OPTML++ - Introduction (Meeting 1)

Suvrit Sra

Massachusetts Institute of Technology

OPTML++, Fall 2015

Basic information

- http://suvrit.de/mit/optml++
- Current intersections with
 - 6.883 (Jegelka); 6.S978 (Madry); 18.657 (Rigollet)
 - 9.520 (Poggio); 6.255 (Parrilo); CS229R (Nelson; Harvard)
- Key differences
 - focus (convex, nonconvex, beyond Euclidean)
 - applications, software
 - "bonus" material related to convexity, optimization!
- Typical venues
 - NIPS, ICML, AISTATS, SODA
 - KDD, WWW, CIKM, CVPR, ICLR
 - SIOPT, MathProg, OMS, JOTA
 - SIGMOD, VLDB
 - SISC, SIMAX, IMA JNM,

Outline

- Recap on convexity
- Recap on duality, optimality

Convex analysis

Def. Set $C \subset \mathbb{R}^n$ called **convex**, if for any $x, y \in C$, the line-segment $\theta x + (1 - \theta)y$, where $\theta \in [0, 1]$, also lies in C.

Observations

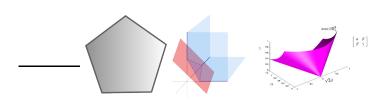
- ▶ Linear: if restrictions on θ_1 , θ_2 are dropped
- ▶ Conic: if restriction $\theta_1 + \theta_2 = 1$ is dropped
- ▶ Convex: $\theta_1 x + \theta_2 y \in C$, where $\theta_1, \theta_2 > 0$ and $\theta_1 + \theta_2 = 1$.

Theorem (Intersection).

Let C_1 , C_2 be convex sets. Then, $C_1 \cap C_2$ is also convex.

Proof.

- \rightarrow If $C_1 \cap C_2 = \emptyset$, then true vacuously.
- \rightarrow Let $x, y \in C_1 \cap C_2$. Then, $x, y \in C_1$ and $x, y \in C_2$.
- \rightarrow But C_1 , C_2 are convex, hence $\theta x + (1 \theta)y \in C_1$, and also in C_2 . Thus, $\theta x + (1 - \theta)y \in C_1 \cap C_2$.
- \rightarrow Inductively follows that $\bigcap_{i=1}^{m} C_i$ is also convex.



(psdcone image from convexoptimization.com, Dattorro)

 \heartsuit Let $x_1, x_2, \ldots, x_m \in \mathbb{R}^n$. Their convex hull is

$$co(x_1,\ldots,x_m):=\left\{\sum_i\theta_ix_i\mid\theta_i\geq0,\sum_i\theta_i=1\right\}.$$

- \heartsuit Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. The set $\{x \mid Ax = b\}$ is convex (it is an *affine space* over subspace of solutions of Ax = 0).
- \heartsuit halfspace $\{x \mid a^T x \leq b\}.$
- \heartsuit polyhedron $\{x \mid Ax \leq b, Cx = d\}.$
- \bigcirc ellipsoid $\{x \mid (x-x_0)^T A(x-x_0) \leq 1\}, (A: semidefinite)$
- \heartsuit convex cone $x \in \mathcal{K} \implies \alpha x \in \mathcal{K}$ for $\alpha \geq 0$ (and \mathcal{K} convex)

Exercise: Verify that these sets are convex.

Challenge 1

Let A, $B \in \mathbb{R}^{n \times n}$ be symmetric. Prove that

$$R(A,B) := \left\{ (x^T A x, x^T B x) \mid x^T x = 1 \right\}$$

is a compact convex set for $n \ge 3$.

Def. Function $f: I \to \mathbb{R}$ on interval I called midpoint convex if

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}$$
, whenever $x, y \in I$.

Read: *f* of AM is less than or equal to AM of *f*.

Def. Function $f: I \to \mathbb{R}$ on interval I called midpoint convex if

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2},$$
 whenever $x, y \in I$.

Read: *f* of AM is less than or equal to AM of *f*.

Think: What is we use other means, e.g., GM-AM, GM-GM?

Def. Function $f: I \to \mathbb{R}$ on interval I called midpoint convex if

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}$$
, whenever $x, y \in I$.

Read: f of AM is less than or equal to AM of f.

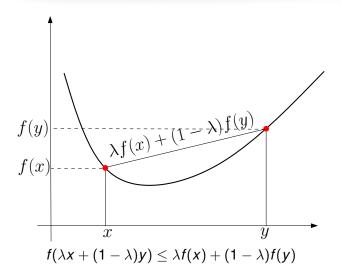
Think: What is we use other means, e.g., GM-AM, GM-GM?

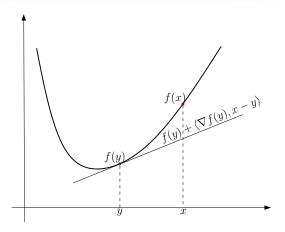
Def. A function $f: \mathbb{R}^n \to \mathbb{R}$ is called **convex** if its domain dom(f)is a convex set and for any $x, y \in dom(f)$ and $\theta \ge 0$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$$

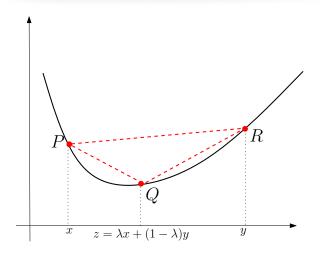
Theorem (J.L.W.V. Jensen). Let $f: I \to \mathbb{R}$ be continuous. Then, fis convex if and only if it is midpoint convex.

 \blacktriangleright Extends to $f: \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R}$; useful for proving convexity.





$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$$



 $\mathsf{slope}\;\mathsf{PQ} \leq \mathsf{slope}\;\mathsf{PR} \leq \mathsf{slope}\;\mathsf{QR}$

Theorem The *pointwise sup* of a family of convex functions is convex. That is, if f(x; y) is a convex function of x for every y in some "index set" \mathcal{Y} , then

$$f(x) := \sup_{y \in \mathcal{Y}} f(x; y)$$

is a convex function of x (set \mathcal{Y} is arbitrary).

Theorem Let \mathcal{Y} be a nonempty convex set. Suppose L(x,y) is convex in (x,y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of x, provided $f(x) > -\infty$.

Theorem Let \mathcal{Y} be a nonempty convex set. Suppose L(x,y) is convex in (x, y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of x, provided $f(x) > -\infty$.

Proof. Let $u, v \in \text{dom } f$. Since $f(u) = \inf_{v} L(u, v)$, for each $\epsilon > 0$, there is a $y_1 \in \mathcal{Y}$, s.t. $f(u) + \frac{\epsilon}{2}$ is not the infimum. Thus, $L(u, y_1) \leq f(u) + \frac{\epsilon}{2}$. Similarly, there is $y_2 \in \mathcal{Y}$, such that $L(v, y_2) < f(v) + \frac{\epsilon}{2}$. Now we prove that $f(\lambda u + (1 - \lambda)v) \leq \lambda f(u) + (1 - \lambda)f(v)$ directly.

$$f(\lambda u + (1 - \lambda)v) = \inf_{y \in \mathcal{Y}} L(\lambda u + (1 - \lambda)v, y)$$

$$\leq L(\lambda u + (1 - \lambda)v, \lambda y_1 + (1 - \lambda)y_2)$$

$$\leq \lambda L(u, y_1) + (1 - \lambda)L(v, y_2)$$

$$\leq \lambda f(u) + (1 - \lambda)f(v) + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, claim follows.

Recognizing convex functions

- ♠ If *f* is continuous and midpoint convex, then it is convex.
- ♠ If *f* is differentiable, then *f* is convex *if and only if* dom *f* is convex and $f(x) \ge f(y) + \langle \nabla f(y), x y \rangle$ for all $x, y \in \text{dom } f$.
- ♠ If *f* is twice differentiable, then *f* is convex *if and only if* dom *f* is convex and $\nabla^2 f(x) \succeq 0$ at every $x \in \text{dom } f$.

Recognizing convex functions

- ♠ If *f* is continuous and midpoint convex, then it is convex.
- ♠ If *f* is differentiable, then *f* is convex *if and only if* dom *f* is convex and $f(x) \ge f(y) + \langle \nabla f(y), x y \rangle$ for all $x, y \in \text{dom } f$.
- ♠ If *f* is twice differentiable, then *f* is convex *if and only if* dom *f* is convex and $\nabla^2 f(x) \succeq 0$ at every $x \in \text{dom } f$.
- \spadesuit By showing f to be a pointwise max of convex functions

Recognizing convex functions

- ♠ If *f* is continuous and midpoint convex, then it is convex.
- ♠ If *f* is differentiable, then *f* is convex *if and only if* dom *f* is convex and $f(x) > f(y) + \langle \nabla f(y), x - y \rangle$ for all $x, y \in \text{dom } f$.
- \spadesuit If f is twice differentiable, then f is convex if and only if dom f is convex and $\nabla^2 f(x) \succ 0$ at every $x \in \text{dom } f$.
- ♠ By showing f to be a pointwise max of convex functions
- \spadesuit By showing $f: dom(f) \to \mathbb{R}$ is convex if and only if its restriction to **any** line that intersects dom(f) is convex. That is, for any $x \in dom(f)$ and any v, the function g(t) = f(x + tv) is convex (on its domain $\{t \mid x + tv \in dom(f)\}\)$.
- ♠ Exercises (Ch. 3) in Boyd & Vandenberghe
- Even more ways exist (may discuss)

Pointwise maximum: $f(x) = \sup_{y \in \mathcal{Y}} f(y; x)$

Conic combination: Let $a_1, \ldots, a_n \ge 0$; let f_1, \ldots, f_n be convex functions. Then, $f(x) := \sum_i a_i f_i(x)$ is convex.

