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Context

Balance robustness, accuracy, speed

Current: analyze methods algorithm-by-algorithm

Reliance on optimization experts for proofs

Matthew Staib (MIT) IQCs for Optimization November 23, 2015 3 / 43



Context

Balance robustness, accuracy, speed

Current: analyze methods algorithm-by-algorithm

Reliance on optimization experts for proofs

Matthew Staib (MIT) IQCs for Optimization November 23, 2015 3 / 43



Context

Balance robustness, accuracy, speed

Current: analyze methods algorithm-by-algorithm

Reliance on optimization experts for proofs

Matthew Staib (MIT) IQCs for Optimization November 23, 2015 3 / 43



Main idea

Frame first-order methods as dynamical systems

Replace nonlinear parts with integral quadratic constraints (IQCs)

Prove a linear convergence rate by solving a small SDP

Optimize over algorithm parameters for convergence rate

I Subject to strong convexity and Lipschitz properties
I Subject to extent of noise
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Linear dynamical systems

ξk+1 = Aξk + Buk (1)

yk = Cξk + Duk (2)

(uk , yk , ξk) = input, output, state
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Linear dynamical systems (with nonlinear feedback)

ξk+1 = Aξk + Buk (3)

yk = Cξk + Duk (4)

uk = ∆(yk) (5)

(uk , yk , ξk) = input, output, state
∆ = (nonlinear) map
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Linear dynamical systems (for first order methods)

ξk+1 = Aξk + Buk (6)

yk = Cξk + Duk (7)

uk = ∆(yk) (8)

(uk , yk , ξk) = input, output, state
∆(z) = ∇f (z)
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Gradient descent

Start with gradient descent update:

xk+1 = xk − α∇f (xk)

Expand to input, output, state:

ξk+1 = ξk − αuk

yk = ξk

uk = ∇f (yk)

Block form:

[
A B

C D

]
=

[
Id −αId
Id 0d

]

Matthew Staib (MIT) IQCs for Optimization November 23, 2015 9 / 43



Gradient descent

Start with gradient descent update:

xk+1 = xk − α∇f (xk)

Expand to input, output, state:

ξk+1 = ξk − αuk

yk = ξk

uk = ∇f (yk)

Block form:

[
A B

C D

]
=

[
Id −αId
Id 0d

]

Matthew Staib (MIT) IQCs for Optimization November 23, 2015 9 / 43



Gradient descent

Start with gradient descent update:

xk+1 = xk − α∇f (xk)

Expand to input, output, state:

ξk+1 = ξk − αuk

yk = ξk

uk = ∇f (yk)

Block form:

[
A B

C D

]
=

[
Id −αId
Id 0d

]

Matthew Staib (MIT) IQCs for Optimization November 23, 2015 9 / 43



Nesterov’s method

Start with update:

xk+1 = yk − αk∇f (yk)

yk = (1 + β)xk − βxk−1

Expand to input, output, state:

ξ
(1)
k+1 = (1 + β)ξ

(1)
k − βξ

(2)
k − αuk

ξ
(2)
k+1 = ξ

(1)
k

yk = (1 + β)ξ
(1)
k − βξ

(2)
k

uk = ∇f (yk)

Block form:

[
A B

C D

]
=

 (1 + β)Id −βId −αId
Id 0d 0d

(1 + β)Id −βId 0d
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Necessary conditions for convergence

For convex problems, we need u? = ∇f (y?) = 0

Plug this into update rule: ξ? = Aξ?, y? = Cξ?
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Quadratic case

Suppose f (y) = 1
2 yTQy − pT y + r with mId � Q � LId .

Then ∇f (y) = Qy − p = Q(y − y?)

yk = Cξk , so uk = QC (ξk − ξ?)

From state update: ξk+1 − ξ? = (A + BQC )(ξk − ξ?)

Hence the spectral radius ρ(T ) of T := A + BQC determines
convergence rate

Using given properties of Q, we can analytically tune the parameters
and determine rate ρ for e.g. gradient descent
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An alternative approach

Theorem

The spectral radius ρ(T ) < ρ if and only if there exists P � 0 such that
TTPT − ρ2P � 0.

