
Incremental gradients, parallel methods
(Optml++ Meeting 5)

Suvrit Sra

Massachusetts Institute of Technology

OPTML++, Fall 2015

Outline

– Lect 1: Recap on convexity
– Lect 1: Recap on duality, optimality
– Lect 2: First-order optimization algorithms
– Lect 3: Operator splitting
– Lect 4: Stochastic and incremental methods
– Lect 5: Parallel / sparse-data methods

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 2 / 27

Recap

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 3 / 27

Stochastic gradient

Method Assumptions Full Stochastic
Subgradient convex O(1/

√
k) O(1/

√
k)

Subgradient strongly cvx O(1/k) O(1/k)

So using stochastic subgradient, solve n times faster.

Method Assumptions Full Stochastic
Gradient convex O(1/k) O(1/

√
k)

Gradient strongly cvx O((1− µ/L)k) O(1/k)

– For smooth problems, stochastic gradient needs more iterations
– Widely used in ML, rapid initial convergence
– Several speedup techniques studied, but worst case remains same

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 4 / 27

Incremental Gradient Methods

Method Assumptions Rate
Gradient convex O(1/k)

Gradient strongly cvx O((1− µ/L)k)
Stochastic strongly cvx O(1/k)

SAG strongly convex O((1−min
{µ

n ,
1

8n

}
)k)

This speedup also observed in practice
Complicated convergence analysis
Similar rates for many other methods
– stochastic dual coordinate (SDCA); [Shalev-Shwartz, Zhang, 2013]
– stochastic variance reduced gradient (SVRG); [Johnson, Zhang, 2013]
– proximal SVRG [Xiao, Zhang, 2014]
– hybrid of SAG and SVRG, SAGA (also proximal); [Defazio et al, 2014]
– accelerated versions [Lin, Mairal, Harchoui; 2015]
– asynchronous hybrid SVRG [Reddi et al. 2015]
– incremental Newton method, S2SGD and MS2GD, . . .

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 5 / 27

Incremental gradient methods

min F (x) = 1
n

∑n

i=1
fi(x)

I Incremental gradient methods

xk+1 = xk − ηk
n ∇fi(k)(xk), k ≥ 0.

I View as gradient-descent with perturbed gradients

xk+1 = xk − ηk
n (∇F (xk) + ek)

I Perturbation slows down rate of convergence. Typically
ηk = O(1/k); convergence rate also O(1/k) (sublinear).

I Can we reduce impact of perturbation to speed up?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 6 / 27

Incremental gradient methods

min F (x) = 1
n

∑n

i=1
fi(x)

I Incremental gradient methods

xk+1 = xk − ηk
n ∇fi(k)(xk), k ≥ 0.

I View as gradient-descent with perturbed gradients

xk+1 = xk − ηk
n (∇F (xk) + ek)

I Perturbation slows down rate of convergence. Typically
ηk = O(1/k); convergence rate also O(1/k) (sublinear).

I Can we reduce impact of perturbation to speed up?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 6 / 27

Incremental gradient methods

min F (x) = 1
n

∑n

i=1
fi(x)

I Incremental gradient methods

xk+1 = xk − ηk
n ∇fi(k)(xk), k ≥ 0.

I View as gradient-descent with perturbed gradients

xk+1 = xk − ηk
n (∇F (xk) + ek)

I Perturbation slows down rate of convergence. Typically
ηk = O(1/k); convergence rate also O(1/k) (sublinear).

I Can we reduce impact of perturbation to speed up?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 6 / 27

Incremental gradient methods

min F (x) = 1
n

∑n

i=1
fi(x)

I Incremental gradient methods

xk+1 = xk − ηk
n ∇fi(k)(xk), k ≥ 0.

I View as gradient-descent with perturbed gradients

xk+1 = xk − ηk
n (∇F (xk) + ek)

I Perturbation slows down rate of convergence. Typically
ηk = O(1/k); convergence rate also O(1/k) (sublinear).

I Can we reduce impact of perturbation to speed up?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 6 / 27

Incremental gradient methods

min F (x) = 1
n

∑n

i=1
fi(x)

I Incremental gradient methods

xk+1 = xk − ηk
n ∇fi(k)(xk), k ≥ 0.

I View as gradient-descent with perturbed gradients

xk+1 = xk − ηk
n (∇F (xk) + ek)

I Perturbation slows down rate of convergence. Typically
ηk = O(1/k); convergence rate also O(1/k) (sublinear).

I Can we reduce impact of perturbation to speed up?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 6 / 27

Incremental Gradient Methods

min F (x) = 1
n

∑n
i=1 fi(x)

The incremental gradient method (IGM)
I Let x0 ∈ Rn

I For k ≥ 0

1 Pick i(k) ∈ {1,2, . . . ,n} uniformly at random
2 xk+1 = xk − ηk∇fi(k)(xk)

g ≡ ∇fi(k) may be viewed as a stochastic gradient

g := gtrue + e, where e is mean-zero noise: E[e] = 0

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 7 / 27

Incremental Gradient Methods

min F (x) = 1
n

∑n
i=1 fi(x)

The incremental gradient method (IGM)
I Let x0 ∈ Rn

I For k ≥ 0
1 Pick i(k) ∈ {1,2, . . . ,n} uniformly at random
2 xk+1 = xk − ηk∇fi(k)(xk)

g ≡ ∇fi(k) may be viewed as a stochastic gradient

g := gtrue + e, where e is mean-zero noise: E[e] = 0

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 7 / 27

Incremental Gradient Methods

min F (x) = 1
n

∑n
i=1 fi(x)

The incremental gradient method (IGM)
I Let x0 ∈ Rn

I For k ≥ 0
1 Pick i(k) ∈ {1,2, . . . ,n} uniformly at random
2 xk+1 = xk − ηk∇fi(k)(xk)

g ≡ ∇fi(k) may be viewed as a stochastic gradient

g := gtrue + e, where e is mean-zero noise: E[e] = 0

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 7 / 27

Incremental Gradient Methods

min F (x) = 1
n

∑n
i=1 fi(x)

The incremental gradient method (IGM)
I Let x0 ∈ Rn

I For k ≥ 0
1 Pick i(k) ∈ {1,2, . . . ,n} uniformly at random
2 xk+1 = xk − ηk∇fi(k)(xk)

g ≡ ∇fi(k) may be viewed as a stochastic gradient

g := gtrue + e, where e is mean-zero noise: E[e] = 0

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 7 / 27

Incremental Gradient Methods

I Index i(k) chosen uniformly from {1, . . . ,n}
I Thus, in expectation:

E[g] =

Ei [∇fi(x)] =
∑

i
1
n∇fi(x) = ∇F (x)

I Alternatively, E[g − gtrue] = E[e] = 0.
I We call g an unbiased estimate of the gradient
I Here, we obtained g in a two step process:
◦ Sample: pick an index i(k) unif. at random
◦ Oracle: Compute a random gradient based on i(k)

I Individual gk values can vary a lot
I Variance (E[‖g − gtrue‖2]) influences convergence rate

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 8 / 27

Incremental Gradient Methods

I Index i(k) chosen uniformly from {1, . . . ,n}
I Thus, in expectation:

E[g] = Ei [∇fi(x)]

=
∑

i
1
n∇fi(x) = ∇F (x)

I Alternatively, E[g − gtrue] = E[e] = 0.
I We call g an unbiased estimate of the gradient
I Here, we obtained g in a two step process:
◦ Sample: pick an index i(k) unif. at random
◦ Oracle: Compute a random gradient based on i(k)

I Individual gk values can vary a lot
I Variance (E[‖g − gtrue‖2]) influences convergence rate

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 8 / 27

Incremental Gradient Methods

I Index i(k) chosen uniformly from {1, . . . ,n}
I Thus, in expectation:

E[g] = Ei [∇fi(x)] =
∑

i
1
n∇fi(x) =

∇F (x)

I Alternatively, E[g − gtrue] = E[e] = 0.
I We call g an unbiased estimate of the gradient
I Here, we obtained g in a two step process:
◦ Sample: pick an index i(k) unif. at random
◦ Oracle: Compute a random gradient based on i(k)

I Individual gk values can vary a lot
I Variance (E[‖g − gtrue‖2]) influences convergence rate

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 8 / 27

Incremental Gradient Methods

I Index i(k) chosen uniformly from {1, . . . ,n}
I Thus, in expectation:

E[g] = Ei [∇fi(x)] =
∑

i
1
n∇fi(x) = ∇F (x)

I Alternatively, E[g − gtrue] = E[e] = 0.
I We call g an unbiased estimate of the gradient
I Here, we obtained g in a two step process:
◦ Sample: pick an index i(k) unif. at random
◦ Oracle: Compute a random gradient based on i(k)

I Individual gk values can vary a lot
I Variance (E[‖g − gtrue‖2]) influences convergence rate

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 8 / 27

Incremental Gradient Methods

I Index i(k) chosen uniformly from {1, . . . ,n}
I Thus, in expectation:

E[g] = Ei [∇fi(x)] =
∑

i
1
n∇fi(x) = ∇F (x)

I Alternatively, E[g − gtrue] = E[e] = 0.
I We call g an unbiased estimate of the gradient
I Here, we obtained g in a two step process:
◦ Sample: pick an index i(k) unif. at random
◦ Oracle: Compute a random gradient based on i(k)

I Individual gk values can vary a lot
I Variance (E[‖g − gtrue‖2]) influences convergence rate

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 8 / 27

Controlling variance

I Instead of using gk = ∇fi(k)(xk), correct it by using true
gradient every m ≥ n steps (recall: F = 1

n
∑n

i=1 fi(x))

I Reduces variance of gk (xk , ξk); speeds up convergence

∇F (x̄) = 1
m

∑
i
fi(x̄)

xk+1 = xk − ηk [∇fi(k)(xk)−∇fi(k)(x̄) +∇F (x̄)︸ ︷︷ ︸
gk (xk ,ξk)

]

I Thus, with ξk = i(k), Eξ[gk |xk] = ∇F (xk)
But with lower variance!

Say x̄ , xk → x∗. Then ∇F (x̄)→ 0. Thus, if ∇fi (x̄)→ ∇fi (x∗), then

∇fi (xk)−∇fi (x̄) +∇F (x̄)→ ∇fi (xk)−∇fi (x∗)→ 0.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 9 / 27

Controlling variance

I Instead of using gk = ∇fi(k)(xk), correct it by using true
gradient every m ≥ n steps (recall: F = 1

n
∑n

i=1 fi(x))
I Reduces variance of gk (xk , ξk); speeds up convergence

∇F (x̄) = 1
m

∑
i
fi(x̄)

xk+1 = xk − ηk [∇fi(k)(xk)−∇fi(k)(x̄) +∇F (x̄)︸ ︷︷ ︸
gk (xk ,ξk)

]

I Thus, with ξk = i(k), Eξ[gk |xk] = ∇F (xk)
But with lower variance!

Say x̄ , xk → x∗. Then ∇F (x̄)→ 0. Thus, if ∇fi (x̄)→ ∇fi (x∗), then

∇fi (xk)−∇fi (x̄) +∇F (x̄)→ ∇fi (xk)−∇fi (x∗)→ 0.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 9 / 27

Controlling variance

I Instead of using gk = ∇fi(k)(xk), correct it by using true
gradient every m ≥ n steps (recall: F = 1

n
∑n

i=1 fi(x))
I Reduces variance of gk (xk , ξk); speeds up convergence

∇F (x̄) = 1
m

∑
i
fi(x̄)

xk+1 = xk − ηk [∇fi(k)(xk)−∇fi(k)(x̄) +∇F (x̄)︸ ︷︷ ︸
gk (xk ,ξk)

]

I Thus, with ξk = i(k), Eξ[gk |xk] = ∇F (xk)
But with lower variance!

Say x̄ , xk → x∗. Then ∇F (x̄)→ 0. Thus, if ∇fi (x̄)→ ∇fi (x∗), then

∇fi (xk)−∇fi (x̄) +∇F (x̄)→ ∇fi (xk)−∇fi (x∗)→ 0.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 9 / 27

Controlling variance

I Instead of using gk = ∇fi(k)(xk), correct it by using true
gradient every m ≥ n steps (recall: F = 1

n
∑n

i=1 fi(x))
I Reduces variance of gk (xk , ξk); speeds up convergence

∇F (x̄) = 1
m

∑
i
fi(x̄)

xk+1 = xk − ηk [∇fi(k)(xk)−∇fi(k)(x̄) +∇F (x̄)︸ ︷︷ ︸
gk (xk ,ξk)

]

I Thus, with ξk = i(k), Eξ[gk |xk] = ∇F (xk)
But with lower variance!