Remark: The set of all convex functions is a convex cone.

Affine composition: f(x) := g(Ax + b), where g is convex.

Theorem Let $f: I_1 \to \mathbb{R}$ and $g: I_2 \to \mathbb{R}$, where range $(f) \subseteq I_2$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_1

Proof. Let
$$x, y \in I_1$$
, and let $\lambda \in (0, 1)$.
$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

Theorem Let $f: I_1 \to \mathbb{R}$ and $g: I_2 \to \mathbb{R}$, where range $(f) \subseteq I_2$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_1

Proof. Let
$$x, y \in I_1$$
, and let $\lambda \in (0, 1)$.
$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

$$g(f(\lambda x + (1 - \lambda)y)) \leq g(\lambda f(x) + (1 - \lambda)f(y))$$

Theorem Let $f: I_1 \to \mathbb{R}$ and $g: I_2 \to \mathbb{R}$, where range $(f) \subseteq I_2$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_1

Proof. Let
$$x, y \in I_1$$
, and let $\lambda \in (0, 1)$.
$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

$$g(f(\lambda x + (1 - \lambda)y)) \leq g(\lambda f(x) + (1 - \lambda)f(y))$$

$$\leq \lambda g(f(x)) + (1 - \lambda)g(f(y)).$$

Convex functions – Indicator

Let $\mathbb{1}_{\mathcal{X}}$ be the *indicator function* for \mathcal{X} defined as:

$$\mathbb{1}_{\mathcal{X}}(x) := \begin{cases} 0 & \text{if } x \in \mathcal{X}, \\ \infty & \text{otherwise.} \end{cases}$$

Note: $\mathbb{1}_{\mathcal{X}}(x)$ is convex **if and only if** \mathcal{X} is convex.

Convex functions – distance

Example Let \mathcal{X} be a convex set. Let $x \in \mathbb{R}^n$ be some point. The distance of x to the set \mathcal{X} is defined as

$$\operatorname{dist}(x,\mathcal{X}) := \inf_{y \in \mathcal{X}} \quad \|x - y\|.$$

Note: because ||x - y|| is jointly convex in (x, y), the function dist(x, y) is a convex function of x.

Convex functions – norms

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function that satisfies

- 1 $f(x) \ge 0$, and f(x) = 0 if and only if x = 0 (definiteness)
- 2 $f(\lambda x) = |\lambda| f(x)$ for any $\lambda \in \mathbb{R}$ (positive homogeneity)
- $f(x + y) \le f(x) + f(y)$ (subadditivity)

Such function called *norms*—usually denoted ||x||.

Theorem Norms are convex.

Some norms

Example
$$(\ell_2$$
-norm): $||x||_2 = (\sum_i x_i^2)^{1/2}$

Example (
$$\ell_p$$
-norm): Let $p \ge 1$. $||x||_p = \left(\sum_i |x_i|^p\right)^{1/p}$

Example
$$(\ell_{\infty}\text{-norm})$$
: $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

Example (Frobenius-norm): Let
$$A \in \mathbb{R}^{m \times n}$$
. $||A||_{\mathsf{F}} := \sqrt{\sum_{ij} |a_{ij}|^2}$

Example Let A be any matrix. Then, the operator norm of A is

$$||A|| := \sup_{\|x\|_2 \neq 0} \frac{||Ax||_2}{\|x\|_2} = \sigma_{\max}(A).$$

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \text{dom } f} x^T z - f(x).$$

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \text{dom } f} x^T z - f(x).$$

Note: f^* is pointwise (over x) sup of linear functions of z. Hence, it is always convex (even if f is not convex).

Example $+\infty$ and $-\infty$ conjugate to each other.

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \text{dom } f} x^T z - f(x).$$

Note: f^* is pointwise (over x) sup of linear functions of z. Hence, it is always convex (even if f is not convex).

Example $+\infty$ and $-\infty$ conjugate to each other.

Example Let f(x) = ||x||. We have $f^*(z) = \mathbb{1}_{\|\cdot\|_* \le 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

Proof. $f^*(z) = \sup_x z^T x - \|x\|$. If $\|z\|_* > 1$, by defn. of the dual norm, $\exists u$ such that $\|u\| \le 1$ and $u^T z > 1$. Now select $x = \alpha u$ and let $\alpha \to \infty$. Then, $z^T x - \|x\| = \alpha (z^T u - \|u\|) \to \infty$. If $\|z\|_* \le 1$, then $z^T x \le \|x\| \|z\|_*$, which implies the sup must be zero.

Example $f(x) = \frac{1}{2}x^T A x$, where A > 0. Then, $f^*(z) = \frac{1}{2}z^T A^{-1}z$.

Example $f(x) = \max(0, 1 - x)$. Verify: dom $f^* = [-1, 0]$, and on this domain, $f^*(z) = z$.

Example $f(x) = \mathbb{1}_{\mathcal{X}}(x)$: $f^*(z) = \sup_{x \in \mathcal{X}} \langle x, z \rangle$ (aka support func)

Challenge 2

Consider the following functions on strictly positive variables:

$$h_1(x) := \frac{1}{x}$$

$$h_2(x,y) := \frac{1}{x} + \frac{1}{y} - \frac{1}{x+y}$$

$$h_3(x,y,z) := \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - \frac{1}{x+y} - \frac{1}{y+z} - \frac{1}{x+z} + \frac{1}{x+y+z}$$

- Prove that h_1 , h_2 , h_3 , and in general h_n are convex!
- Prove that in fact each $1/h_n$ is concave

$$\nabla^2 h_n(x) \succeq 0$$
 is not recommended $\stackrel{\smile}{\smile}$

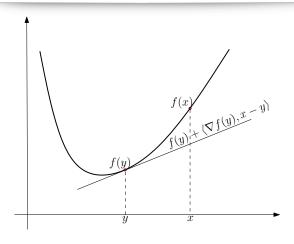
Arose in studying expected random broadcast time in an unreliable star network (I. Affleck, 1994):

$$h_n(x) = E_n[T(x)] := \sum_{\sigma \in S_n} \left(\prod_{i=1}^n \frac{X_{\sigma(i)}}{\sum_{j=i}^n X_{\sigma(j)}} \right) \left(\sum_{i=1}^n \frac{1}{\sum_{j=i}^n X_{\sigma(j)}} \right)$$

Suvrit Sra (MIT)

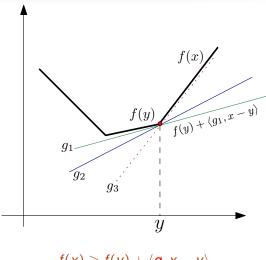
Subgradients

Subgradients: global underestimators



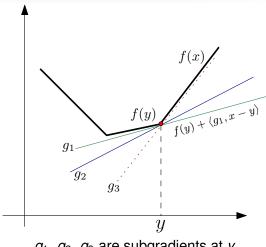
$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$$

Subgradients: global underestimators



$$f(x) \geq f(y) + \langle g, x - y \rangle$$

Subgradients: global underestimators



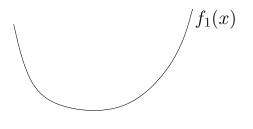
 g_1, g_2, g_3 are subgradients at y

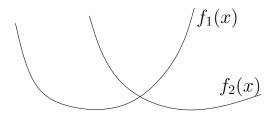
Subgradients – basic facts

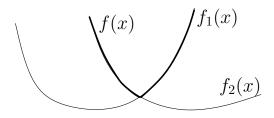
- ▶ f is convex, differentiable: $\nabla f(y)$ the **unique** subgradient at y
- ▶ A vector g is a subgradient at a point y if and only if $f(y) + \langle g, x y \rangle$ is **globally** smaller than f(x).
- ▶ Usually, one subgradient costs approx. as much as f(x)

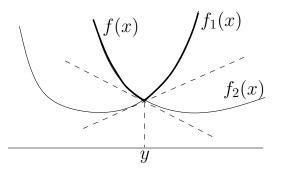
Subgradients – basic facts

- ▶ f is convex, differentiable: $\nabla f(y)$ the **unique** subgradient at y
- ▶ A vector g is a subgradient at a point y if and only if $f(y) + \langle g, x y \rangle$ is **globally** smaller than f(x).
- ▶ Usually, one subgradient costs approx. as much as f(x)
- ▶ Determining all subgradients at a given point difficult.
- ▶ Subgradient calculus—major achievement in convex analysis
- ▶ Fenchel-Young inequality: $f(x) + f^*(s) \ge \langle s, x \rangle$

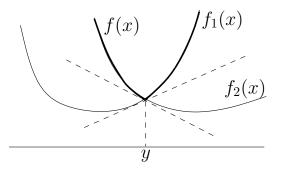




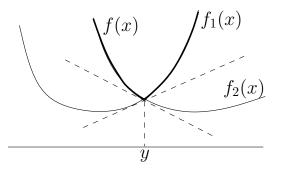




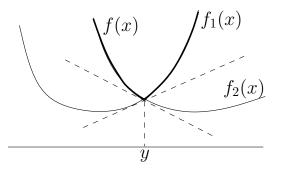
 $f(x) := \max(f_1(x), f_2(x));$ both f_1, f_2 convex, differentiable



* $f_1(x) > f_2(x)$: unique subgradient of f is $f'_1(x)$



- * $f_1(x) > f_2(x)$: unique subgradient of f is $f'_1(x)$
- * $f_1(x) < f_2(x)$: unique subgradient of f is $f'_2(x)$