If ξk+1 − ξ? = T (ξk − ξ?) then

(ξk+1 − ξ?)TP(ξk+1 − ξ?) < ρ2(ξk − ξ?)TP(ξk − ξ?)

Iterating this, if ρ < 1, then

‖ξk − ξ?‖ <
√

cond(P) ρk‖ξ0 − ξ?‖
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Unknown nasty function

Suppose u = φ(y) (u and y are sequences and φ is nasty)

I φ is static and memoryless: φ(y0, y1, . . . ) = (g(y0), g(y1), . . . )
I Further, g is L-Lipschitz: ‖g(y1)− g(y2)‖ ≤ L‖y1 − y2‖

If u? = g(y?) then for any k ,[
yk − y?
uk − u?

]T [
L2Id 0d
0d −Id

] [
yk − y?
uk − u?

]
≥ 0

This gives constraints on (y , u) – in fact, on each pair (yk , uk)

“Reference point” (y?, u?) should make you think of arg min
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Core idea

Instead of analyzing a system containing φ, throw away φ but keep
the constraints on some auxiliary sequence z = Ψ(y , u)

Any analysis that is valid for the constrained system is valid for the
original
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Modifying our dynamical system

Auxiliary sequences ζ, z and map Ψ so that ζ0 = ζ?,

ζk+1 = AΨζk + By
Ψyk + Bu

Ψuk

zk = CΨζk + Dy
Ψyk + Du

Ψuk

If ρ(AΨ) < 1 then reference point (ζ?, z?) determined by (y?, u?)
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Definition of IQCs

Definition

Let u = φ(y) and z = Ψ(y , u). We say that φ satisfies the

Pointwise IQC defined by (Ψ,M, y?, u?) if for all sequences y ,

(zk − z?)TM(zk − z?) ≥ 0 ∀k

ρ-Hard IQC defined by (Ψ,M, ρ, y?, u?) if for all sequences y ,

k∑
t=0

ρ−2t(zt − z?)TM(zt − z?) ≥ 0 ∀k

Hard IQC if satisfies ρ-Hard IQC for ρ = 1
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Revisiting dynamical systems for first order methods

Recall:

ξk+1 = Aξk + Buk

yk = Cξk

Combine with the map Ψ and eliminate y :[
ξk+1

ζk+1

]
=

[
A 0

By
ΨC AΨ

] [
ξk
ζk

]
+

[
B

Bu
Ψ

]
uk

zk =
[
Dy

ΨC CΨ

] [ξk
ζk

]
+ Du

Ψuk

More succinctly:

xk+1 = Âxk + B̂uk

zk = Ĉ xk + D̂uk
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Main result

Theorem

Suppose (ξ?, ζ?, y?, u?, z?) is a fixed point of the system. Suppose φ
satisfies the ρ-hard IQC defined by (Ψ,M, ρ, y?, u?) for ρ ∈ [0, 1]. If the
LMI [

ÂTPÂ− ρ2P ÂTPB̂

B̂TPÂ B̂TPB̂

]
+ λ

[
Ĉ D̂

]T
M
[
Ĉ D̂

]
� 0

is feasible for some P � 0 and λ ≥ 0, then for any ξ0 we have

‖ξk − ξ?‖ ≤
√

cond(P)ρk‖ξ0 − ξ?‖ ∀k.

Proof.

Multiply on both sides by
[
(xk − x?)T (uk − u?)T

]
and its transpose.

Then use the definition of ρ-hard IQC to find that
‖xk − x?‖ ≤

√
cond(P)ρk‖x0 − x?‖. Finally, use ζ0 = ζ?, x = (ξ, ζ), and

the triangle inequality.
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A few notes

Pointwise IQC satisfied =⇒ ρ-hard IQC satisfied for any ρ, so find
the smallest ρ with the LMI feasible

Hard IQC means 1-hard IQC, which implies bounded iterates but not
convergence

If φ satisfies multiple IQCs, replace λM with a block diagonal matrix
with λiMi on the diagonal
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Lemma (Sector IQC)

Suppose fk ∈ S(m, L) and u? = ∇fk(y?) for all k. Let φ = (∇f0,∇f1, . . . ).
If u = φ(y), then φ satisfies the pointwise IQC defined by

Ψ =

[
LId −Id
−mId Id

]
and M =

[
0d Id
Id 0d

]
.

