## Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints Based on papers by Lessard, Packard, Recht, Nishihara, Jordan

Matthew Staib

Massachusetts Institute of Technology

OPTML++, November 30, 2015

# Table of Contents

#### Introduction

- First order methods as dynamical systems
  - Dynamical systems
  - Formulations for first order methods
  - Convergence when everything is linear
- Integral Quadratic Constraints
  - Core idea
  - Definition
  - IQCs and convergence rates
  - Some IQCs for convex functions
- 4 Case studies (a.k.a. actually applying IQCs)
  - Gradient descent
  - Nesterov's accelerated gradient descent
  - Heavy ball method
  - ADMM
  - Dealing with noise
  - **Conclusion**



• Balance robustness, accuracy, speed

#### Context

- Balance robustness, accuracy, speed
- Current: analyze methods algorithm-by-algorithm

#### Context

- Balance robustness, accuracy, speed
- Current: analyze methods algorithm-by-algorithm
- Reliance on optimization experts for proofs

• Frame first-order methods as dynamical systems

- Frame first-order methods as dynamical systems
- Replace nonlinear parts with integral quadratic constraints (IQCs)

- Frame first-order methods as dynamical systems
- Replace nonlinear parts with integral quadratic constraints (IQCs)
- Prove a linear convergence rate by solving a small SDP

- Frame first-order methods as dynamical systems
- Replace nonlinear parts with integral quadratic constraints (IQCs)
- Prove a linear convergence rate by solving a small SDP
- Optimize over algorithm parameters for convergence rate

- Frame first-order methods as dynamical systems
- Replace nonlinear parts with integral quadratic constraints (IQCs)
- Prove a linear convergence rate by solving a small SDP
- Optimize over algorithm parameters for convergence rate
  - Subject to strong convexity and Lipschitz properties

- Frame first-order methods as dynamical systems
- Replace nonlinear parts with integral quadratic constraints (IQCs)
- Prove a linear convergence rate by solving a small SDP
- Optimize over algorithm parameters for convergence rate
  - Subject to strong convexity and Lipschitz properties
  - Subject to extent of noise

## Table of Contents

- Introduction
- First order methods as dynamical systems
  - Dynamical systems
  - Formulations for first order methods
  - Convergence when everything is linear
- Integral Quadratic Constraints
  - Core idea
  - Definition
  - IQCs and convergence rates
  - Some IQCs for convex functions
- 4 Case studies (a.k.a. actually applying IQCs)
  - Gradient descent
  - Nesterov's accelerated gradient descent
  - Heavy ball method
  - ADMM
  - Dealing with noise
  - **Conclusion**

#### Linear dynamical systems

$$\xi_{k+1} = A\xi_k + Bu_k \tag{1}$$
  
$$y_k = C\xi_k + Du_k \tag{2}$$

 $(u_k, y_k, \xi_k) = \text{input, output, state}$ 

## Linear dynamical systems (with nonlinear feedback)

$$\xi_{k+1} = A\xi_k + Bu_k \tag{3}$$

$$y_k = \zeta \xi_k + Du_k \tag{4}$$

$$u_k = \Delta(y_k) \tag{5}$$

 $(u_k, y_k, \xi_k) =$ input, output, state  $\Delta =$ (nonlinear) map

## Linear dynamical systems (for first order methods)

$$\xi_{k+1} = A\xi_k + Bu_k$$

$$y_k = C\xi_k + Du_k$$

$$u_k = \Delta(y_k)$$
(6)
(7)
(8)

$$(u_k, y_k, \xi_k) =$$
input, output, state  
 $\Delta(z) = \nabla f(z)$ 

#### Gradient descent

• Start with gradient descent update:

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

#### Gradient descent

• Start with gradient descent update:

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

• Expand to input, output, state:

$$\xi_{k+1} = \xi_k - \alpha u_k$$
$$y_k = \xi_k$$
$$u_k = \nabla f(y_k)$$

#### Gradient descent

• Start with gradient descent update:

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

• Expand to input, output, state:

• Block form: 
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I_d & -\alpha I_d \\ \hline I_d & 0_d \end{bmatrix}$$

### Nesterov's method

• Start with update:

$$x_{k+1} = y_k - \alpha_k \nabla f(y_k)$$
$$y_k = (1+\beta)x_k - \beta x_{k-1}$$

### Nesterov's method

• Start with update:

$$x_{k+1} = y_k - \alpha_k \nabla f(y_k)$$
$$y_k = (1+\beta)x_k - \beta x_{k-1}$$