Say x̄ , xk → x∗. Then ∇F (x̄)→ 0. Thus, if ∇fi (x̄)→ ∇fi (x∗), then

∇fi (xk)−∇fi (x̄) +∇F (x̄)→ ∇fi (xk)−∇fi (x∗)→ 0.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 9 / 27

Controlling variance

I Instead of using gk = ∇fi(k)(xk), correct it by using true
gradient every m ≥ n steps (recall: F = 1

n
∑n

i=1 fi(x))
I Reduces variance of gk (xk , ξk); speeds up convergence

∇F (x̄) = 1
m

∑
i
fi(x̄)

xk+1 = xk − ηk [∇fi(k)(xk)−∇fi(k)(x̄) +∇F (x̄)︸ ︷︷ ︸
gk (xk ,ξk)

]

I Thus, with ξk = i(k), Eξ[gk |xk] = ∇F (xk)
But with lower variance!

Say x̄ , xk → x∗. Then ∇F (x̄)→ 0. Thus, if ∇fi (x̄)→ ∇fi (x∗), then

∇fi (xk)−∇fi (x̄) +∇F (x̄)→ ∇fi (xk)−∇fi (x∗)→ 0.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 9 / 27

SVRG

For s ≥ 1:
1 x̄ ← x̄s−1
2 ḡ ← ∇F (x̄) (full gradient computation)
3 x0 = x̄ ; t ← RAND(1,m) (randomized stopping)
4 For k = 0,1, . . . , t − 1

Randomly pick i(k) ∈ [1..m]
xk+1 = xk − ηk (∇fi(k)(xk)−∇fi(k)(x̄) + ḡ)

5 x̄s ← xt

Theorem Assume each fi(x) is smooth, and F (x) strongly-
convex. Then, for sufficiently large n, there is α < 1 s.t.

E[F (x̄s)− F (x∗)] ≤ αs[F (x̄0)− F (x∗)]

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 10 / 27

SVRG

For s ≥ 1:
1 x̄ ← x̄s−1
2 ḡ ← ∇F (x̄) (full gradient computation)
3 x0 = x̄ ; t ← RAND(1,m) (randomized stopping)
4 For k = 0,1, . . . , t − 1

Randomly pick i(k) ∈ [1..m]
xk+1 = xk − ηk (∇fi(k)(xk)−∇fi(k)(x̄) + ḡ)

5 x̄s ← xt

Theorem Assume each fi(x) is smooth, and F (x) strongly-
convex. Then, for sufficiently large n, there is α < 1 s.t.

E[F (x̄s)− F (x∗)] ≤ αs[F (x̄0)− F (x∗)]

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 10 / 27

Coordinate descent

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 11 / 27

Block Coordinate Descent

min f (x) = f (x1, . . . , xK), where xi ∈ Rni

Assumption: Gradient of block i is Lipschitz continuous

‖∇i f (x + Eih)−∇i f (x)‖ ≤ Li‖h‖

Block gradient ∇i f (x) is projection of full grad: ET
i ∇f (x)

Block Coordinate “Gradient” Descent

I Using lemma: f (y) ≤ f (x) + 〈∇f (x), y − x〉+ L
2‖y − x‖2, we get

f (x + Eih) ≤ f (x) + 〈∇i f (x), h〉+ Li
2 ‖h‖

2, for i = 1, . . . ,n.

I BCD algorithm:

1 repeatedly go through blocks in “some” order
2 minimize these upper bounds

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 12 / 27

Block Coordinate Descent

min f (x) = f (x1, . . . , xK), where xi ∈ Rni

Assumption: Gradient of block i is Lipschitz continuous

‖∇i f (x + Eih)−∇i f (x)‖ ≤ Li‖h‖

Block gradient ∇i f (x) is projection of full grad: ET
i ∇f (x)

Block Coordinate “Gradient” Descent

I Using lemma: f (y) ≤ f (x) + 〈∇f (x), y − x〉+ L
2‖y − x‖2, we get

f (x + Eih) ≤ f (x) + 〈∇i f (x), h〉+ Li
2 ‖h‖

2, for i = 1, . . . ,n.

I BCD algorithm:

1 repeatedly go through blocks in “some” order
2 minimize these upper bounds

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 12 / 27

Block Coordinate Descent

min f (x) = f (x1, . . . , xK), where xi ∈ Rni

Assumption: Gradient of block i is Lipschitz continuous

‖∇i f (x + Eih)−∇i f (x)‖ ≤ Li‖h‖

Block gradient ∇i f (x) is projection of full grad: ET
i ∇f (x)

Block Coordinate “Gradient” Descent

I Using lemma: f (y) ≤ f (x) + 〈∇f (x), y − x〉+ L
2‖y − x‖2, we get

f (x + Eih) ≤ f (x) + 〈∇i f (x), h〉+ Li
2 ‖h‖

2, for i = 1, . . . ,n.

I BCD algorithm:

1 repeatedly go through blocks in “some” order
2 minimize these upper bounds

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 12 / 27

Block Coordinate Descent

min f (x) = f (x1, . . . , xK), where xi ∈ Rni

Assumption: Gradient of block i is Lipschitz continuous

‖∇i f (x + Eih)−∇i f (x)‖ ≤ Li‖h‖

Block gradient ∇i f (x) is projection of full grad: ET
i ∇f (x)

Block Coordinate “Gradient” Descent

I Using lemma: f (y) ≤ f (x) + 〈∇f (x), y − x〉+ L
2‖y − x‖2, we get

f (x + Eih) ≤ f (x) + 〈∇i f (x), h〉+ Li
2 ‖h‖

2, for i = 1, . . . ,n.

I BCD algorithm:

1 repeatedly go through blocks in “some” order
2 minimize these upper bounds

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 12 / 27

Randomized BCD
I For k ≥ 0 (no init. of x necessary)

I Pick a block i from [n] with probability pi > 0
I Optimize upper bound (partial gradient step) for block i

h = argmin
h

f (xk) + 〈∇i f (xk), h〉+ Li
2 ‖h‖

2

h = − 1
Li
∇i f (xk)

I Update the impacted coordinates of x , formally

x (i)
k+1 ← x (i)

k + h

xk+1 ← xk − 1
Li

Ei∇i f (xk)

Notice: Original BCD had: x (i)
k = argminh f (. . . , h︸︷︷︸

block i

, . . .)