This corresponds to the constraint that for all sequences y ,[
yk − y?
uk − u?

]T [ −2mLId (L + m)Id
(L + m)Id −2Id

] [
yk − y?
uk − u?

]
≥ 0.

Note: this Ψ corresponds to no ζ, and

z = Ψ

[
y
u

]
=

[
Ly − u
−my + u

]
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Sector IQC proof

Proof.

If f has L-Lipschitz gradient, then we have

(x1 − x2)T (∇f (x1)−∇f (x2)) ≥ 1

L
‖∇f (x1)−∇f (x2)‖2

which is known as co-coercivity. Note f (x)− m
2 ‖x‖

2 ∈ S(0, L−m) has
Lipschitz gradient with parameter L−m. By co-coercivity, and replacing
x1, x2 with yk , y?, etc., we see that

(m + L)(yk − y?)T (uk − u?) ≥ mL‖yk − y?‖2 + ‖uk − u?‖2

which we can rearrange into matrix form.
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Lemma (IQC for general convex functions)

Suppose fk ∈ S(0,∞) and u? ∈ ∂fk(y?) for all k. Let φ be such that
uk ∈ ∂fk(yk) for all k. Then φ satisfies the pointwise IQC defined by

Ψ =

[
Id 0
0 Id

]
= I2d and M =

[
0d Id
Id 0d

]
.

This corresponds to the constraint that for all sequences y ,[
yk − y?
uk − u?

]T [
0d Id
Id 0d

] [
yk − y?
uk − u?

]
≥ 0.

Proof.

This is equivalent to (yk − y?)T (uk − u?) ≥ 0, i.e. that the subdifferential
of a convex function is a monotone operator. (combine
f (y?) ≥ f (yk) + uT

k (y? − yk) and vice-versa per EE236C)
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SDP tractibility

We prove convergence by finding P � 0 . . . how big is P?

Our LMI has the term ÂTPÂ, where Â operates on (ξ, ζ). Hence P is
n × n where (ξ, ζ) ∈ Rn.

Better than Drori and Teboulle ’13, where the SDP scales with the
number of time steps, but still too large to e.g. analyze gradient
descent in high dimensions.
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Structure in our linear maps

First-order methods in dynamical system form often have
block-diagonal structure

Nesterov’s accelerated gradient method has

[
A B

C D

]
=

 (1 + β)Id −βId −αId
Id 0d 0d

(1 + β)Id −βId 0d


For example,

A =

[
1 + β −β

1 0

]
⊗ Id

Even our IQCs have this form, e.g.

Ψ =

[
L −1
−m 0

]
⊗ Id and M =

[
0 1
1 0

]
⊗ Id

for the sector IQC
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Making the SDP small

If each matrix (Â, B̂, Ĉ , D̂,M) from the LMI has the form e.g.
Â = Â0 ⊗ Id then we can instead solve the smaller LMI (which is the
equivalent of the d = 1 case):[

ÂT
0 P0Â0 − ρ2P0 ÂT

0 P0B̂0

B̂T
0 P0Â0 B̂T

0 P0B̂0

]
+ λ

[
Ĉ0 D̂0

]T
M0

[
Ĉ0 D̂0

]
� 0

We can get feasible P0 from P and vice-versa, so solving this smaller
SDP is completely equivalent

In the first order methods we have looked at so far, this means P0 is
no bigger than 2× 2
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Analytic results for gradient descent

Using the sector IQC and the dimensionality reduction, the LMI for
gradient descent is[

(1− ρ2)P −αP
−αP α2P

]
+ λ

[
−2mL L + m
L + m −2

]
� 0

For α = 2
L+m (optimal for f quadratic), we find λ ≥ 2

(L+m)2 and

ρ2 ≥ 1
2λ(L−m)2 which yields optimal ρ = L−m

L+m .

