Optimization problems

Letf; : R" — R (0 <i < m). Generic nonlinear program

min  fp(x)
s.t.fi(x) <0, 1<i<m,
x € {domfy Ndomf; ---Ndomf,,} .

Henceforth, we drop condition on domains for brevity.
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Optimization problems

Letf; : R" — R (0 <i < m). Generic nonlinear program

min  fp(x)
s.t.fi(x) <0, 1<i<m,
x € {domfy Ndomf; ---Ndomf,,} .

Henceforth, we drop condition on domains for brevity.

If f; are differentiable — smooth optimization

If any f; is non-differentiable — nonsmooth optimization

If all f; are convex — convex optimization

o If m =0, 1i.e., only fj is there — unconstrained minimization
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Convex optimization problems

Standard form

min  fp(x)
st fi) <0, 1<i<m,
Ax=0b
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Convex optimization problems

Standard form

min  fp(x)
st f)<0, 1<i<m,
Ax=0b

Some observations

» All f; are convex
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Convex optimization problems

Standard form

min  fp(x)
st fi) <0, 1<i<m,
Ax=0b

Some observations

» All f; are convex
» Direction of inequality f;(x) < 0 crucial
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Convex optimization problems

Standard form

min  fp(x)
st f)<0, 1<i<m,
Ax=0b

Some observations

» All f; are convex
» Direction of inequality f;(x) < 0 crucial

» The only equality constraints we allow are affine
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Convex optimization problems

Standard form

min  fp(x)
st f)<0, 1<i<m,
Ax=0b

Some observations
» All f; are convex
» Direction of inequality f;(x) < 0 crucial
» The only equality constraints we allow are affine

» This ensures, set of feasible solutions is also convex
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Convex optimization problems

Def. We denote by A’ the feasible set
X :={xeR"|fi(x) <0,1<i<m, Ax =b}.
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Convex optimization problems

Def. We denote by A’ the feasible set
X :={xeR"|fi(x) <0,1<i<m, Ax =b}.

Def. We denote by p* the optimal value of the problem.
p*i=inf{fo(x) | x € X}
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Convex optimization problems

Def. We denote by X' the feasible set
X :={xeR"|fi(x) <0,1<i<m, Ax =b}.

Def. We denote by p* the optimal value of the problem.
p*i=inf{fo(x) | x € X}

» If X is empty, we say problem is infeasible
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Convex optimization problems

Def. We denote by X' the feasible set
X :={xeR"|fi(x) <0,1<i<m, Ax =b}.

Def. We denote by p* the optimal value of the problem.
p*i=inf{fo(x) | x € X}

» If X is empty, we say problem is infeasible
» By convention, we set p* = +oo for infeasible problems
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Convex optimization problems

Def. We denote by X' the feasible set
X :={xeR"|fi(x) <0,1<i<m, Ax =b}.

Def. We denote by p* the optimal value of the problem.
p*i=inf{fo(x) | x € X}

» If X is empty, we say problem is infeasible
» By convention, we set p* = +oo for infeasible problems
» If p* = —o0, we say problem is unbounded below.
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Convex optimization problems

Def. We denote by X" the feasible set
X :={xeR"|fi(x) <0,1<i<m, Ax =b}.

Def. We denote by p* the optimal value of the problem.
p*i=inf{fo(x) | x € X}

» If X is empty, we say problem is infeasible
» By convention, we set p* = +oo for infeasible problems
» If p* = —o0, we say problem is unbounded below.

» Example, minx on R, or min —logx on Ry |
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Convex optimization problems

Def. We denote by X" the feasible set
X :={xeR"|fi(x) <0,1<i<m, Ax =b}.