We’ll call this BCM (Block Coordinate Minimization)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 13 / 27

Randomized BCD
I For k ≥ 0 (no init. of x necessary)
I Pick a block i from [n] with probability pi > 0

I Optimize upper bound (partial gradient step) for block i

h = argmin
h

f (xk) + 〈∇i f (xk), h〉+ Li
2 ‖h‖

2

h = − 1
Li
∇i f (xk)

I Update the impacted coordinates of x , formally

x (i)
k+1 ← x (i)

k + h

xk+1 ← xk − 1
Li

Ei∇i f (xk)

Notice: Original BCD had: x (i)
k = argminh f (. . . , h︸︷︷︸

block i

, . . .)

We’ll call this BCM (Block Coordinate Minimization)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 13 / 27

Randomized BCD
I For k ≥ 0 (no init. of x necessary)
I Pick a block i from [n] with probability pi > 0
I Optimize upper bound (partial gradient step) for block i

h = argmin
h

f (xk) + 〈∇i f (xk), h〉+ Li
2 ‖h‖

2

h = − 1
Li
∇i f (xk)

I Update the impacted coordinates of x , formally

x (i)
k+1 ← x (i)

k + h

xk+1 ← xk − 1
Li

Ei∇i f (xk)

Notice: Original BCD had: x (i)
k = argminh f (. . . , h︸︷︷︸

block i

, . . .)

We’ll call this BCM (Block Coordinate Minimization)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 13 / 27

Randomized BCD
I For k ≥ 0 (no init. of x necessary)
I Pick a block i from [n] with probability pi > 0
I Optimize upper bound (partial gradient step) for block i

h = argmin
h

f (xk) + 〈∇i f (xk), h〉+ Li
2 ‖h‖

2

h = − 1
Li
∇i f (xk)

I Update the impacted coordinates of x , formally

x (i)
k+1 ← x (i)

k + h

xk+1 ← xk − 1
Li

Ei∇i f (xk)

Notice: Original BCD had: x (i)
k = argminh f (. . . , h︸︷︷︸

block i

, . . .)

We’ll call this BCM (Block Coordinate Minimization)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 13 / 27

Randomized BCD
I For k ≥ 0 (no init. of x necessary)
I Pick a block i from [n] with probability pi > 0
I Optimize upper bound (partial gradient step) for block i

h = argmin
h

f (xk) + 〈∇i f (xk), h〉+ Li
2 ‖h‖

2

h = − 1
Li
∇i f (xk)

I Update the impacted coordinates of x , formally

x (i)
k+1 ← x (i)

k + h

xk+1 ← xk − 1
Li

Ei∇i f (xk)

Notice: Original BCD had: x (i)
k = argminh f (. . . , h︸︷︷︸

block i

, . . .)

We’ll call this BCM (Block Coordinate Minimization)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 13 / 27

Randomized BCD
I For k ≥ 0 (no init. of x necessary)
I Pick a block i from [n] with probability pi > 0
I Optimize upper bound (partial gradient step) for block i

h = argmin
h

f (xk) + 〈∇i f (xk), h〉+ Li
2 ‖h‖

2

h = − 1
Li
∇i f (xk)

I Update the impacted coordinates of x , formally

x (i)
k+1 ← x (i)

k + h

xk+1 ← xk − 1
Li

Ei∇i f (xk)

Notice: Original BCD had: x (i)
k = argminh f (. . . , h︸︷︷︸

block i

, . . .)

We’ll call this BCM (Block Coordinate Minimization)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 13 / 27

Randomized BCD – analysis

h← argminh f (xk) + 〈∇i f (xk), h〉+ Li
2 ‖h‖

2

Descent:

xk+1 = xk + Eih
f (xk+1) ≤ f (xk) + 〈∇i f (xk), h〉+ Li

2 ‖h‖
2

xk+1 = xk − 1
Li

Ei∇i f (xk)

f (xk+1) ≤ f (xk)− 1
Li
‖∇i f (xk)‖2 + Li

2

∥∥∥− 1
Li
∇i f (xk)

∥∥∥2

f (xk+1) ≤ f (xk)− 1
2Li
‖∇i f (xk)‖2.

f (xk)− f (xk+1) ≥ 1
2Li
‖∇i f (xk)‖2

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 14 / 27

Randomized BCD – analysis

h← argminh f (xk) + 〈∇i f (xk), h〉+ Li
2 ‖h‖

2

Descent:

xk+1 = xk + Eih
f (xk+1) ≤ f (xk) + 〈∇i f (xk), h〉+ Li

2 ‖h‖
2

xk+1 = xk − 1
Li

Ei∇i f (xk)

f (xk+1) ≤ f (xk)− 1
Li
‖∇i f (xk)‖2 + Li

2

∥∥∥− 1
Li
∇i f (xk)

∥∥∥2

f (xk+1) ≤ f (xk)− 1
2Li
‖∇i f (xk)‖2.

f (xk)− f (xk+1) ≥ 1
2Li
‖∇i f (xk)‖2

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 14 / 27

Randomized BCD – analysis

h← argminh f (xk) + 〈∇i f (xk), h〉+ Li
2 ‖h‖

2

Descent:

xk+1 = xk + Eih
f (xk+1) ≤ f (xk) + 〈∇i f (xk), h〉+ Li

2 ‖h‖
2

xk+1 = xk − 1
Li

Ei∇i f (xk)

f (xk+1) ≤ f (xk)− 1
Li
‖∇i f (xk)‖2 + Li

2

∥∥∥− 1
Li
∇i f (xk)

∥∥∥2

f (xk+1) ≤ f (xk)− 1
2Li
‖∇i f (xk)‖2.

f (xk)− f (xk+1) ≥ 1
2Li
‖∇i f (xk)‖2

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 14 / 27

Randomized BCD – analysis

h← argminh f (xk) + 〈∇i f (xk), h〉+ Li
2 ‖h‖

2

Descent:

xk+1 = xk + Eih
f (xk+1) ≤ f (xk) + 〈∇i f (xk), h〉+ Li

2 ‖h‖
2

xk+1 = xk − 1
Li

Ei∇i f (xk)

f (xk+1) ≤ f (xk)− 1
Li
‖∇i f (xk)‖2 + Li

2

∥∥∥− 1
Li
∇i f (xk)