- * $f_1(x) > f_2(x)$: unique subgradient of f is $f'_1(x)$
- * $f_1(x) < f_2(x)$: unique subgradient of f is $f'_2(x)$
- * $f_1(y) = f_2(y)$: subgradients, the segment $[f'_1(y), f'_2(y)]$ (imagine all supporting lines turning about point y)

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called **subdifferential** of f at y

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called **subdifferential** of f at y

If f is convex, $\partial f(x)$ is nice:

♣ If $x \in$ relative interior of dom f, then $\partial f(x)$ nonempty

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called **subdifferential** of f at y

If f is convex, $\partial f(x)$ is nice:

- ♣ If $x \in$ relative interior of dom f, then $\partial f(x)$ nonempty
- ♣ If *f* differentiable at *x*, then $\partial f(x) = {\nabla f(x)}$

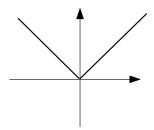
Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called **subdifferential** of f at y

If f is convex, $\partial f(x)$ is nice:

- ♣ If $x \in$ relative interior of dom f, then $\partial f(x)$ nonempty
- \clubsuit If f differentiable at x, then $\partial f(x) = {\nabla f(x)}$
- ♣ If $\partial f(x) = \{g\}$, then f is differentiable and $g = \nabla f(x)$

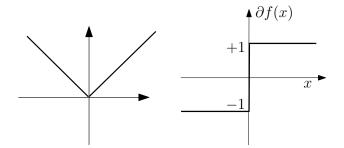
Subdifferential – example

$$f(x) = |x|$$



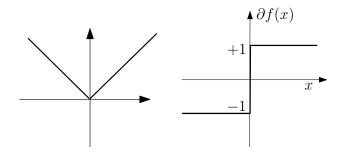
Subdifferential – example

$$f(x) = |x|$$



Subdifferential – example

$$f(x) = |x|$$



$$\partial |x| = \begin{cases} -1 & x < 0, \\ +1 & x > 0, \\ [-1, 1] & x = 0. \end{cases}$$

Example
$$f(x) = ||x||_2$$
. Then,

$$\partial f(x) := egin{cases} x/\|x\|_2 & x \neq 0, \\ \{z \mid \|z\|_2 \leq 1\} & x = 0. \end{cases}$$

Example
$$f(x) = ||x||_2$$
. Then,

$$\partial f(x) := \begin{cases} x/\|x\|_2 & x \neq 0, \\ \{z \mid \|z\|_2 \leq 1\} & x = 0. \end{cases}$$

Proof.

$$||z||_2 \geq ||x||_2 + \langle g, z - x \rangle$$

Example
$$f(x) = ||x||_2$$
. Then,

$$\partial f(x) := \begin{cases} x/\|x\|_2 & x \neq 0, \\ \{z \mid \|z\|_2 \leq 1\} & x = 0. \end{cases}$$

Proof.

$$||z||_2 \ge ||x||_2 + \langle g, z - x \rangle$$

 $||z||_2 \ge \langle g, z \rangle$

Example
$$f(x) = ||x||_2$$
. Then,

$$\partial f(x) := \begin{cases} x/\|x\|_2 & x \neq 0, \\ \{z \mid \|z\|_2 \leq 1\} & x = 0. \end{cases}$$

Proof.

$$||z||_2 \ge ||x||_2 + \langle g, z - x \rangle$$

$$||z||_2 \ge \langle g, z \rangle$$

$$\implies ||g||_2 \le 1.$$

Example A convex function need not be subdifferentiable everywhere. Let

$$f(x) := \begin{cases} -(1 - \|x\|_2^2)^{1/2} & \text{if } \|x\|_2 \le 1, \\ +\infty & \text{otherwise.} \end{cases}$$

f diff. for all x with $||x||_2 < 1$, but $\partial f(x) = \emptyset$ whenever $||x||_2 \ge 1$.

Subdifferential calculus

- \spadesuit Finding one subgradient within $\partial f(x)$
- \spadesuit Determining entire subdifferential $\partial f(x)$ at a point x
- ♠ Do we have the chain rule?

Subdifferential calculus

- If f is differentiable, $\partial f(x) = {\nabla f(x)}$
- Scaling $\alpha > 0$, $\partial(\alpha f)(x) = \alpha \partial f(x) = {\alpha g \mid g \in \partial f(x)}$
- **Addition*:** $\partial(f+k)(x) = \partial f(x) + \partial k(x)$ (set addition)
- **Chain rule*:** Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $f : \mathbb{R}^m \to \mathbb{R}$, and $h : \mathbb{R}^n \to \mathbb{R}$ be given by h(x) = f(Ax + b). Then,

$$\partial h(x) = A^T \partial f(Ax + b).$$

Chain rule*: $h(x) = f \circ k$, where $k : X \to Y$ is diff.

$$\partial h(x) = \partial f(k(x)) \circ Dk(x) = [Dk(x)]^{\mathsf{T}} \partial f(k(x))$$

Max function*: If $f(x) := \max_{1 < i < m} f_i(x)$, then

$$\partial f(x) = \operatorname{conv} \left\{ \int \{ \partial f_i(x) \mid f_i(x) = f(x) \} \right\},$$

convex hull over subdifferentials of "active" functions at x

- **Conjugation:** $z \in \partial f(x)$ if and only if $x \in \partial f^*(z)$
- can fail to hold without precise assumptions.

It can happen that $\partial(f_1 + f_2) \neq \partial f_1 + \partial f_2$

It can happen that $\partial (f_1 + f_2) \neq \partial f_1 + \partial f_2$

Example Define f_1 and f_2 by

$$f_1(x) := egin{cases} -2\sqrt{x} & \text{if } x \geq 0, \\ +\infty & \text{if } x < 0, \end{cases} \quad \text{and} \quad f_2(x) := egin{cases} +\infty & \text{if } x > 0, \\ -2\sqrt{-x} & \text{if } x \leq 0. \end{cases}$$

Then,
$$f = \max\{f_1, f_2\} = \mathbb{1}_{\{0\}}$$
, whereby $\partial f(0) = \mathbb{R}$ But $\partial f_1(0) = \partial f_2(0) = \emptyset$.

It can happen that $\partial(f_1 + f_2) \neq \partial f_1 + \partial f_2$

Example Define f_1 and f_2 by

$$f_1(x) := \begin{cases} -2\sqrt{x} & \text{if } x \geq 0, \\ +\infty & \text{if } x < 0, \end{cases} \quad \text{and} \quad f_2(x) := \begin{cases} +\infty & \text{if } x > 0, \\ -2\sqrt{-x} & \text{if } x \leq 0. \end{cases}$$

Then,
$$f = \max\{f_1, f_2\} = \mathbb{1}_{\{0\}}$$
, whereby $\partial f(0) = \mathbb{R}$ But $\partial f_1(0) = \partial f_2(0) = \emptyset$.

However, $\partial f_1(x) + \partial f_2(x) \subset \partial (f_1 + f_2)(x)$ always holds.

Example
$$f(x) = ||x||_{\infty}$$
. Then,

$$\partial f(0) = \operatorname{conv} \{\pm e_1, \dots, \pm e_n\},\$$

where *e_i* is *i*-th canonical basis vector.

To prove, notice that $f(x) = \max_{1 \le i \le n} \{|e_i^T x|\}$

Then use, *chain rule* and *max rule* and $\partial |\cdot|$

Example – subgradients

$$f(x) := \sup_{y \in \mathcal{Y}} h(x, y)$$

Simple way to obtain some $g \in \partial f(x)$:

Example – subgradients

$$f(x) := \sup_{y \in \mathcal{Y}} h(x, y)$$

Simple way to obtain some $g \in \partial f(x)$:

- ▶ Pick any y^* for which $h(x, y^*) = f(x)$
- ▶ Pick any subgradient $g \in \partial h(x, y^*)$
- ▶ This $g \in \partial f(x)$

$$h(z, y^*) \ge h(x, y^*) + g^T(z - x)$$

 $h(z, y^*) \ge f(x) + g^T(z - x)$

Example – subgradients

$$f(x) := \sup_{y \in \mathcal{Y}} h(x, y)$$

Simple way to obtain some $g \in \partial f(x)$:

- ▶ Pick any y^* for which $h(x, y^*) = f(x)$
- ▶ Pick any subgradient $g \in \partial h(x, y^*)$
- ▶ This $g \in \partial f(x)$

$$h(z, y^*) \ge h(x, y^*) + g^T(z - x)$$

 $h(z, y^*) \ge f(x) + g^T(z - x)$
 $f(z) \ge h(z, y)$ (because of sup)
 $f(z) \ge f(x) + g^T(z - x)$.