Def. We denote by p* the optimal value of the problem.
p*i=inf{fo(x) | x € X}

If X is empty, we say problem is infeasible
By convention, we set p* = +oo for infeasible problems

>
>
» If p* = —o0, we say problem is unbounded below.
» Example, minx on R, or min —logx on Ry |

>

Sometimes minimum doesn’t exist (as x — +00)
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Convex optimization problems

Def. We denote by X" the feasible set
X :={xeR"|fi(x) <0,1<i<m, Ax =b}.

Def. We denote by p* the optimal value of the problem.
p*i=inf{fo(x) | x € X}

If X is empty, we say problem is infeasible
By convention, we set p* = +oo for infeasible problems

Example, minx on R, or min —logx on Ry

| 2

>

» If p* = —o0, we say problem is unbounded below.
>

» Sometimes minimum doesn’t exist (as x — +00)
>

Say fo(x) = 0, problem is called convex feasibility
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Optimality

Def. A point x* € X is locally optimal if f(x*) < f(x) for all x in
a neighborhood of x*. Global if f (x*) < f(x) forall x € X.

Theorem. For convex problems, local = global!

Exercise: Prove this theorem (Hint: try contradiction)
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Optimality

Def. A point x* € X is locally optimal if f(x*) < f(x) for all x in
a neighborhood of x*. Global if f (x*) < f(x) forall x € X.

Theorem. For convex problems, local = global!

Exercise: Prove this theorem (Hint: try contradiction)

» Let x" be a local minimizer of f(x) on X that is not global
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Optimality

Def. A point x* € X is locally optimal if f(x*) < f(x) for all x in
a neighborhood of x*. Global if f (x*) < f(x) forall x € X.

Theorem. For convex problems, local = global!

Exercise: Prove this theorem (Hint: try contradiction)

» Let x" be a local minimizer of f(x) on X that is not global
» Then there is a point y € X’ such that f(y) < f(x*)
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Optimality

Def. A point x* € X is locally optimal if f(x*) < f(x) for all x in
a neighborhood of x*. Global if f (x*) < f(x) forall x € X.

Theorem. For convex problems, local = global!

Exercise: Prove this theorem (Hint: try contradiction)

» Let x" be a local minimizer of f(x) on X that is not global
» Then there is a point y € X’ such that f(y) < f(x*)
> Xiscvx,sowehavexs =0y + (1—0)x* € Xford e (0,1)
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Optimality

Def. A point x* € X is locally optimal if f(x*) < f(x) for all x in
a neighborhood of x*. Global if f (x*) < f(x) forall x € X.

Theorem. For convex problems, local = global!

Exercise: Prove this theorem (Hint: try contradiction)

» Let x" be a local minimizer of f(x) on X that is not global
» Then there is a point y € X’ such that f(y) < f(x*)

> Xiscvx,sowehavexs =0y + (1—0)x* € Xford e (0,1)
» Sincef is cvx, and x*,y € domf, we have

flxo) = f(x7) < O(f(y) —f(x")).
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Optimality

Def. A point x* € X is locally optimal if f(x*) < f(x) for all x in
a neighborhood of x*. Global if f (x*) < f(x) forall x € X.

Theorem. For convex problems, local = global!

Exercise: Prove this theorem (Hint: try contradiction)

|
>
>
>

Let x* be a local minimizer of f(x) on A that is not global
Then there is a pointy € X such that f(y) < f(x*)

X is cvx., sowe have xg = 0y + (1 — 0)x™ € X for 6 € (0,1)
Since f is cvx, and x*,y € domf, we have

flxo) = f(x7) < O(f(y) —f(x")).

Since x* is a local minimizer, for small enough 6 > 0, lhs > 0.
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Optimality

Def. A point x* € X is locally optimal if f(x*) < f(x) for all x in
a neighborhood of x*. Global if f (x*) < f(x) forall x € X.

Theorem. For convex problems, local = global!