∥∥∥2

f (xk+1) ≤ f (xk)− 1
2Li
‖∇i f (xk)‖2.

f (xk)− f (xk+1) ≥ 1
2Li
‖∇i f (xk)‖2

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 14 / 27

Randomized BCD – analysis

h← argminh f (xk) + 〈∇i f (xk), h〉+ Li
2 ‖h‖

2

Descent:

xk+1 = xk + Eih
f (xk+1) ≤ f (xk) + 〈∇i f (xk), h〉+ Li

2 ‖h‖
2

xk+1 = xk − 1
Li

Ei∇i f (xk)

f (xk+1) ≤ f (xk)− 1
Li
‖∇i f (xk)‖2 + Li

2

∥∥∥− 1
Li
∇i f (xk)

∥∥∥2

f (xk+1) ≤ f (xk)− 1
2Li
‖∇i f (xk)‖2.

f (xk)− f (xk+1) ≥ 1
2Li
‖∇i f (xk)‖2

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 14 / 27

Randomized BCD – analysis

Expected descent:

f (xk)− E[f (xk+1|xk)] =
d∑

i=1

pi
(
f (xk)− f (xk − 1

Li
Ei∇i f (xk))

)

≥
d∑

i=1

pi
2Li
‖∇i f (xk)‖2

= 1
2‖∇f (xk)‖2W (suitable W).

What is the expected descent with uniform probabilities?

Descent + more notation + some work yields

O(d
ε

∑
i
Li‖x

(i)
0 − x (i)

∗ ‖2)

as the iteration complexity of obtaining E[f (xk)]− f ∗ ≤ ε

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 15 / 27

Randomized BCD – analysis

Expected descent:

f (xk)− E[f (xk+1|xk)] =
d∑

i=1

pi
(
f (xk)− f (xk − 1

Li
Ei∇i f (xk))

)
≥

d∑
i=1

pi
2Li
‖∇i f (xk)‖2

= 1
2‖∇f (xk)‖2W (suitable W).

What is the expected descent with uniform probabilities?

Descent + more notation + some work yields

O(d
ε

∑
i
Li‖x

(i)
0 − x (i)

∗ ‖2)

as the iteration complexity of obtaining E[f (xk)]− f ∗ ≤ ε

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 15 / 27

Randomized BCD – analysis

Expected descent:

f (xk)− E[f (xk+1|xk)] =
d∑

i=1

pi
(
f (xk)− f (xk − 1

Li
Ei∇i f (xk))

)
≥

d∑
i=1

pi
2Li
‖∇i f (xk)‖2

= 1
2‖∇f (xk)‖2W (suitable W).

What is the expected descent with uniform probabilities?

Descent + more notation + some work yields

O(d
ε

∑
i
Li‖x

(i)
0 − x (i)

∗ ‖2)

as the iteration complexity of obtaining E[f (xk)]− f ∗ ≤ ε

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 15 / 27

Randomized BCD – analysis

Expected descent:

f (xk)− E[f (xk+1|xk)] =
d∑

i=1

pi
(
f (xk)− f (xk − 1

Li
Ei∇i f (xk))

)
≥

d∑
i=1

pi
2Li
‖∇i f (xk)‖2

= 1
2‖∇f (xk)‖2W (suitable W).

What is the expected descent with uniform probabilities?

Descent + more notation + some work yields

O(d
ε

∑
i
Li‖x

(i)
0 − x (i)

∗ ‖2)

as the iteration complexity of obtaining E[f (xk)]− f ∗ ≤ ε

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 15 / 27

Randomized BCD – analysis

Expected descent:

f (xk)− E[f (xk+1|xk)] =
d∑

i=1

pi
(
f (xk)− f (xk − 1

Li
Ei∇i f (xk))

)
≥

d∑
i=1

pi
2Li
‖∇i f (xk)‖2

= 1
2‖∇f (xk)‖2W (suitable W).

What is the expected descent with uniform probabilities?

Descent + more notation + some work yields

O(d
ε

∑
i
Li‖x

(i)
0 − x (i)

∗ ‖2)

as the iteration complexity of obtaining E[f (xk)]− f ∗ ≤ ε

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 15 / 27

Exercise

I Recall Lasso problem: min 1
2‖Ax − b‖2 + λ‖x‖1

I Here x ∈ Rd ; use d blocks
I Show what the Randomized BCD iterations look like
I Recall 1D prox operations for λ| · | arise
I Try to implement it as efficiently as you can (do not copy or

update vectors / coordinates unless necessary)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 16 / 27

Exercise – pseudocode

Assuming d blocks, each update is scalar valued.
I Let x0 = 0; y0 = Ax0 − b = −b
I For k ≥ 0
• Pick random coordinate j ∈ [d]
• Compute α← 〈aj , y〉 – i.e., ∇j f (xk)

• Min αh + Li
2 h2 + λ|h|

h = proxλ|·|(xj − 1
Lj
α)

h = sgn(xj − 1
Lj
α) max(|xj − 1

Lj
α| − λ,0)

• Update: xk+1 = xk + hej
• Update: yk+1 ← yk + haj

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 17 / 27

Parallel Optimization

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 18 / 27

Parallel computation – high level views

I Intuition: degree of separability strongly correlated with
degree of parallelism possible

I Not insisting on exact computation allows more parallelism
I Suppose f is the fraction of sequential computation. Then

speedup for any number of processors (cores) is ≤ 1/f
I Parallel optimization on multi-core machines: shared memory

architecture. Main penalty: synchronization / atomic
operations

I Distributed optimization across machines: synchronization
and communication biggest burden; node failure, network
failure, load-balancing, etc.

I Synchronous vs. asynchronous computation

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 19 / 27

Parallel computation – high level views

I Intuition: degree of separability strongly correlated with
degree of parallelism possible

I Not insisting on exact computation allows more parallelism

I Suppose f is the fraction of sequential computation. Then
speedup for any number of processors (cores) is ≤ 1/f

I Parallel optimization on multi-core machines: shared memory
architecture. Main penalty: synchronization / atomic
operations

I Distributed optimization across machines: synchronization
and communication biggest burden; node failure, network
failure, load-balancing, etc.