• Expand to input, output, state:

$$\begin{aligned} \xi_{k+1}^{(1)} &= (1+\beta)\xi_k^{(1)} - \beta\xi_k^{(2)} - \alpha u_k \\ \xi_{k+1}^{(2)} &= \xi_k^{(1)} \\ y_k &= (1+\beta)\xi_k^{(1)} - \beta\xi_k^{(2)} \\ u_k &= \nabla f(y_k) \end{aligned}$$

#### Nesterov's method

• Start with update:

$$x_{k+1} = y_k - \alpha_k \nabla f(y_k)$$
$$y_k = (1+\beta)x_k - \beta x_{k-1}$$

• Expand to input, output, state:

$$\begin{split} \xi_{k+1}^{(1)} &= (1+\beta)\xi_k^{(1)} - \beta\xi_k^{(2)} - \alpha u_k \\ \xi_{k+1}^{(2)} &= \xi_k^{(1)} \\ y_k &= (1+\beta)\xi_k^{(1)} - \beta\xi_k^{(2)} \\ u_k &= \nabla f(y_k) \end{split}$$

• Block form: 
$$\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} = \begin{bmatrix} (1+\beta)I_d & -\beta I_d & -\alpha I_d \\ \hline I_d & 0_d & 0_d \\ \hline (1+\beta)I_d & -\beta I_d & 0_d \end{bmatrix}$$

Necessary conditions for convergence

• For convex problems, we need  $u_{\star} = \nabla f(y_{\star}) = 0$ 

### Necessary conditions for convergence

- For convex problems, we need  $u_{\star} = \nabla f(y_{\star}) = 0$
- Plug this into update rule:  $\xi_{\star} = A\xi_{\star}, \ y_{\star} = C\xi_{\star}$

• Suppose 
$$f(y) = \frac{1}{2}y^T Q y - p^T y + r$$
 with  $mI_d \leq Q \leq LI_d$ .

• Suppose 
$$f(y) = \frac{1}{2}y^T Qy - p^T y + r$$
 with  $mI_d \leq Q \leq LI_d$ .  
• Then  $\nabla f(y) = Qy - p = Q(y - y_{\star})$ 

• Suppose 
$$f(y) = \frac{1}{2}y^T Qy - p^T y + r$$
 with  $mI_d \leq Q \leq LI_d$ .  
• Then  $\nabla f(y) = Qy - p = Q(y - y_\star)$ 

• 
$$y_k = C\xi_k$$
, so  $u_k = QC(\xi_k - \xi_\star)$ 

- Suppose  $f(y) = \frac{1}{2}y^T Q y p^T y + r$  with  $mI_d \leq Q \leq LI_d$ .
- Then  $\nabla f(y) = Qy p = Q(y y_*)$

• 
$$y_k = C\xi_k$$
, so  $u_k = QC(\xi_k - \xi_\star)$ 

• From state update:  $\xi_{k+1} - \xi_{\star} = (A + BQC)(\xi_k - \xi_{\star})$ 

- Suppose  $f(y) = \frac{1}{2}y^T Q y p^T y + r$  with  $mI_d \leq Q \leq LI_d$ .
- Then  $\nabla f(y) = Qy p = Q(y y_{\star})$

• 
$$y_k = C\xi_k$$
, so  $u_k = QC(\xi_k - \xi_\star)$ 

- From state update:  $\xi_{k+1} \xi_{\star} = (A + BQC)(\xi_k \xi_{\star})$
- Hence the spectral radius ρ(T) of T := A + BQC determines convergence rate

- Suppose  $f(y) = \frac{1}{2}y^T Q y p^T y + r$  with  $mI_d \leq Q \leq LI_d$ .
- Then  $\nabla f(y) = Qy p = Q(y y_{\star})$

• 
$$y_k = C\xi_k$$
, so  $u_k = QC(\xi_k - \xi_\star)$ 

- From state update:  $\xi_{k+1} \xi_{\star} = (A + BQC)(\xi_k \xi_{\star})$
- Hence the spectral radius ρ(T) of T := A + BQC determines convergence rate
- Using given properties of Q, we can analytically tune the parameters and determine rate  $\rho$  for e.g. gradient descent

#### An alternative approach

#### Theorem

The spectral radius  $\rho(T) < \rho$  if and only if there exists  $P \succeq 0$  such that  $T^T P T - \rho^2 P \preceq 0$ .