Exercise: Prove this theorem (Hint: try contradiction)

Let x* be a local minimizer of f(x) on A that is not global
Then there is a pointy € X such that f(y) < f(x*)

X is cvx., sowe have xg = 0y + (1 — 0)x™ € X for 6 € (0,1)
Since f is cvx, and x*,y € domf, we have

flxo) = f(x7) < O(f(y) —f(x")).

Since x* is a local minimizer, for small enough 6 > 0, lhs > 0.

vvyyvyy

v

» But the rhs is negative, which is a contradiction.

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning L [T p—— w40 / 59



First-order optimality conditions

Theorem. Let f : R” — R be continuously differentiable in an
open set S containing x*, a local min of f. Then, Vf(x*) = 0.

Proof: Consider function g(t) = f(x* + td), whered € R"; t > 0.
Since x* is a local min, for small enough t, f(x* + td) > f(x*).
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First-order optimality conditions

Theorem. Let f : R” — R be continuously differentiable in an
open set S containing x*, a local min of f. Then, Vf(x*) = 0.

Proof: Consider function g(t) = f(x* + td), whered € R"; t > 0.
Since x* is a local min, for small enough t, f(x* + td) > f(x*).
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First-order optimality conditions

Theorem. Let f : R” — R be continuously differentiable in an
open set S containing x*, a local min of f. Then, Vf(x*) = 0.

Proof: Consider function g(t) = f(x* + td), whered € R"; t > 0.
Since x* is a local min, for small enough t, f(x* + td) > f(x*).
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First-order optimality conditions

Theorem. Let f : R” — R be continuously differentiable in an
open set S containing x*, a local min of f. Then, Vf(x*) = 0.

Proof: Consider function g(t) = f(x* + td), whered € R"; t > 0.
Since x* is a local min, for small enough t, f(x* + td) > f(x*).
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First-order optimality conditions

Theorem. Let f : R” — R be continuously differentiable in an
open set S containing x*, a local min of f. Then, Vf(x*) = 0.

Proof: Consider function g(t) = f(x* + td), whered € R"; t > 0.
Since x* is a local min, for small enough t, f(x* + td) > f(x*).

0 < pim O+ 1) —F)
t}0 t
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First-order optimality conditions

Theorem. Let f : R” — R be continuously differentiable in an
open set S containing x*, a local min of f. Then, Vf(x*) = 0.

Proof: Consider function g(t) = f(x* + td), whered € R"; t > 0.
Since x* is a local min, for small enough t, f(x* + td) > f(x*).

0 < limf &) —fO) _ dg(0)
o t dt
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First-order optimality conditions

Theorem. Let f : R” — R be continuously differentiable in an
open set S containing x*, a local min of f. Then, Vf(x*) = 0.

Proof: Consider function g(t) = f(x* + td), whered € R"; t > 0.
Since x* is a local min, for small enough t, f(x* + td) > f(x*).

)< lffé‘f(x* +tdt) —f) _ dgd(t()) V. d),
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First-order optimality conditions

Theorem. Let f : R” — R be continuously differentiable in an
open set S containing x*, a local min of f. Then, Vf(x*) = 0.

Proof: Consider function g(t) = f(x* + td), whered € R"; t > 0.
Since x* is a local min, for small enough t, f(x* + td) > f(x*).

0 < limf &) —fO) _ dg(0)
o t dt

— (Vf(x), d).

Similarly, using —d it follows that (Vf(x*), d) <0, so
(Vf(x*), d) = 0 must hold. Since d is arbitrary, Vf(x*) = 0.
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First-order optimality conditions

Theorem. Let f : R” — R be continuously differentiable in an
open set S containing x*, a local min of f. Then, Vf(x*) = 0.

Proof: Consider function g(t) = f(x* + td), whered € R"; t > 0.
Since x* is a local min, for small enough t, f(x* + td) > f(x*).

0 < limf &) —fO) _ dg(0)
o t dt

= (Vf(x"). d).
Similarly, using —d it follows that (Vf(x*), d) <0, so
(Vf(x*), d) = 0 must hold. Since d is arbitrary, Vf(x*) = 0.