Suppose $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$. And

$$f(x) := \max_{1 \le i \le n} (a_i^T x + b_i).$$

(This f is a max over a finite number of terms)

Suppose $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$. And

$$f(x) := \max_{1 \le i \le n} (a_i^T x + b_i).$$

(This f is a max over a finite number of terms)

- $\blacktriangleright \ \text{Let} \ f_k(x) = a_k^T x + b_k$
- ▶ Suppose $f(x) = a_k^T x + b_k$ for some index k
- ▶ Here $\partial f_k(x) = \{\nabla f_k(x)\}$
- ▶ Hence, $a_k \in \partial f(x)$ is a subgradient

Subgradient of expectation

Suppose $f = \mathbf{E}f(x, u)$, where f is convex in x for each u (r.v.)

$$f(x) := \int f(x, u) \rho(u) du$$

Subgradient of expectation

Suppose $f = \mathbf{E}f(x, u)$, where f is convex in x for each u (r.v.)

$$f(x) := \int f(x, u) p(u) du$$

▶ For each u choose any $g(x, u) \in \partial_x f(x, u)$

Subgradient of expectation

Suppose $f = \mathbf{E}f(x, u)$, where f is convex in x for each u (r.v.)

$$f(x) := \int f(x, u) p(u) du$$

- ▶ For each u choose any $g(x, u) \in \partial_x f(x, u)$
- ▶ Then, $g(x) = \int g(x, u)p(u)du = \mathbf{E}g(x, u) \in \partial f(x)$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and nondecreasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and nondecreasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and nondecreasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

To find a vector $g \in \partial f(x)$, we may:

▶ For i = 1 to n, compute $g_i \in \partial f_i(x)$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and nondecreasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

- ▶ For i = 1 to n, compute $g_i \in \partial f_i(x)$
- ▶ Compute $u \in \partial h(f_1(x), \dots, f_n(x))$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and nondecreasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

- ▶ For i = 1 to n, compute $g_i \in \partial f_i(x)$
- ► Compute $u \in \partial h(f_1(x), \dots, f_n(x))$
- ► Set $g = u_1g_1 + u_2g_2 + \cdots + u_ng_n$; this $g \in \partial f(x)$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and nondecreasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

- ▶ For i = 1 to n, compute $g_i \in \partial f_i(x)$
- ► Compute $u \in \partial h(f_1(x), \dots, f_n(x))$
- ► Set $g = u_1g_1 + u_2g_2 + \cdots + u_ng_n$; this $g \in \partial f(x)$
- ▶ Compare with $\nabla f(x) = J \nabla h(x)$, where J matrix of $\nabla f_i(x)$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and nondecreasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

To find a vector $g \in \partial f(x)$, we may:

- ▶ For i = 1 to n, compute $g_i \in \partial f_i(x)$
- ▶ Compute $u \in \partial h(f_1(x), \dots, f_n(x))$
- ► Set $g = u_1g_1 + u_2g_2 + \cdots + u_ng_n$; this $g \in \partial f(x)$
- ▶ Compare with $\nabla f(x) = J \nabla h(x)$, where J matrix of $\nabla f_i(x)$

Exercise: Verify $g \in \partial f(x)$ by showing $f(z) \geq f(x) + g^{T}(z - x)$

Optimization

Optimization problems

Let $f_i : \mathbb{R}^n \to \mathbb{R}$ ($0 \le i \le m$). Generic nonlinear program

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $1 \le i \le m$,
 $x \in \{\operatorname{dom} f_0 \cap \operatorname{dom} f_1 \dots \cap \operatorname{dom} f_m\}$.

Henceforth, we drop condition on domains for brevity.

Optimization problems

Let $f_i : \mathbb{R}^n \to \mathbb{R}$ ($0 \le i \le m$). Generic nonlinear program

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $1 \le i \le m$,
 $x \in \{\operatorname{dom} f_0 \cap \operatorname{dom} f_1 \dots \cap \operatorname{dom} f_m\}$.

Henceforth, we drop condition on domains for brevity.

- If f_i are **differentiable** smooth optimization
- If any f_i is **non-differentiable** nonsmooth optimization
- If all f_i are **convex** convex optimization
- If m = 0, i.e., only f_0 is there unconstrained minimization

Convex optimization

Let \mathcal{X} be feasible set and p^* the optimal value

$$p^* := \inf \{ f_0(x) \mid x \in \mathcal{X} \}$$

Convex optimization

Let \mathcal{X} be feasible set and p^* the optimal value

$$p^* := \inf \left\{ f_0(x) \mid x \in \mathcal{X} \right\}$$

- \blacktriangleright If \mathcal{X} is empty, we say problem is **infeasible**
- ▶ By convention, we set $p^* = +\infty$ for infeasible problems
- ▶ If $p^* = -\infty$, we say problem is **unbounded below**.
- ▶ Example, min x on \mathbb{R} , or min log x on \mathbb{R}_{++}
- ▶ Sometimes minimum doesn't exist (as $x \to \pm \infty$)
- ▶ Say $f_0(x) = 0$, problem is called **convex feasibility**

Optimality

Def. A point $x^* \in \mathcal{X}$ is locally optimal if $f(x^*) \leq f(x)$ for all x in a neighborhood of x^* . Global if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal also globally so.

Optimality

Def. A point $x^* \in \mathcal{X}$ is locally optimal if $f(x^*) \leq f(x)$ for all x in a neighborhood of x^* . Global if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal also globally so.

Theorem Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set S containing x^* , a local minimum of f. Then, $\nabla f(x^*) = 0$.

If f is convex, then $\nabla f(x^*) = 0$ is actually **sufficient** for global optimality! For general f this is **not** true. (This property makes convex optimization special!)

Optimality – constrained

 \spadesuit For every $x, y \in \text{dom } f$, we have $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$.

Optimality – constrained

- \spadesuit For every $x, y \in \text{dom } f$, we have $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$.
- \spadesuit Thus, x^* is optimal if and only if

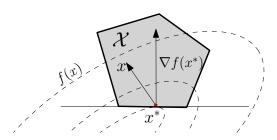
$$\langle \nabla f(x^*), y - x^* \rangle \ge 0,$$
 for all $y \in \mathcal{X}$.

Optimality – constrained

- \spadesuit For every $x, y \in \text{dom } f$, we have $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$.
- \spadesuit Thus, x^* is optimal if and only if

$$\langle \nabla f(x^*), y - x^* \rangle \ge 0,$$
 for all $y \in \mathcal{X}$.

• If $\mathcal{X} = \mathbb{R}^n$, this reduces to $\nabla f(x^*) = 0$



♠ If $\nabla f(x^*) \neq 0$, it defines supporting hyperplane to \mathcal{X} at x^*

Theorem (Fermat's rule): Let
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

$$\operatorname{argmin} f = \operatorname{zer}(\partial f) := \left\{ x \in \mathbb{R}^n \mid 0 \in \partial f(x) \right\}.$$

Theorem (Fermat's rule): Let
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

$$\operatorname{argmin} f = \operatorname{zer}(\partial f) := \left\{ x \in \mathbb{R}^n \mid 0 \in \partial f(x) \right\}.$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^n$.

Theorem (Fermat's rule): Let $f : \mathbb{R}^n \to (-\infty, +\infty]$. Then,

$$\operatorname{argmin} f = \operatorname{zer}(\partial f) := \left\{ x \in \mathbb{R}^n \mid 0 \in \partial f(x) \right\}.$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^n$. Equivalently, $f(y) \geq f(x) + \langle 0, y - x \rangle \quad \forall y$,

Theorem (Fermat's rule): Let $f : \mathbb{R}^n \to (-\infty, +\infty]$. Then,

$$\operatorname{argmin} f = \operatorname{zer}(\partial f) := \left\{ x \in \mathbb{R}^n \mid 0 \in \partial f(x) \right\}.$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^n$. Equivalently, $f(y) \geq f(x) + \langle 0, y - x \rangle \quad \forall y, \leftrightarrow 0 \in \partial f(x)$.

Theorem (Fermat's rule): Let
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

$$\operatorname{argmin} f = \operatorname{zer}(\partial f) := \left\{ x \in \mathbb{R}^n \mid 0 \in \partial f(x) \right\}.$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^n$. Equivalently, $f(y) \geq f(x) + \langle 0, y - x \rangle \quad \forall y, \leftrightarrow 0 \in \partial f(x)$.

Nonsmooth optimality

min
$$f(x)$$
 s.t. $x \in \mathcal{X}$
min $f(x) + \mathbb{1}_{\mathcal{X}}(x)$.

▶ Minimizing x must satisfy: $0 \in \partial (f + 1_{\mathcal{X}})(x)$

- ▶ Minimizing x must satisfy: $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming ri(dom f) \cap ri(\mathcal{X}) $\neq \emptyset$, $0 \in \partial f(x) + \partial \mathbb{1}_X(x)$

- ▶ Minimizing x must satisfy: $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming ri(dom f) \cap ri(\mathcal{X}) $\neq \emptyset$, $0 \in \partial f(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.

- ▶ Minimizing x must satisfy: $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming ri(dom f) \cap ri(\mathcal{X}) $\neq \emptyset$, $0 \in \partial f(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.

- ▶ Minimizing x must satisfy: $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming ri(dom f) \cap ri(\mathcal{X}) \neq \emptyset , $0 \in \partial f(x) + \partial \mathbb{1}_{X}(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.
- Normal cone:

$$\mathcal{N}_{\mathcal{X}}(x) := \left\{ g \in \mathbb{R}^n \mid 0 \ge \langle g, y - x \rangle \quad \forall y \in \mathcal{X} \right\}$$

- ▶ Minimizing x must satisfy: $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming ri(dom f) \cap ri(\mathcal{X}) $\neq \emptyset$, $0 \in \partial f(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.
- ▶ Normal cone:

$$\mathcal{N}_{\mathcal{X}}(x) := \left\{ g \in \mathbb{R}^n \mid 0 \ge \langle g, y - x \rangle \quad \forall y \in \mathcal{X} \right\}$$

Application. $\min f(x)$ s.t. $x \in \mathcal{X}$:

 \diamondsuit If f is diff., we get $0 \in \nabla f(x^*) + \mathcal{N}_{\mathcal{X}}(x^*)$

- ▶ Minimizing x must satisfy: $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming ri(dom f) \cap ri(\mathcal{X}) \neq \emptyset , $0 \in \partial f(x) + \partial \mathbb{1}_{X}(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.
- ▶ Normal cone:

$$\mathcal{N}_{\mathcal{X}}(x) := \left\{ g \in \mathbb{R}^n \mid 0 \ge \langle g, y - x \rangle \quad \forall y \in \mathcal{X} \right\}$$

Application. $\min f(x)$ s.t. $x \in \mathcal{X}$:

- \diamondsuit If f is diff., we get $0 \in \nabla f(x^*) + \mathcal{N}_{\mathcal{X}}(x^*)$
- $\Diamond -\nabla f(x^*) \in \mathcal{N}_{\mathcal{X}}(x^*) \Longleftrightarrow \langle \nabla f(x^*), y x^* \rangle \geq 0 \text{ for all } y \in \mathcal{X}.$

Optimality – projection operator

$$P_{\mathcal{X}}(y) := \operatorname*{argmin}_{x \in \mathcal{X}} \|x - y\|^2$$

(Assume $\mathcal X$ is closed and convex, then projection is unique) Let $\mathcal X$ be nonempty, closed and convex.