• If 
$$\xi_{k+1} - \xi_{\star} = T(\xi_k - \xi_{\star})$$
 then

$$(\xi_{k+1} - \xi_{\star})^T P(\xi_{k+1} - \xi_{\star}) < \rho^2 (\xi_k - \xi_{\star})^T P(\xi_k - \xi_{\star})$$

#### An alternative approach

#### Theorem

The spectral radius  $\rho(T) < \rho$  if and only if there exists  $P \succeq 0$  such that  $T^T P T - \rho^2 P \preceq 0$ .

• If 
$$\xi_{k+1} - \xi_{\star} = T(\xi_k - \xi_{\star})$$
 then

$$(\xi_{k+1} - \xi_{\star})^T P(\xi_{k+1} - \xi_{\star}) < \rho^2 (\xi_k - \xi_{\star})^T P(\xi_k - \xi_{\star})$$

• Iterating this, if  $\rho < 1$ , then

$$\|\xi_k - \xi_\star\| < \sqrt{\operatorname{cond}(P)} \, \rho^k \|\xi_0 - \xi_\star\|$$

## Table of Contents

- Introductio
- First order methods as dynamical systems
  - Dynamical systems
  - Formulations for first order methods
  - Convergence when everything is linear
- Integral Quadratic Constraints
  - Core idea
  - Definition
  - IQCs and convergence rates
  - Some IQCs for convex functions
  - 4 Case studies (a.k.a. actually applying IQCs)
    - Gradient descent
    - Nesterov's accelerated gradient descent
    - Heavy ball method
    - ADMM
  - Dealing with noise
  - **Conclusion**

• Suppose  $u = \phi(y)$  (u and y are sequences and  $\phi$  is nasty)

• Suppose  $u = \phi(y)$  (u and y are sequences and  $\phi$  is nasty)

•  $\phi$  is static and memoryless:  $\phi(y_0, y_1, \dots) = (g(y_0), g(y_1), \dots)$ 

• Suppose  $u = \phi(y)$  (u and y are sequences and  $\phi$  is nasty)

- $\phi$  is static and memoryless:  $\phi(y_0, y_1, \dots) = (g(y_0), g(y_1), \dots)$
- Further, g is L-Lipschitz:  $||g(y_1) g(y_2)|| \le L ||y_1 y_2||$

• Suppose  $u = \phi(y)$  (u and y are sequences and  $\phi$  is nasty)

- $\phi$  is static and memoryless:  $\phi(y_0, y_1, \dots) = (g(y_0), g(y_1), \dots)$
- Further, g is L-Lipschitz:  $||g(y_1) g(y_2)|| \le L ||y_1 y_2||$

• If  $u_{\star} = g(y_{\star})$  then for any k,

$$\begin{bmatrix} y_k - y_* \\ u_k - u_* \end{bmatrix}^T \begin{bmatrix} L^2 I_d & 0_d \\ 0_d & -I_d \end{bmatrix} \begin{bmatrix} y_k - y_* \\ u_k - u_* \end{bmatrix} \ge 0$$
### Unknown nasty function

• Suppose  $u = \phi(y)$  (u and y are sequences and  $\phi$  is nasty)

- $\phi$  is static and memoryless:  $\phi(y_0, y_1, \dots) = (g(y_0), g(y_1), \dots)$
- Further, g is L-Lipschitz:  $||g(y_1) g(y_2)|| \le L||y_1 y_2||$

• If  $u_{\star} = g(y_{\star})$  then for any k,

$$\begin{bmatrix} y_k - y_\star \\ u_k - u_\star \end{bmatrix}^T \begin{bmatrix} L^2 I_d & 0_d \\ 0_d & -I_d \end{bmatrix} \begin{bmatrix} y_k - y_\star \\ u_k - u_\star \end{bmatrix} \ge 0$$

• This gives constraints on (y, u) – in fact, on each pair  $(y_k, u_k)$ 

### Unknown nasty function

• Suppose  $u = \phi(y)$  (u and y are sequences and  $\phi$  is nasty)

- $\phi$  is static and memoryless:  $\phi(y_0, y_1, \dots) = (g(y_0), g(y_1), \dots)$
- Further, g is L-Lipschitz:  $||g(y_1) g(y_2)|| \le L||y_1 y_2||$