Exercise: Prove that if f is convex, then Vf(x*) = 0 is actually
sufficient for global optimality! For general f this is not true.
(This property that makes convex optimization special!)
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Descent methods

min, f(x)
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Descent methods

min, f(x)

\J
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Descent methods
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Descent methods

V(z)

—V[f(z)

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning IIT s 43 /59



Descent methods

Vf(x)

—V f(z)
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Descent methods

Vf(x)

—V f(z)
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Iterative Algorithm

Start with some guess x;
Foreachk =0,1,...
m “Guess” oy and d*
m K xk agdt
m Check when to stop (e.g., if Vf(x**1) ~ 0)
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(Bq}ch) Gradiel}tﬂmethods

M =xkudt, k=0,1,...

m stepsize oy > 0, usually ensures f(x**1) < f(x*)

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning I o 45 /59



(Batch) Gradient methods

M =xkudt, k=0,1,...

m stepsize oy > 0, usually ensures f(x**1) < f(x*)
m Descent direction d* satisfies

(VF(), d) <0
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(Batch) Gradient methods

M =xkudt, k=0,1,...

m stepsize oy > 0, usually ensures f(x**1) < f(x*)
m Descent direction d* satisfies

(VF(), d) <0

Numerous ways to select oy and d*
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(Batch) Gradient methods

M =xkudt, k=0,1,...

m stepsize oy > 0, usually ensures f(x*1) < f(xF)
m Descent direction d satisfies

(Vf(), d) <0

Numerous ways to select ay and d

Usually (batch) methods seek monotonic descent

FOE) < f()
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Gradient methods — direction

Y =xk 4 qudt, k=0,1,...

» Different choices of direction d*
Scaled gradient: d* = —DFVf(x¥), DF = 0
o Newton’s method: (D* = [V2f( k)]*1
Quasi-Newton: DF ~ [V2f(xk)]~!

Steepest descent: D¥ = I

(@]

o

o

-1
Diagonally scaled: D* diagonal with D ~ (‘?Z,ﬁl’;}?)

Discretized Newton: DF = [H(x})]~!, H via finite-diff.

o

o
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Gradient methods — direction

Y =xk 4 qudt, k=0,1,...

» Different choices of direction d*
Scaled gradient: d* = —DFVf(x¥), DF = 0
o Newton’s method: (D* = [V3f(x)]™1)
Quasi-Newton: DF ~ [V2f(xk)]~!
Steepest descent: D¥ = I

(@]

@]

o

-1
Diagonally scaled: D* diagonal with D ~ (‘?Z,ﬁf;}?)

o

Discretized Newton: DF = [H(x})]~!, H via finite-diff.

o

o .

Exercise: Verify that (Vf(x¥), d*) < 0 for above choices
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Gradient methods — stepsize

» Exact: q; := argminf(x* 4+ ad")
a>0
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Gradient methods — stepsize

» Exact: q; := argminf(x* 4+ ad")
a>0

» Limited min: aj = argminf(x* + ad)
0<a<s
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Gradient methods — stepsize

» Exact: q; := argminf(x* 4+ ad")
a>0

» Limited min: aj = argmin f(x* + ad®)
0<a<s

» Armijo-rule. Given fixed scalars, s, 3,0 with 0 < 5 < 1 and
0 < 0 < 1 (chosen experimentally). Set

o = s,
where we try 5™s for m = 0,1, ... until sufficient descent

FO5) = fe+ B7sd") > —op"s(Vf (), d°)

v

Constant: ag = 1/L (for suitable value of L)
» Diminishing: ag — Obut >, ay = oc.