I Synchronous vs. asynchronous computation

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 19 / 27

Parallel computation – high level views

I Intuition: degree of separability strongly correlated with
degree of parallelism possible

I Not insisting on exact computation allows more parallelism
I Suppose f is the fraction of sequential computation. Then

speedup for any number of processors (cores) is ≤ 1/f

I Parallel optimization on multi-core machines: shared memory
architecture. Main penalty: synchronization / atomic
operations

I Distributed optimization across machines: synchronization
and communication biggest burden; node failure, network
failure, load-balancing, etc.

I Synchronous vs. asynchronous computation

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 19 / 27

Parallel computation – high level views

I Intuition: degree of separability strongly correlated with
degree of parallelism possible

I Not insisting on exact computation allows more parallelism
I Suppose f is the fraction of sequential computation. Then

speedup for any number of processors (cores) is ≤ 1/f
I Parallel optimization on multi-core machines: shared memory

architecture. Main penalty: synchronization / atomic
operations

I Distributed optimization across machines: synchronization
and communication biggest burden; node failure, network
failure, load-balancing, etc.

I Synchronous vs. asynchronous computation

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 19 / 27

Parallel computation – high level views

I Intuition: degree of separability strongly correlated with
degree of parallelism possible

I Not insisting on exact computation allows more parallelism
I Suppose f is the fraction of sequential computation. Then

speedup for any number of processors (cores) is ≤ 1/f
I Parallel optimization on multi-core machines: shared memory

architecture. Main penalty: synchronization / atomic
operations

I Distributed optimization across machines: synchronization
and communication biggest burden;

node failure, network
failure, load-balancing, etc.

I Synchronous vs. asynchronous computation

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 19 / 27

Parallel computation – high level views

I Intuition: degree of separability strongly correlated with
degree of parallelism possible

I Not insisting on exact computation allows more parallelism
I Suppose f is the fraction of sequential computation. Then

speedup for any number of processors (cores) is ≤ 1/f
I Parallel optimization on multi-core machines: shared memory

architecture. Main penalty: synchronization / atomic
operations

I Distributed optimization across machines: synchronization
and communication biggest burden; node failure, network
failure, load-balancing, etc.

I Synchronous vs. asynchronous computation

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 19 / 27

Parallel computation – high level views

I Intuition: degree of separability strongly correlated with
degree of parallelism possible

I Not insisting on exact computation allows more parallelism
I Suppose f is the fraction of sequential computation. Then

speedup for any number of processors (cores) is ≤ 1/f
I Parallel optimization on multi-core machines: shared memory

architecture. Main penalty: synchronization / atomic
operations

I Distributed optimization across machines: synchronization
and communication biggest burden; node failure, network
failure, load-balancing, etc.

I Synchronous vs. asynchronous computation

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 19 / 27

Separable optimization

min f (x) :=
∑m

i=1
fi(x) x ∈ Rn.

Product space trick
I Introduce (local) variables (x1, . . . , xm)

I Problem is now over Hm := H×H× · · · × H (m-times)
I Consensus constraint: x1 = x2 = . . . = xm

min
(x1,...,xm)

∑
i
fi(xi)

s.t. x1 = x2 = · · · = xm.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 20 / 27

Separable optimization

min f (x) :=
∑m

i=1
fi(x) x ∈ Rn.

Product space trick

I Introduce (local) variables (x1, . . . , xm)

I Problem is now over Hm := H×H× · · · × H (m-times)
I Consensus constraint: x1 = x2 = . . . = xm

min
(x1,...,xm)

∑
i
fi(xi)

s.t. x1 = x2 = · · · = xm.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 20 / 27

Separable optimization

min f (x) :=
∑m

i=1
fi(x) x ∈ Rn.

Product space trick
I Introduce (local) variables (x1, . . . , xm)

I Problem is now over Hm := H×H× · · · × H (m-times)
I Consensus constraint: x1 = x2 = . . . = xm

min
(x1,...,xm)

∑
i
fi(xi)

s.t. x1 = x2 = · · · = xm.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 20 / 27

Separable optimization

min f (x) :=
∑m

i=1
fi(x) x ∈ Rn.

Product space trick
I Introduce (local) variables (x1, . . . , xm)

I Problem is now over Hm := H×H× · · · × H (m-times)

I Consensus constraint: x1 = x2 = . . . = xm

min
(x1,...,xm)

∑
i
fi(xi)

s.t. x1 = x2 = · · · = xm.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 20 / 27

Separable optimization

min f (x) :=
∑m

i=1
fi(x) x ∈ Rn.

Product space trick
I Introduce (local) variables (x1, . . . , xm)

I Problem is now over Hm := H×H× · · · × H (m-times)
I Consensus constraint: x1 = x2 = . . . = xm

min
(x1,...,xm)

∑
i
fi(xi)

s.t. x1 = x2 = · · · = xm.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 20 / 27

Separable optimization

min
x

f (x) + 1B(x)

where x ∈ Hm and B = {z ∈ Hm | z = (x , x , . . . , x)}

I Can solve using proximal splitting methods (e.g., DR, ADMM)
I Each component of fi(xi) independently in parallel
I Communicate / synchronize to ensure consensus
I Asynchronous versions exist (results from 2014, 2015)
I Alternatively, compute dual and apply ‖ BCD

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 21 / 27

Separable optimization

min
x

f (x) + 1B(x)

where x ∈ Hm and B = {z ∈ Hm | z = (x , x , . . . , x)}

I Can solve using proximal splitting methods (e.g., DR, ADMM)

I Each component of fi(xi) independently in parallel
I Communicate / synchronize to ensure consensus
I Asynchronous versions exist (results from 2014, 2015)
I Alternatively, compute dual and apply ‖ BCD

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 21 / 27

Separable optimization

min
x

f (x) + 1B(x)

where x ∈ Hm and B = {z ∈ Hm | z = (x , x , . . . , x)}

I Can solve using proximal splitting methods (e.g., DR, ADMM)
I Each component of fi(xi) independently in parallel
I Communicate / synchronize to ensure consensus
I Asynchronous versions exist (results from 2014, 2015)

I Alternatively, compute dual and apply ‖ BCD

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 21 / 27

Separable optimization

min
x

f (x) + 1B(x)

where x ∈ Hm and B = {z ∈ Hm | z = (x , x , . . . , x)}

I Can solve using proximal splitting methods (e.g., DR, ADMM)
I Each component of fi(xi) independently in parallel
I Communicate / synchronize to ensure consensus
I Asynchronous versions exist (results from 2014, 2015)
I Alternatively, compute dual and apply ‖ BCD

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 21 / 27

Parallel BCD
Previously

min f (x) = f (x1, . . . , xd)

What if?

min f (x) =
∑

i fi(xi)

I Can solve all d problems independently in parallel
I In theory: d times speedup possible compared to serial case
I if objective “almost separable” we would still expect high

speedup, governed by amount of separability
I Big data problems often have this “almost separable” structure!