■ Optimality condition: $x^* = P_{\mathcal{X}}(y)$ iff

$$\langle x^* - y, z - x^* \rangle \ge 0$$
 for all $z \in \mathcal{X}$

Projection is nonexpansive:

$$||P_{\mathcal{X}}(x) - P_{\mathcal{X}}(y)||^2 < ||x - y||^2$$
 for all $x, y \in \mathbb{R}^n$.

Optimality – projection operator

$$P_{\mathcal{X}}(y) := \operatorname*{argmin}_{x \in \mathcal{X}} \|x - y\|^2$$

(Assume $\mathcal X$ is closed and convex, then projection is unique) Let $\mathcal X$ be nonempty, closed and convex.

■ Optimality condition: $x^* = P_{\mathcal{X}}(y)$ iff

$$\langle x^* - y, z - x^* \rangle \ge 0$$
 for all $z \in \mathcal{X}$

Projection is nonexpansive:

$$\|P_{\mathcal{X}}(x) - P_{\mathcal{X}}(y)\|^2 \le \|x - y\|^2$$
 for all $x, y \in \mathbb{R}^n$.

Proof: Exercise!

Duality

Primal problem

Let $f_i : \mathbb{R}^n \to \mathbb{R}$ ($0 \le i \le m$). Generic nonlinear program

$$\begin{aligned} & \min \quad f_0(x) \\ & \text{s.t. } f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & x \in \{ \text{dom } f_0 \cap \text{dom } f_1 \cdots \cap \text{dom } f_m \} \,. \end{aligned}$$

Def. Domain: The set $\mathcal{D} := \{ \text{dom } f_0 \cap \text{dom } f_1 \cdots \cap \text{dom } f_m \}$

- ► We call (*P*) the **primal problem**
- ► The variable *x* is the **primal variable**
- ▶ We will attach to (P) a dual problem
- ▶ In our initial derivation: no restriction to convexity.

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$,

$$\mathcal{L}(x,\lambda) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

 \blacktriangle Variables $\lambda \in \mathbb{R}^m$ called Lagrange multipliers

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$,

$$\mathcal{L}(x,\lambda) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

- \blacktriangle Variables $\lambda \in \mathbb{R}^m$ called Lagrange multipliers
- Suppose x is feasible, and $\lambda \ge 0$. Then, we get the lower-bound:

$$f_0(x) \ge \mathcal{L}(x,\lambda) \qquad \forall x \in \mathcal{X}, \ \lambda \in \mathbb{R}_+^m.$$

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$,

$$\mathcal{L}(x,\lambda) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

- ♠ Variables $\lambda \in \mathbb{R}^m$ called Lagrange multipliers
- Suppose x is feasible, and $\lambda \ge 0$. Then, we get the lower-bound:

$$f_0(x) \ge \mathcal{L}(x,\lambda) \qquad \forall x \in \mathcal{X}, \ \lambda \in \mathbb{R}_+^m.$$

♠ Lagrangian helps write problem in unconstrained form

Lagrange dual function

Def. We define the Lagrangian dual as

$$g(\lambda) := \inf_{x} \quad \mathcal{L}(x,\lambda).$$

Lagrange dual function

Def. We define the Lagrangian dual as

$$g(\lambda) := \inf_{X} \mathcal{L}(X, \lambda).$$

Observations:

- ightharpoonup g is pointwise inf of affine functions of λ
- ▶ Thus, g is concave; it may take value $-\infty$

Lagrange dual function

Def. We define the Lagrangian dual as

$$g(\lambda) := \inf_{X} \mathcal{L}(X, \lambda).$$

Observations:

- ightharpoonup g is pointwise inf of affine functions of λ
- ▶ Thus, g is concave; it may take value $-\infty$
- ▶ Recall: $f_0(x) \ge \mathcal{L}(x,\lambda) \quad \forall x \in \mathcal{X}$; thus
- $\blacktriangleright \ \forall x \in \mathcal{X}, \quad f_0(x) \geq \inf_{x'} \mathcal{L}(x', \lambda) = g(\lambda)$
- ▶ Now minimize over *x* on lhs, to obtain

$$\forall \lambda \in \mathbb{R}^m_+ \quad p^* \geq g(\lambda).$$

Lagrange dual problem

$$\sup_{\lambda} g(\lambda) \qquad \text{s.t. } \lambda \geq 0.$$

Lagrange dual problem

$$\sup_{\lambda} g(\lambda) \qquad \text{s.t. } \lambda \geq 0.$$

- ▶ dual feasible: if $\lambda \ge 0$ and $g(\lambda) > -\infty$
- **dual optimal:** λ^* if sup is achieved
- ▶ Lagrange dual is always concave, regardless of original

Weak duality

Def. Denote **dual optimal value** by d^* , i.e.,

$$d^* := \sup_{\lambda > 0} g(\lambda).$$

Weak duality

Def. Denote **dual optimal value** by d^* , i.e.,

$$d^* := \sup_{\lambda > 0} g(\lambda).$$

Theorem (Weak-duality): For problem (P), we have $p^* \geq d^*$.

Weak duality

Def. Denote dual optimal value by d^* , i.e.,

$$d^* := \sup_{\lambda \geq 0} g(\lambda).$$

Theorem (Weak-duality): For problem (P), we have $p^* \geq d^*$.

Proof: We showed that for all $\lambda \in \mathbb{R}_+^m$, $p^* \geq g(\lambda)$. Thus, it follows that $p^* > \sup g(\lambda) = d^*$.

Duality gap

$$p^* - d^* \ge 0$$

Duality gap

$$p^* - d^* \ge 0$$

Strong duality if duality gap is zero: $p^* = d^*$ Notice: both p^* and d^* may be $+\infty$

Duality gap

$$p^* - d^* \ge 0$$

Strong duality if duality gap is zero: $p^* = d^*$ Notice: both p^* and d^* may be $+\infty$

Several **sufficient** conditions known!

"Easy" necessary and sufficient conditions: unknown

Zero duality gap: nonconvex example

Trust region subproblem (TRS)

$$\min \quad x^T A x + 2b^T x \qquad x^T x < 1.$$

A is symmetric but not necessarily semidefinite!

Theorem TRS always has zero duality gap.

$$\min_{x,y} e^{-x} \quad x^2/y \leq 0,$$

over the domain $\mathcal{D} = \{(x, y) \mid y > 0\}.$

$$\min_{x,y} e^{-x} \quad x^2/y \le 0,$$

over the domain $\mathcal{D} = \{(x, y) \mid y > 0\}$. Clearly, only feasible x = 0. So $p^* = 1$

$$\min_{x,y} e^{-x} \quad x^2/y \le 0,$$

over the domain $\mathcal{D} = \{(x, y) \mid y > 0\}$. Clearly, only feasible x = 0. So $p^* = 1$

$$\mathcal{L}(x, y, \lambda) = e^{-x} + \lambda x^2 / y,$$

so dual function is

$$g(\lambda) = \inf_{x,y>0} e^{-x} + \lambda x^2 y = \begin{cases} 0 & \lambda \ge 0 \\ -\infty & \lambda < 0. \end{cases}$$

$$\min_{x,y} e^{-x} \quad x^2/y \le 0,$$

over the domain $\mathcal{D} = \{(x, y) \mid y > 0\}$. Clearly, only feasible x = 0. So $p^* = 1$

$$\mathcal{L}(x, y, \lambda) = e^{-x} + \lambda x^2 / y,$$

so dual function is

$$g(\lambda) = \inf_{x,y>0} e^{-x} + \lambda x^2 y = \begin{cases} 0 & \lambda \ge 0 \\ -\infty & \lambda < 0. \end{cases}$$

Dual problem

$$d^* = \max_{\lambda} 0$$
 s.t. $\lambda \ge 0$.

Thus, $d^* = 0$, and gap is $p^* - d^* = 1$.

$$\min_{x,y} e^{-x} \quad x^2/y \le 0,$$

over the domain $\mathcal{D} = \{(x, y) \mid y > 0\}$. Clearly, only feasible x = 0. So $p^* = 1$

$$\mathcal{L}(x, y, \lambda) = e^{-x} + \lambda x^2/y,$$

so dual function is

$$g(\lambda) = \inf_{x,y>0} e^{-x} + \lambda x^2 y = \begin{cases} 0 & \lambda \ge 0 \\ -\infty & \lambda < 0. \end{cases}$$

Dual problem

$$d^* = \max_{\lambda} 0$$
 s.t. $\lambda \ge 0$.

Thus, $d^* = 0$, and gap is $p^* - d^* = 1$. Here, we had no strictly feasible solution.