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning IHT s 47 /59



Convergence

Assumption: Lipschitz continuous gradient; denoted f € C}
IVf(x) = VF(y)ll2 < Lllx — yl2
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Convergence

Assumption: Lipschitz continuous gradient; denoted f € C}
IVf(x) = VfW)ll2 < Llix = yll2

& Gradient vectors of closeby points are close to each other
& Objective function has “bounded curvature”

& Speed at which gradient varies is bounded
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Convergence

Assumption: Lipschitz continuous gradient; denoted f € C}
IVf(x) = VfW)ll2 < Llix = yll2
Lemma (Descent). Let f € C}. Then,
fy) < f@) +(Vf (), y =) + 5y — xII3

Theorem. Let f € CI be convex, and {x} is sequence generated
as above, with o, = 1/L. Then, f(x**1) — f(x*) = O(1/k).

Remark: f € C! is “good” for nonconvex too, except for f — f*.
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Strong convexity (faster convergence)

Assumption: Strong convexity; denote f S}_’ 4

fQ) = fy) + (Vf (), x —y) + 5llx — vl3

> A twice diff. f : R — R is convex if and only if
Vx € R, eigenvalues[V2f(x)] > 0.
> A twice diff. f : R — Ris y-strongly convex if and only if

Vx € RY, eigenvalues[V2f(x)] > p.
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Strong convexity (faster convergence)

Assumption: Strong convexity; denote f € S! L

f@) = fy) + (Vf(y), x —y) + 5lx — I3

> A twice diff. f : R — R is convex if and only if
Vx € R, eigenvalues[V2f(x)] > 0.

> A twice diff. f : R — Ris y-strongly convex if and only if
Vx € RY, eigenvalues[V2f(x)] > u

Condition number: > 1 influences convergence speed.

- L
m

Setting oy = ﬁ yields linear rate (4 > 0) for gradient
descent. That is, f(x*) — f(x*) = O(e™*).
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Strong convexity — linear rate

Theorem. If f € S} , 0 < o < 2/(L + p), then the gradient
L, g

method generates a sequence {x*} that satisfies

2aul\*

k_ . *2 H 0_ *
x—x"7<(1- x° —x*||2.
I =l < (1= 227 ) 10 - 2l
Moreover, if &« = 2/(L + p) then

k * L (k-1 % 0 *12
fx) —f<5 7 — x*|3,
2 \k+1

where k = L/ is the condition number.
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Gradient methods —lower bounds

k1 — gk oszf(xk)

Theorem. Lower bound I (Nesterov) For any W eR,and 1 <
k< %(n — 1), there is a smooth f, s.t.

3L[|x% — x*|3

F) ~f0) > “
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Gradient methods —lower bounds

A = ¥k — 0 VF (xF)

Theorem. Lower bound I (Nesterov) For any x° € R”, and 1 <
k< %(n — 1), there is a smooth f, s.t.

3L[|x% — x*|3

F —F0) =

Theorem. Lower bound II (Nesterov). For class of smooth,
strongly convex, i.e., Sff’u (w>0k>1)

2k
f) )2 4 (V) -0l
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Faster methods™
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Optimal gradient methods

& We saw efficiency estimates for the gradient method:

2L||x% — x*|13

1 k *
: — <
feck:  fh-f <=
1 k L(L—n * 0 2
festu:  Sh-r<k(13E) W-rik

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning L] [T - 7 /59



Optimal gradient methods

& We saw efficiency estimates for the gradient method:

2L||x% — x*|13

1 k *
: — <
feck:  fh-f <=
1 k L(L—n * 0 2
festu:  Sh-r<k(13E) W-rik

& We also saw lower complexity bounds

3L[x" — x*|I3

feci: f(xk)—f(X*)Zm
2%
BEc: - f) 2 b (H) 0 - x'J3
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Optimal gradient methods

& Subgradient method upper and lower bounds
fO) = f(x*) < 0(1/Vk)
k * LD
fOO) =f) 2 st

& Composite objective problems: proximal gradient gives
same bounds as gradient methods.
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Gradient with “momentum”