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 22 / 27

Parallel BCD
Previously

min f (x) = f (x1, . . . , xd)

What if?

min f (x) =
∑

i fi(xi)

I Can solve all d problems independently in parallel
I In theory: d times speedup possible compared to serial case
I if objective “almost separable” we would still expect high

speedup, governed by amount of separability
I Big data problems often have this “almost separable” structure!

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 22 / 27

Parallel BCD
Previously

min f (x) = f (x1, . . . , xd)

What if?

min f (x) =
∑

i fi(xi)

I Can solve all d problems independently in parallel
I In theory: d times speedup possible compared to serial case

I if objective “almost separable” we would still expect high
speedup, governed by amount of separability

I Big data problems often have this “almost separable” structure!

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 22 / 27

Parallel BCD
Previously

min f (x) = f (x1, . . . , xd)

What if?

min f (x) =
∑

i fi(xi)

I Can solve all d problems independently in parallel
I In theory: d times speedup possible compared to serial case
I if objective “almost separable” we would still expect high

speedup, governed by amount of separability
I Big data problems often have this “almost separable” structure!

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 22 / 27

Partial Separability

Consider the sparse data matrixd11 d12
d22 d23

.

 ∈ Rm×n,

I Objective f (x) = ‖Dx − b‖22 =
∑m

i=1(dT
i x − bi)

2 also equals

(d11x1 + d12x2 − b1)2 + (d22x2 + d23x3 − b2)2 + · · ·

I Each term depends on only 2 coordinates
I Formally, we could write this as

f (x) =
∑

J∈J
fJ(x),

where J = {{1,2} , {2,3} , · · ·}
I Key point: fJ(x) depends only on xj for j ∈ J.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 23 / 27

Partial Separability

Consider the sparse data matrixd11 d12
d22 d23

.

 ∈ Rm×n,

I Objective f (x) = ‖Dx − b‖22 =
∑m

i=1(dT
i x − bi)

2 also equals

(d11x1 + d12x2 − b1)2 + (d22x2 + d23x3 − b2)2 + · · ·

I Each term depends on only 2 coordinates
I Formally, we could write this as

f (x) =
∑

J∈J
fJ(x),

where J = {{1,2} , {2,3} , · · ·}
I Key point: fJ(x) depends only on xj for j ∈ J.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 23 / 27

Partial Separability

Def. Let J be a collection of subsets of {1, . . . ,d}. We say f has
overlap degree ω if it can be written as

f (x) =
∑
J∈J

fJ(x),

where each fJ depends only on xj for j ∈ J, and

|J| ≤ ω ∀J ∈ J .

Example: If Dm×n is a sparse matrix, then ω = max1≤i≤m ‖dT
i ‖0

Exercise: Extend this notion to x = (x (1), . . . , x (K))
Hint: Now, fJ will depend only on x (j) for j ∈ J

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 24 / 27

Partial Separability

Def. Let J be a collection of subsets of {1, . . . ,d}. We say f has
overlap degree ω if it can be written as

f (x) =
∑
J∈J

fJ(x),

where each fJ depends only on xj for j ∈ J, and

|J| ≤ ω ∀J ∈ J .

Example: If Dm×n is a sparse matrix, then ω = max1≤i≤m ‖dT
i ‖0

Exercise: Extend this notion to x = (x (1), . . . , x (K))
Hint: Now, fJ will depend only on x (j) for j ∈ J

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 24 / 27

Data sparse ML problems

min
n∑

i=1

`(〈ai , x〉) + λ‖x‖2

Training data samples a1, . . . ,an are sparse

Rewrite the above problem in the format

min
n∑

i=1

(
`(〈ai , x〉) + λ

∑
u∈Ji

x2
u

du

)
,

where Ji are the nonzero coordinates of ai ; du is the number of
training samples nonzero in coordinate u ∈ [d].

This is of the form (where J ⊂ 2[d]),

min
∑
J∈J

fJ(xJ)

Degree of overlap ω: maximum frequency any given feature

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 25 / 27

Data sparse ML problems

min
n∑

i=1

`(〈ai , x〉) + λ‖x‖2

Training data samples a1, . . . ,an are sparse
Rewrite the above problem in the format

min
n∑

i=1

(
`(〈ai , x〉) + λ

∑
u∈Ji

x2
u

du

)
,

where Ji are the nonzero coordinates of ai ; du is the number of
training samples nonzero in coordinate u ∈ [d].

This is of the form (where J ⊂ 2[d]),

min
∑
J∈J

fJ(xJ)

Degree of overlap ω: maximum frequency any given feature

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 25 / 27

Data sparse ML problems

min
n∑

i=1

`(〈ai , x〉) + λ‖x‖2

Training data samples a1, . . . ,an are sparse
Rewrite the above problem in the format

min
n∑

i=1

(
`(〈ai , x〉) + λ

∑
u∈Ji

x2
u

du

)
,

where Ji are the nonzero coordinates of ai ; du is the number of
training samples nonzero in coordinate u ∈ [d].

This is of the form (where J ⊂ 2[d]),

min
∑
J∈J

fJ(xJ)

Degree of overlap ω: maximum frequency any given feature

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 25 / 27

Parallel Stochastic Gradient
Each core runs the computation:

1 Sample coordinates J from {1, . . . ,d} (all sets of variables)
2 Read current state of xJ from shared memory
3 For each individual coordinate j ∈ J

xj ← xj − αk [∇fJ(xJ)]j

I Atomic update only for xj ← xj − a (not for gradient)
I Since the actual coordinate j can arise in various J,

processors can overwrite each others’ work.
I But if partial overlaps, coordinate j does not appear in too

many different subsets J, method works!
I Several related approaches exist in the literature

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 26 / 27

Parallel Stochastic Gradient
Each core runs the computation:

1 Sample coordinates J from {1, . . . ,d} (all sets of variables)
2 Read current state of xJ from shared memory
3 For each individual coordinate j ∈ J

xj ← xj − αk [∇fJ(xJ)]j

I Atomic update only for xj ← xj − a (not for gradient)

I Since the actual coordinate j can arise in various J,
processors can overwrite each others’ work.