Support vector machine

$$\min_{x,\xi} \quad \frac{1}{2} ||x||_2^2 + C \sum_{i} \xi_i
\text{s.t.} \quad Ax \ge 1 - \xi, \quad \xi \ge 0.$$

Support vector machine

$$\min_{x,\xi} \quad \frac{1}{2} \|x\|_{2}^{2} + C \sum_{i} \xi_{i}$$
s.t. $Ax \ge 1 - \xi$, $\xi \ge 0$.
$$L(x,\xi,\lambda,\nu) = \frac{1}{2} \|x\|_{2}^{2} + C\mathbf{1}^{T} \xi - \lambda^{T} (Ax - 1 + \xi) - \nu^{T} \xi$$

Support vector machine

$$\begin{aligned} \min_{x,\xi} \quad & \frac{1}{2} \|x\|_2^2 + C \sum_i \xi_i \\ \text{s.t.} \quad & Ax \geq 1 - \xi, \quad \xi \geq 0. \\ L(x,\xi,\lambda,\nu) &= \frac{1}{2} \|x\|_2^2 + C \mathbf{1}^T \xi - \lambda^T (Ax - 1 + \xi) - \nu^T \xi \\ g(\lambda,\nu) &:= & \inf L(x,\xi,\lambda,\nu) \\ &= \begin{cases} \lambda^T \mathbf{1} - \frac{1}{2} \|A^T \lambda\|_2^2 & \lambda + \nu = C \mathbf{1} \\ +\infty & \text{otherwise} \end{cases} \\ d^* &= & \max_{\lambda \geq 0, \nu \geq 0} g(\lambda,\nu) \end{aligned}$$

Exercise: Using $\nu \geq 0$, eliminate ν from above problem.

$$\inf_{x \in \mathcal{X}} f(x) + r(Ax) \quad \text{s.t. } Ax \in \mathcal{Y}.$$

$$\inf_{x\in\mathcal{X}} \quad f(x)+r(Ax) \quad \text{s.t. } Ax\in\mathcal{Y}.$$

Dual problem

$$\inf_{u\in\mathcal{Y}} \quad f^*(-A^T u) + r^*(u).$$

$$\inf_{x \in \mathcal{X}} f(x) + r(Ax)$$
 s.t. $Ax \in \mathcal{Y}$.

Dual problem

$$\inf_{u\in\mathcal{V}} f^*(-A^T u) + r^*(u).$$

▶ Introduce new variable z = Ax

$$\inf_{x \in \mathcal{X}, z \in \mathcal{Y}} f(x) + r(z), \quad \text{s.t.} \quad z = Ax.$$

$$\inf_{x \in \mathcal{X}} f(x) + r(Ax)$$
 s.t. $Ax \in \mathcal{Y}$.

Dual problem

$$\inf_{u\in\mathcal{Y}} \quad f^*(-A^T u) + r^*(u).$$

▶ Introduce new variable z = Ax

$$\inf_{x \in \mathcal{X}, z \in \mathcal{Y}} f(x) + r(z), \quad \text{s.t.} \quad z = Ax.$$

► The (partial)-Lagrangian is

$$L(x,z;u) := f(x) + r(z) + u^{T}(Ax - z), \quad x \in \mathcal{X}, z \in \mathcal{Y};$$

$$\inf_{x \in \mathcal{X}} f(x) + r(Ax)$$
 s.t. $Ax \in \mathcal{Y}$.

Dual problem

$$\inf_{u\in\mathcal{Y}} f^*(-A^T u) + r^*(u).$$

▶ Introduce new variable z = Ax

$$\inf_{x \in \mathcal{X}, z \in \mathcal{Y}} f(x) + r(z), \quad \text{s.t.} \quad z = Ax.$$

► The (partial)-Lagrangian is

$$L(x, z; u) := f(x) + r(z) + u^{T}(Ax - z), \quad x \in \mathcal{X}, z \in \mathcal{Y};$$

► Associated dual function

$$g(u) := \inf_{x \in \mathcal{X}, z \in \mathcal{V}} L(x, z; u).$$

$$\inf_{x \in \mathcal{X}} \quad f(x) + r(Ax) \quad \text{s.t. } Ax \in \mathcal{Y}.$$

$$\begin{array}{c} \textbf{Dual problem} \\ \inf_{y \in \mathcal{Y}} \quad f^*(-A^T y) + r^*(y). \end{array}$$

The infimum above can be rearranged as follows

$$g(y) = \inf_{x \in \mathcal{X}} f(x) + y^T A x + \inf_{z \in \mathcal{V}} r(z) - y^T z$$

$$\inf_{\mathbf{x} \in \mathcal{X}} \quad f(\mathbf{x}) + r(A\mathbf{x}) \quad \text{s.t. } A\mathbf{x} \in \mathcal{Y}.$$

$$\mathbf{Dual \ problem} \\ \inf_{\mathbf{y} \in \mathcal{Y}} \quad f^*(-A^T\mathbf{y}) + r^*(\mathbf{y}).$$

The infimum above can be rearranged as follows

$$g(y) = \inf_{x \in \mathcal{X}} f(x) + y^T A x + \inf_{z \in \mathcal{Y}} r(z) - y^T z$$
$$= -\sup_{x \in \mathcal{X}} \left\{ -x^T A^T y - f(x) \right\} - \sup_{z \in \mathcal{Y}} \left\{ z^T y - r(z) \right\}$$

$$\inf_{x \in \mathcal{X}} f(x) + r(Ax) \quad \text{s.t. } Ax \in \mathcal{Y}.$$

$$\mathsf{Dual \ problem}$$

$$\inf_{y \in \mathcal{Y}} f^*(-A^T y) + r^*(y).$$

The infimum above can be rearranged as follows

$$g(y) = \inf_{x \in \mathcal{X}} f(x) + y^T A x + \inf_{z \in \mathcal{Y}} r(z) - y^T z$$

$$= -\sup_{x \in \mathcal{X}} \left\{ -x^T A^T y - f(x) \right\} - \sup_{z \in \mathcal{Y}} \left\{ z^T y - r(z) \right\}$$

$$= -f^*(-A^T y) - r^*(y) \quad \text{s.t. } y \in \mathcal{Y}.$$

$$\inf_{\substack{x \in \mathcal{X}}} f(x) + r(Ax) \quad \text{s.t. } Ax \in \mathcal{Y}.$$

$$\underset{\substack{\text{ond problem} \\ y \in \mathcal{Y}}}{\text{Dual problem}}$$

The infimum above can be rearranged as follows

$$g(y) = \inf_{x \in \mathcal{X}} f(x) + y^T A x + \inf_{z \in \mathcal{Y}} r(z) - y^T z$$

$$= -\sup_{x \in \mathcal{X}} \left\{ -x^T A^T y - f(x) \right\} - \sup_{z \in \mathcal{Y}} \left\{ z^T y - r(z) \right\}$$

$$= -f^*(-A^T y) - r^*(y) \quad \text{s.t. } y \in \mathcal{Y}.$$

Dual problem computes $\sup_{u \in \mathcal{V}} g(u)$; so equivalently,

$$\inf_{\mathbf{y}\in\mathcal{Y}} f^*(-\mathbf{A}^T\mathbf{y}) + r^*(\mathbf{y}).$$

Strong duality

$$\inf_{x} \{ f(x) + r(Ax) \} = \sup_{y} \left\{ -f^{*}(-A^{T}y) + r^{*}(y) \right\}$$

if either of the following conditions holds:

Strong duality

$$\inf_{x} \{ f(x) + r(Ax) \} = \sup_{y} \{ -f^{*}(-A^{T}y) + r^{*}(y) \}$$

if either of the following conditions holds:

- $\exists x \in ri(dom f)$ such that $Ax \in ri(dom r)$
- $\exists y \in ri(dom r^*)$ such that $A^T y \in ri(dom f^*)$

Strong duality

$$\inf_{x} \{ f(x) + r(Ax) \} = \sup_{y} \{ -f^{*}(-A^{T}y) + r^{*}(y) \}$$

if either of the following conditions holds:

- $\exists x \in ri(dom f)$ such that $Ax \in ri(dom r)$
- $\exists y \in ri(dom r^*)$ such that $A^T y \in ri(dom f^*)$
 - Condition 1 ensures 'inf' attained at some x
 - Condition 2 ensures 'sup' attained at some y

Example: norm regularized problems

min
$$f(x) + ||Ax||$$

Example: norm regularized problems

min
$$f(x) + ||Ax||$$

Dual problem

$$\min_{y} f^*(-A^T y)$$
 s.t. $||y||_* \le 1$.