Polyak’s method (aka heavy-ball) forf € 5] ,

xk-l—l — xk o aka(xk) + /Bk(xk o xk—l)
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Gradient with “momentum”

Polyak’s method (aka heavy-ball) for f € Si .
xk-l—l — xk _ aka(xk) + /Bk(xk _ xk—l)

» Converges (locally, i.e., for %0 — x*||]2 <€) as

2k
L _
||xk _ x*H% < (%) ”xo _ x*“%a

2
o 4 . ﬁ—\/ﬁ
for oy = (VI+ /) and [ = (ﬁ—i—\/ﬁ)
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Nesterov’s optimal gradient method

min, f(x), where S}J,# with > 0
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Nesterov’s optimal gradient method

min, f(x), where Si,u with > 0

1. Choose x° € R", ag € (0,1)
2. Lety? < x%setq = p/L
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Nesterov’s optimal gradient method

min, f(x), where Si,u with > 0

1. Choose x° € R", ag € (0,1)
2. Lety? < x%setq = p/L
3. k-th iteration (k > 0):
a). Compute intermediate update

A=y - 1V
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Nesterov’s optimal gradient method

min, f(x), where SLL with > 0

1. Choose x° € R", ag € (0,1)
2. Lety? « x¥;setg = pu/L
3. k-th iteration (k > 0):
a). Compute intermediate update

A=y - 1V
b). Compute stepsize ax41 by solving

2 2
Q1 = (1 — 1) + gagy
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Nesterov’s optimal gradient method

min, f(x), where Sbu with > 0

1. Choose x° € R", ag € (0,1)
2. Lety? « x¥;setg = pu/L
3. k-th iteration (k > 0):
a). Compute intermediate update

A=y - 1V
b). Compute stepsize ax41 by solving
1 = (1= ar1)af + gag

c). Set B = ax(1 — ax)/(af + 1)
d). Update solution estimate

P =
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Optimal gradient method — rate

Theorem. Let {x*} be sequence generated by above algorithm.

If ag > \/p/L, then

£ = F(x*) < o1 min { (1- %)k (2\E4jc2k)2} ,

where constants ¢y, c; depend on «y, L, .
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Strongly convex case — simplification

If n > 0, select ag = / /L. The two main steps get simplified:
1. Set B = ax(1 — ) /(f + xy1)
2. yk-i-l — xk—f—l + 5k(xk+1 . xk)

VI v
ak:\/% 5k:ma k> 0.
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Strongly convex case — simplification

If n > 0, select ag = / /L. The two main steps get simplified:
1. Set B = ax(1 — ) /(f + xy1)
2. yk-i-l — xk—f—l + 5k(xk+1 . xk)
I —
oy = \/% B = M’ k> 0.
VL+ /1
Optimal method simplifies to

1. Choose y° = 2% € R"
2. k-thiteration (k > 0):
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Strongly convex case — simplification

If n > 0, select ag = / /L. The two main steps get simplified:
1. Set B = ax(1 — ) /(f + xy1)
2. yk-i-l — xk—f—l + 5k(xk+1 . xk)

VI v
ak:\/% 5k:ma k> 0.

Optimal method simplifies to
1. Choose y° = 2% € R"
2. k-thiteration (k > 0):

a). ¥ = y* — 1 VF()
b). yk+1 — xk+1 4 B(xkﬂ _ xk)
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Strongly convex case — simplification

If n > 0, select ag = / /L. The two main steps get simplified:
1. Set B = ax(1 — ) /(f + xy1)
2. yk-i-l — xk—f—l + 5k(xk+1 . xk)
I —
oy = \/% B = M’ k> 0.
VL+ /1
Optimal method simplifies to
1. Choose y° = 2% € R"
2. k-thiteration (k > 0):

a). A =yF — IVf(Y)
b). 1 =11 4 B(ak ! — xF)

Notice similarity to Polyak’s method!
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