I But if partial overlaps, coordinate j does not appear in too
many different subsets J, method works!

I Several related approaches exist in the literature

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 26 / 27

Parallel Stochastic Gradient
Each core runs the computation:

1 Sample coordinates J from {1, . . . ,d} (all sets of variables)
2 Read current state of xJ from shared memory
3 For each individual coordinate j ∈ J

xj ← xj − αk [∇fJ(xJ)]j

I Atomic update only for xj ← xj − a (not for gradient)
I Since the actual coordinate j can arise in various J,

processors can overwrite each others’ work.

I But if partial overlaps, coordinate j does not appear in too
many different subsets J, method works!

I Several related approaches exist in the literature

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 26 / 27

Parallel Stochastic Gradient
Each core runs the computation:

1 Sample coordinates J from {1, . . . ,d} (all sets of variables)
2 Read current state of xJ from shared memory
3 For each individual coordinate j ∈ J

xj ← xj − αk [∇fJ(xJ)]j

I Atomic update only for xj ← xj − a (not for gradient)
I Since the actual coordinate j can arise in various J,

processors can overwrite each others’ work.
I But if partial overlaps, coordinate j does not appear in too

many different subsets J, method works!
I Several related approaches exist in the literature

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 26 / 27

Parallel BCD
1 Choose initial point x0 ∈ Rd

2 For k ≥ 0
• Randomly pick (in parallel) a set of blocks Sk ⊂ {1, . . . ,d}
• Perform BCD updates (in parallel) for i ∈ Sk

x (i)
k+1 ← x (i)

k −
1
βwi
∇i f (xk)

−→ wi typically Li ; β depends on overlap ω

♠ Uniform sampling of blocks (or just coordinates)
♠ More careful sampling leads to better guarantees
♠ Theory requires atomic updates
♠ Implement asynchronously (use latest x (i) at each core)
♠ Theory of above method requires guaranteed descent
♠ Newer asynchronous CD methods also exist (see survey by

Wright, 2015); e.g., methods that support inconsistent reads

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 27 / 27

Parallel BCD
1 Choose initial point x0 ∈ Rd

2 For k ≥ 0
• Randomly pick (in parallel) a set of blocks Sk ⊂ {1, . . . ,d}

• Perform BCD updates (in parallel) for i ∈ Sk

x (i)
k+1 ← x (i)

k −
1
βwi
∇i f (xk)

−→ wi typically Li ; β depends on overlap ω

♠ Uniform sampling of blocks (or just coordinates)
♠ More careful sampling leads to better guarantees
♠ Theory requires atomic updates
♠ Implement asynchronously (use latest x (i) at each core)
♠ Theory of above method requires guaranteed descent
♠ Newer asynchronous CD methods also exist (see survey by

Wright, 2015); e.g., methods that support inconsistent reads

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 27 / 27

Parallel BCD
1 Choose initial point x0 ∈ Rd

2 For k ≥ 0
• Randomly pick (in parallel) a set of blocks Sk ⊂ {1, . . . ,d}
• Perform BCD updates (in parallel) for i ∈ Sk

x (i)
k+1 ← x (i)

k −
1
βwi
∇i f (xk)

−→ wi typically Li ; β depends on overlap ω

♠ Uniform sampling of blocks (or just coordinates)
♠ More careful sampling leads to better guarantees
♠ Theory requires atomic updates
♠ Implement asynchronously (use latest x (i) at each core)
♠ Theory of above method requires guaranteed descent
♠ Newer asynchronous CD methods also exist (see survey by

Wright, 2015); e.g., methods that support inconsistent reads

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 27 / 27

Parallel BCD
1 Choose initial point x0 ∈ Rd

2 For k ≥ 0
• Randomly pick (in parallel) a set of blocks Sk ⊂ {1, . . . ,d}
• Perform BCD updates (in parallel) for i ∈ Sk

x (i)
k+1 ← x (i)

k −
1
βwi
∇i f (xk)

−→ wi typically Li ; β depends on overlap ω

♠ Uniform sampling of blocks (or just coordinates)
♠ More careful sampling leads to better guarantees

♠ Theory requires atomic updates
♠ Implement asynchronously (use latest x (i) at each core)
♠ Theory of above method requires guaranteed descent
♠ Newer asynchronous CD methods also exist (see survey by

Wright, 2015); e.g., methods that support inconsistent reads

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 27 / 27

Parallel BCD
1 Choose initial point x0 ∈ Rd

2 For k ≥ 0
• Randomly pick (in parallel) a set of blocks Sk ⊂ {1, . . . ,d}
• Perform BCD updates (in parallel) for i ∈ Sk

x (i)
k+1 ← x (i)

k −
1
βwi
∇i f (xk)

−→ wi typically Li ; β depends on overlap ω

♠ Uniform sampling of blocks (or just coordinates)
♠ More careful sampling leads to better guarantees
♠ Theory requires atomic updates

♠ Implement asynchronously (use latest x (i) at each core)
♠ Theory of above method requires guaranteed descent
♠ Newer asynchronous CD methods also exist (see survey by

Wright, 2015); e.g., methods that support inconsistent reads

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 27 / 27

Parallel BCD
1 Choose initial point x0 ∈ Rd

2 For k ≥ 0
• Randomly pick (in parallel) a set of blocks Sk ⊂ {1, . . . ,d}
• Perform BCD updates (in parallel) for i ∈ Sk

x (i)
k+1 ← x (i)

k −
1
βwi
∇i f (xk)

−→ wi typically Li ; β depends on overlap ω

♠ Uniform sampling of blocks (or just coordinates)
♠ More careful sampling leads to better guarantees
♠ Theory requires atomic updates
♠ Implement asynchronously (use latest x (i) at each core)
♠ Theory of above method requires guaranteed descent
♠ Newer asynchronous CD methods also exist (see survey by

Wright, 2015); e.g., methods that support inconsistent reads

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 27 / 27