Example: norm regularized problems

$$min \quad f(x) + ||Ax||$$

Dual problem

$$\min_{y} \quad f^*(-A^T y) \quad \text{s.t. } ||y||_* \le 1.$$

Say $\|\bar{y}\|_* < 1$, such that $A^T \bar{y} \in ri(\text{dom } f^*)$, then we have strong duality (e.g., for instance $0 \in ri(\text{dom } f^*)$)

$$min f(x) + g(x)$$

min
$$f(x) + g(x)$$

Exercise: Fill in the details below

$$\min_{x,z} f(x) + g(z)$$
 s.t. $x = z$

$$min \quad f(x) + g(x)$$

Exercise: Fill in the details below

$$\min_{x,z} f(x) + g(z) \quad \text{s.t.} \quad x = z$$

$$L(x, z, \nu) = f(x) + g(z) + \nu^{T}(x - z)$$

$$min \quad f(x) + g(x)$$

Exercise: Fill in the details below

$$\min_{x,z} f(x) + g(z) \quad \text{s.t.} \quad x = z$$

$$L(x, z, \nu) = f(x) + g(z) + \nu^{T}(x - z)$$

$$g(\nu) = \inf_{x, z} L(x, z, \nu)$$

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{\pm \infty\}$ be any function. Then,

$$\sup_{\mathbf{y} \in \mathcal{Y}} \inf_{\mathbf{x} \in \mathcal{X}} \phi(\mathbf{x}, \mathbf{y}) \quad \leq \quad \inf_{\mathbf{x} \in \mathcal{X}} \sup_{\mathbf{y} \in \mathcal{Y}} \phi(\mathbf{x}, \mathbf{y})$$

Theorem Let
$$\phi: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{\pm \infty\}$$
 be any function. Then,

$$\sup_{\mathbf{y} \in \mathcal{Y}} \inf_{\mathbf{x} \in \mathcal{X}} \phi(\mathbf{x}, \mathbf{y}) \leq \inf_{\mathbf{x} \in \mathcal{X}} \sup_{\mathbf{y} \in \mathcal{Y}} \phi(\mathbf{x}, \mathbf{y})$$

$$\forall x, y, \quad \inf_{x' \in \mathcal{X}} \phi(x', y) \leq \phi(x, y)$$

Theorem Let
$$\phi: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{\pm \infty\}$$
 be any function. Then,

$$\sup_{\mathbf{y} \in \mathcal{Y}} \inf_{\mathbf{x} \in \mathcal{X}} \phi(\mathbf{x}, \mathbf{y}) \quad \leq \quad \inf_{\mathbf{x} \in \mathcal{X}} \sup_{\mathbf{y} \in \mathcal{Y}} \phi(\mathbf{x}, \mathbf{y})$$

$$\forall x, y, \quad \inf_{x' \in \mathcal{X}} \phi(x', y) \leq \phi(x, y)$$

$$\forall x, y, \quad \inf_{x' \in \mathcal{X}} \phi(x', y) \leq \sup_{y' \in \mathcal{Y}} \phi(x, y')$$

Theorem Let
$$\phi: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{\pm \infty\}$$
 be any function. Then,

$$\sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} \phi(x, y) \leq \inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \phi(x, y)$$

$$\forall x, y, \quad \inf_{x' \in \mathcal{X}} \phi(x', y) \leq \phi(x, y)$$

$$\forall x, y, \quad \inf_{x' \in \mathcal{X}} \phi(x', y) \leq \sup_{y' \in \mathcal{Y}} \phi(x, y')$$

$$\forall x, \quad \sup_{y \in \mathcal{Y}} \inf_{x' \in \mathcal{X}} \phi(x', y) \leq \sup_{y' \in \mathcal{Y}} \phi(x, y')$$

Theorem Let
$$\phi: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{\pm \infty\}$$
 be any function. Then,

$$\sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} \phi(x, y) \leq \inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \phi(x, y)$$

$$\forall x, y, \quad \inf_{x' \in \mathcal{X}} \phi(x', y) \leq \phi(x, y)$$

$$\forall x, y, \quad \inf_{x' \in \mathcal{X}} \phi(x', y) \leq \sup_{y' \in \mathcal{Y}} \phi(x, y')$$

$$\forall x, \quad \sup_{y \in \mathcal{Y}} \inf_{x' \in \mathcal{X}} \phi(x', y) \leq \sup_{y' \in \mathcal{Y}} \phi(x, y')$$

$$\Longrightarrow \quad \sup_{y \in \mathcal{Y}} \inf_{x' \in \mathcal{X}} \phi(x', y) \leq \inf_{x \in \mathcal{X}} \sup_{y' \in \mathcal{Y}} \phi(x, y').$$

Primal-dual: strong minimax

- ▶ If "inf sup = sup inf", common value called saddle-value
- ▶ Value exists if there is a **saddle-point**, i.e., pair (x^*, y^*)

$$\phi(x, y^*) \ge \phi(x^*, y^*) \ge \phi(x^*, y)$$
 for all $x \in \mathcal{X}, y \in \mathcal{Y}$.

Def. Let ϕ be as before. A point (x^*, y^*) is a saddle-point of ϕ (min over \mathcal{X} and max over \mathcal{Y}) iff the infimum in the expression

$$\inf_{\mathbf{x} \in \mathcal{X}} \sup_{\mathbf{y} \in \mathcal{Y}} \phi(\mathbf{x}, \mathbf{y})$$

is **attained** at x^* , and the supremum in the expression

$$\sup_{\mathbf{y} \in \mathcal{Y}} \inf_{\mathbf{x} \in \mathcal{X}} \phi(\mathbf{x}, \mathbf{y})$$

is **attained** at y^* , and these two extrema are equal.

Primal-dual: strong minimax

- ▶ If "inf sup = sup inf", common value called saddle-value
- ▶ Value exists if there is a **saddle-point**, i.e., pair (x^*, y^*)

$$\phi(x, y^*) \ge \phi(x^*, y^*) \ge \phi(x^*, y)$$
 for all $x \in \mathcal{X}, y \in \mathcal{Y}$.

Def. Let ϕ be as before. A point (x^*, y^*) is a saddle-point of ϕ (min over \mathcal{X} and max over \mathcal{Y}) iff the infimum in the expression

$$\inf_{\mathbf{x} \in \mathcal{X}} \sup_{\mathbf{y} \in \mathcal{Y}} \phi(\mathbf{x}, \mathbf{y})$$

is attained at x*, and the supremum in the expression

$$\sup_{\mathbf{y} \in \mathcal{Y}} \inf_{\mathbf{x} \in \mathcal{X}} \phi(\mathbf{x}, \mathbf{y})$$

is **attained** at y^* , and these two extrema are equal.

$$x^* \in \operatorname*{argmin} \max_{x \in \mathcal{X}} \phi(x, y) \qquad y^* \in \operatorname*{argmax} \min_{y \in \mathcal{Y}} \phi(x, y).$$

Sufficient conditions for saddle-point

 \spadesuit Classes of problems "dual" to each other can be generated by studying classes of functions ϕ ,

Sufficient conditions for saddle-point

- \spadesuit Classes of problems "dual" to each other can be generated by studying classes of functions ϕ ,
- \spadesuit More interesting question: Starting from the primal problem over \mathcal{X} , how to introduce a space \mathcal{Y} and a "useful" function ϕ on $\mathcal{X} \times \mathcal{Y}$ so that we have a saddle-point?
- \blacktriangleright Function ϕ is continuous, and
- ▶ It is convex-concave $(\phi(\cdot, y)$ convex for every $y \in \mathcal{Y}$, and $\phi(x, \cdot)$ concave for every $x \in \mathcal{X}$), and
- ▶ Both \mathcal{X} and \mathcal{Y} are convex; one of them is compact.

$$p^* := \min_x \|Ax - b\|_2 + \lambda \|x\|_1.$$

$$p^* := \min_{x} \quad \|Ax - b\|_{2} + \lambda \|x\|_{1}.$$

$$\|x\|_{1} = \max \left\{ x^{T} v \mid \|v\|_{\infty} \le 1 \right\}$$

$$\|x\|_{2} = \max \left\{ x^{T} u \mid \|u\|_{2} \le 1 \right\}.$$

$$p^* := \min_{x} \quad \|Ax - b\|_{2} + \lambda \|x\|_{1}.$$

$$\|x\|_{1} = \max \left\{ x^{T} v \mid \|v\|_{\infty} \le 1 \right\}$$

$$\|x\|_{2} = \max \left\{ x^{T} u \mid \|u\|_{2} \le 1 \right\}.$$

$$p^* = \min_{x} \max_{u,v} \left\{ u^T (b - Ax) + v^T x \mid ||u||_2 \le 1, \quad ||v||_{\infty} \le \lambda \right\}$$

$$p^* := \min_{x} \quad \|Ax - b\|_{2} + \lambda \|x\|_{1}.$$

$$\|x\|_{1} = \max \left\{ x^{T} v \mid \|v\|_{\infty} \le 1 \right\}$$

$$\|x\|_{2} = \max \left\{ x^{T} u \mid \|u\|_{2} \le 1 \right\}.$$

$$p^* = \min_{x} \max_{u,v} \left\{ u^T (b - Ax) + v^T x \mid ||u||_2 \le 1, \quad ||v||_{\infty} \le \lambda \right\}$$
$$= \max_{u,v} \min_{x} \left\{ u^T (b - Ax) + x^T v \mid ||u||_2 \le 1, \quad ||v||_{\infty} \le \lambda \right\}$$

$$p^* := \min_{x} \quad \|Ax - b\|_{2} + \lambda \|x\|_{1}.$$

$$\|x\|_{1} = \max \left\{ x^{T} v \mid \|v\|_{\infty} \le 1 \right\}$$

$$\|x\|_{2} = \max \left\{ x^{T} u \mid \|u\|_{2} \le 1 \right\}.$$

$$p^* = \min_{x} \max_{u,v} \left\{ u^T (b - Ax) + v^T x \mid ||u||_2 \le 1, \quad ||v||_{\infty} \le \lambda \right\}$$

$$= \max_{u,v} \min_{x} \left\{ u^T (b - Ax) + x^T v \mid ||u||_2 \le 1, \quad ||v||_{\infty} \le \lambda \right\}$$

$$= \max_{u,v} u^T b \qquad A^T u = v, \quad ||u||_2 \le 1, \quad ||v||_{\infty} \le \lambda$$

$$p^* := \min_{x} \quad \|Ax - b\|_{2} + \lambda \|x\|_{1}.$$

$$\|x\|_{1} = \max \left\{ x^{T} v \mid \|v\|_{\infty} \le 1 \right\}$$

$$\|x\|_{2} = \max \left\{ x^{T} u \mid \|u\|_{2} \le 1 \right\}.$$

$$p^* = \min_{x} \max_{u,v} \left\{ u^T (b - Ax) + v^T x \mid ||u||_2 \le 1, \quad ||v||_{\infty} \le \lambda \right\}$$

$$= \max_{u,v} \min_{x} \left\{ u^T (b - Ax) + x^T v \mid ||u||_2 \le 1, \quad ||v||_{\infty} \le \lambda \right\}$$

$$= \max_{u,v} u^T b \qquad A^T u = v, \quad ||u||_2 \le 1, \quad ||v||_{\infty} \le \lambda$$

$$= \max_{u} u^T b \qquad ||u||_2 \le 1, \quad ||A^T v||_{\infty} \le \lambda.$$

$$\min \quad f_0(x) \qquad f_i(x) \leq 0, \quad i = 1, \dots, m.$$

$$\min \quad f_0(x) \qquad f_i(x) \leq 0, \quad i = 1, \dots, m.$$

▶ Recall: $\langle \nabla f_0(x^*), x - x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$

$$\min \quad f_0(x) \qquad f_i(x) \leq 0, \quad i = 1, \dots, m.$$

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?