Can reformulate LMI so that it is linear in (ρ2, λ, α). Hence, can
answer “what range of stepsizes yield a given rate?” etc.
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Analyzing Nesterov’s method

Analyze α = 1/L and β = (
√

L−
√

m)/(
√

L +
√

m) which are
optimal when f is quadratic

Solve the LMI numerically. LMI is no longer linear in ρ2 but can find
optimal via bisection search

Sector IQC actually fails for high κ = L/m, but more sophisticated
weighted off-by-one IQC works
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Convergence rate v. condition ratio
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Robustness of Nesterov’s method

Sector IQC (which allows different functions fk for each k) fails for
large κ, unlike gradient descent

Optimal parameters α = 4/(3L + m) and β =
√

3κ+1−2√
3κ+1+2

cause sector

IQC to fail faster

In some sense, gradient descent, and even the suboptimal parameters
α, β more robust than fully optimal Nesterov
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Robustness of heavy ball method

Recall the heavy ball method:

xk+1 = xk − α∇f (xk) + β(xk − xk−1)

For quadratic-optimal α, β for heavy ball method, not even weighted
off-by-one IQC can guarantee convergence for κ = L/m at least ≈ 18.

Informs a function f (x) with piecewise-linear gradient and
κ = L/m = 25 for which heavy ball method optimized for quadratics
does not converge
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ADMM background

ADMM seeks to solve the problem

minimize f (x) + g(z)
subject to Ax + Bz = c

Updates are of the form:

xk+1 = arg min
x

f (x) +
ρ

2
‖Ax + Bzk − c + uk‖2

zk+1 = arg min
z

g(z) +
ρ

2
‖Axk+1 + Bz − c + uk‖2

uk+1 = uk + Axk+1 + Bzk+1 − c

Over-relaxed ADMM given by replacing Axk+1 with
αAxk+1 − (1− α)(Bzk − c) in z and u updates. Typically α ∈ (0, 2]
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ADMM as a dynamical system

Assume f ∈ S(m, L) and g ∈ S(0,∞). Then instead of one sequence
uk of gradients of yk , instead have two sequences βk = ∇f̂ (rk) and
γk ∈ ∂ĝ(sk) (f̂ and ĝ are versions of f , g scaled by A,B, ρ)

Then we can write x , z iterates (now called r , s) in terms of β, γ, e.g.

xk+1 = A−1 arg min
r

f (A−1r) +
ρ

2
‖r + sk − c + uk‖2

=⇒ rk+1 = arg min
r

f̂ (r) +
1

2
‖r + sk − c + uk‖2

and via optimality conditions implies

rk+1 = −sk − uk + c − βk+1.
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IQCs for ADMM

One IQC for each of f , g

Sector IQC for f ∈ S(m, L) and corresponding iterates

More general pointwise IQC for g ∈ S(0,∞) and corresponding
iterates

Put M1 and M2 into a block diagonal matrix and solve

Given fixed α, ρ,m, L, can bisection search on convergence rates τ .
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Some results for ADMM

Prior work limits us to α ∈ (0, 2)
but depending on κ, we can find
convergent α larger than 2

Also able to analytically
construct certificates λ,P that
work for large enough κ (for
α ∈ (0, 2) and specific choice of
ρ
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Multiplicative gradient noise

Suppose instead of observing ∇f (y), we see uk = ∇f (yk) + rk , where
‖rk‖ ≤ δ‖∇f (yk)‖

If wk is true gradient, we observe uk with ‖uk − wk‖ ≤ δ‖wk‖
In IQC form: [

wk

uk

]T [
δ2 − 1 1

1 −1

] [
wk

uk

]
≥ 0

We can use nearly the same LMI after augmenting our state with w ,
i.e. we keep track of (y , u,w), and instead solve for 3× 3 P for e.g.
Nesterov’s method
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Summary

Many optimization methods are (almost) linear dynamical systems

IQCs can replace nonlinearities in these systems

IQCs exist which capture standard properties of convex functions

Automatic numerical convergence rate bounds whenever we have
bounds on m, L and (in the noisy case) δ

Hence easy parameter tuning/algorithm design
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Future work

Analytic proofs doable if we can solve small SDPs in closed form

We don’t usually know m, L; connections to e.g. adaptive control?

More sophisticated parameter search needed if we want more steps of
memory

Noise analysis is far from complete; IQCs that are valid in
expectation?

We translated convexity properties into IQCs; are there useful IQCs
for certain nonconvex functions?
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