$$\min \quad f_0(x) \qquad f_i(x) \leq 0, \quad i = 1, \dots, m.$$

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?

Assume strong duality; and both p^* and d^* attained!

$$\min \quad f_0(x) \qquad f_i(x) \leq 0, \quad i = 1, \dots, m.$$

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?

Assume strong duality; and both p^* and d^* attained!

$$p^* = f_0(x^*)$$

$$\min \quad f_0(x) \qquad f_i(x) \leq 0, \quad i = 1, \dots, m.$$

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?

Assume strong duality; and both p^* and d^* attained!

$$p^* = f_0(x^*) = d^* = g(\lambda^*)$$

$$\min \quad f_0(x) \qquad f_i(x) \leq 0, \quad i = 1, \dots, m.$$

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?

Assume strong duality; and both p^* and d^* attained!

$$p^* = f_0(x^*) = d^* = g(\lambda^*) = \min_{x} \mathcal{L}(x, \lambda^*)$$

$$\min \quad f_0(x) \qquad f_i(x) \leq 0, \quad i = 1, \dots, m.$$

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?

Assume strong duality; and both p^* and d^* attained!

$$p^* = f_0(x^*) = d^* = g(\lambda^*) = \min_{x} \mathcal{L}(x, \lambda^*) \le \mathcal{L}(x^*, \lambda^*)$$

$$\min \quad f_0(x) \qquad f_i(x) \leq 0, \quad i = 1, \dots, m.$$

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $ightharpoonup q(\lambda) = \inf_{x} \mathcal{L}(x,\lambda) := f_0(x) + \sum_{i} \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

$$p^* = f_0(x^*) = d^* = g(\lambda^*) = \min_{x} \mathcal{L}(x, \lambda^*) \le \mathcal{L}(x^*, \lambda^*) \le f_0(x^*) = p^*$$

$$\min \quad f_0(x) \qquad f_i(x) \leq 0, \quad i = 1, \dots, m.$$

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $ightharpoonup q(\lambda) = \inf_{x} \mathcal{L}(x,\lambda) := f_0(x) + \sum_{i} \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f_0(x^*) = d^* = g(\lambda^*) = \min_{x} \mathcal{L}(x, \lambda^*) \le \mathcal{L}(x^*, \lambda^*) \le f_0(x^*) = p^*$$

▶ Thus, equalities hold in above chain.

$$\min \quad f_0(x) \qquad f_i(x) \leq 0, \quad i = 1, \dots, m.$$

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?
- $ightharpoonup q(\lambda) = \inf_{x} \mathcal{L}(x,\lambda) := f_0(x) + \sum_{i} \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f_0(x^*) = d^* = g(\lambda^*) = \min_{x} \mathcal{L}(x, \lambda^*) \le \mathcal{L}(x^*, \lambda^*) \le f_0(x^*) = p^*$$

▶ Thus, equalities hold in above chain.

$$x^* \in \operatorname{argmin}_{x} \mathcal{L}(x, \lambda^*).$$

$$x^* \in \operatorname{argmin}_{x} \mathcal{L}(x, \lambda^*).$$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$x^* \in \operatorname{argmin}_{x} \mathcal{L}(x, \lambda^*).$$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_{\mathbf{X}}\mathcal{L}(\mathbf{X},\lambda^*)|_{\mathbf{X}=\mathbf{X}^*} = \nabla f_0(\mathbf{X}^*) + \sum_{i} \lambda_i^* \nabla f_i(\mathbf{X}^*) = 0.$$

$$x^* \in \operatorname{argmin}_{x} \mathcal{L}(x, \lambda^*).$$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_{\mathbf{X}} \mathcal{L}(\mathbf{X}, \lambda^*)|_{\mathbf{X} = \mathbf{X}^*} = \nabla f_0(\mathbf{X}^*) + \sum_{i} \lambda_i^* \nabla f_i(\mathbf{X}^*) = 0.$$

Moreover, since $\mathcal{L}(x^*, \lambda^*) = f_0(x^*)$, we also have

$$x^* \in \operatorname{argmin}_{x} \mathcal{L}(x, \lambda^*).$$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_{\mathbf{X}} \mathcal{L}(\mathbf{X}, \lambda^*)|_{\mathbf{X} = \mathbf{X}^*} = \nabla f_0(\mathbf{X}^*) + \sum_{i} \lambda_i^* \nabla f_i(\mathbf{X}^*) = 0.$$

Moreover, since $\mathcal{L}(x^*, \lambda^*) = f_0(x^*)$, we also have

$$\sum\nolimits_i \lambda_i^* f_i(x^*) = 0.$$

$$x^* \in \operatorname{argmin}_{x} \mathcal{L}(x, \lambda^*).$$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_{\mathbf{X}} \mathcal{L}(\mathbf{X}, \lambda^*)|_{\mathbf{X} = \mathbf{X}^*} = \nabla f_0(\mathbf{X}^*) + \sum_{i} \lambda_i^* \nabla f_i(\mathbf{X}^*) = 0.$$

Moreover, since $\mathcal{L}(x^*, \lambda^*) = f_0(x^*)$, we also have

$$\sum_{i} \lambda_{i}^{*} f_{i}(x^{*}) = 0.$$

But $\lambda_i^* \geq 0$ and $f_i(x^*) \leq 0$,

$$x^* \in \operatorname{argmin}_{x} \mathcal{L}(x, \lambda^*).$$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_{\mathbf{X}} \mathcal{L}(\mathbf{X}, \lambda^*)|_{\mathbf{X} = \mathbf{X}^*} = \nabla f_0(\mathbf{X}^*) + \sum_{i} \lambda_i^* \nabla f_i(\mathbf{X}^*) = 0.$$

Moreover, since $\mathcal{L}(x^*, \lambda^*) = f_0(x^*)$, we also have

$$\sum_{i} \lambda_{i}^{*} f_{i}(x^{*}) = 0.$$

But $\lambda_i^* \geq 0$ and $f_i(x^*) \leq 0$, so complementary slackness

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m.$$

$$f_i(x^*) \leq 0, \quad i=1,\ldots,m$$
 (primal feasibility) $\lambda_i^* \geq 0, \quad i=1,\ldots,m$ (dual feasibility) $\lambda_i^* f_i(x^*) = 0, \quad i=1,\ldots,m$ (compl. slackness) $\nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} = 0$ (Lagrangian stationarity)

$$f_i(x^*) \leq 0, \quad i=1,\ldots,m$$
 (primal feasibility) $\lambda_i^* \geq 0, \quad i=1,\ldots,m$ (dual feasibility) $\lambda_i^* f_i(x^*) = 0, \quad i=1,\ldots,m$ (compl. slackness) $\nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} = 0$ (Lagrangian stationarity)

▶ We showed: if strong duality holds, and (x^*, λ^*) exist, then KKT conditions are **necessary** for pair (x^*, λ^*) to be optimal

```
f_i(x^*) \leq 0, \quad i=1,\ldots,m (primal feasibility) \lambda_i^* \geq 0, \quad i=1,\ldots,m (dual feasibility) \lambda_i^* f_i(x^*) = 0, \quad i=1,\ldots,m (compl. slackness) \nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} = 0 (Lagrangian stationarity)
```

- ▶ We showed: if strong duality holds, and (x^*, λ^*) exist, then KKT conditions are **necessary** for pair (x^*, λ^*) to be optimal
- ▶ If problem is convex, then KKT also sufficient

$$f_i(x^*) \leq 0, \quad i=1,\ldots,m$$
 (primal feasibility) $\lambda_i^* \geq 0, \quad i=1,\ldots,m$ (dual feasibility) $\lambda_i^* f_i(x^*) = 0, \quad i=1,\ldots,m$ (compl. slackness) $\nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} = 0$ (Lagrangian stationarity)

- ▶ We showed: if strong duality holds, and (x^*, λ^*) exist, then KKT conditions are **necessary** for pair (x^*, λ^*) to be optimal
- If problem is convex, then KKT also sufficient

Exercise: Prove the above sufficiency of KKT. *Hint:* Use that $\mathcal{L}(x,\lambda^*)$ is convex, and conclude from KKT conditions that $g(\lambda^*) = f_0(x^*)$, so that (x^*, λ^*) optimal primal-dual pair.