• If  $u_{\star} = g(y_{\star})$  then for any k,

$$\begin{bmatrix} y_k - y_\star \\ u_k - u_\star \end{bmatrix}^T \begin{bmatrix} L^2 I_d & 0_d \\ 0_d & -I_d \end{bmatrix} \begin{bmatrix} y_k - y_\star \\ u_k - u_\star \end{bmatrix} \ge 0$$

- This gives constraints on (y, u) in fact, on each pair  $(y_k, u_k)$
- "Reference point"  $(y_{\star}, u_{\star})$  should make you think of arg min

• Instead of analyzing a system containing  $\phi$ , throw away  $\phi$  but keep the constraints on some auxiliary sequence  $z = \Psi(y, u)$ 

- Instead of analyzing a system containing  $\phi$ , throw away  $\phi$  but keep the constraints on some auxiliary sequence  $z = \Psi(y, u)$
- Any analysis that is valid for the constrained system is valid for the original

# Modifying our dynamical system

• Auxiliary sequences  $\zeta, z$  and map  $\Psi$  so that  $\zeta_0 = \zeta_\star$ ,

$$\begin{aligned} \zeta_{k+1} &= A_{\Psi}\zeta_k + B_{\Psi}^y y_k + B_{\Psi}^u u_k \\ z_k &= C_{\Psi}\zeta_k + D_{\Psi}^y y_k + D_{\Psi}^u u_k \end{aligned}$$

# Modifying our dynamical system

• Auxiliary sequences  $\zeta,z$  and map  $\Psi$  so that  $\zeta_0=\zeta_\star,$ 

$$\begin{aligned} \zeta_{k+1} &= A_{\Psi}\zeta_k + B_{\Psi}^y y_k + B_{\Psi}^u u_k \\ z_k &= C_{\Psi}\zeta_k + D_{\Psi}^y y_k + D_{\Psi}^u u_k \end{aligned}$$

• If  $\rho(A_{\Psi}) < 1$  then reference point  $(\zeta_{\star}, z_{\star})$  determined by  $(y_{\star}, u_{\star})$ 

### Definition

Let  $u = \phi(y)$  and  $z = \Psi(y, u)$ . We say that  $\phi$  satisfies the

### Definition

Let  $u = \phi(y)$  and  $z = \Psi(y, u)$ . We say that  $\phi$  satisfies the

• **Pointwise IQC** defined by  $(\Psi, M, y_{\star}, u_{\star})$  if for all sequences y,

$$(z_k - z_\star)^T M(z_k - z_\star) \geq 0 \ \forall k$$

### Definition

Let  $u = \phi(y)$  and  $z = \Psi(y, u)$ . We say that  $\phi$  satisfies the

• **Pointwise IQC** defined by  $(\Psi, M, y_{\star}, u_{\star})$  if for all sequences y,

$$(z_k-z_\star)^T M(z_k-z_\star) \geq 0 \ \forall k$$

•  $\rho$ -Hard IQC defined by  $(\Psi, M, \rho, y_{\star}, u_{\star})$  if for all sequences y,

$$\sum_{t=0}^{k} \rho^{-2t} (z_t - z_\star)^T M(z_t - z_\star) \ge 0 \; \forall k$$

### Definition

Let  $u = \phi(y)$  and  $z = \Psi(y, u)$ . We say that  $\phi$  satisfies the

• **Pointwise IQC** defined by  $(\Psi, M, y_{\star}, u_{\star})$  if for all sequences y,

$$(z_k-z_\star)^T M(z_k-z_\star) \geq 0 \ \forall k$$

•  $\rho$ -Hard IQC defined by  $(\Psi, M, \rho, y_{\star}, u_{\star})$  if for all sequences y,

$$\sum_{t=0}^{k} \rho^{-2t} (z_t - z_\star)^T M(z_t - z_\star) \ge 0 \ \forall k$$

• Hard IQC if satisfies  $\rho$ -Hard IQC for  $\rho = 1$ 

# Revisiting dynamical systems for first order methods

• Recall:

$$\xi_{k+1} = A\xi_k + Bu_k$$
$$y_k = C\xi_k$$

Revisiting dynamical systems for first order methods

Recall:

$$\xi_{k+1} = A\xi_k + Bu_k$$
$$y_k = C\xi_k$$

• Combine with the map  $\Psi$  and eliminate y:

$$\begin{bmatrix} \xi_{k+1} \\ \zeta_{k+1} \end{bmatrix} = \begin{bmatrix} A & 0 \\ B_{\Psi}^{y}C & A_{\Psi} \end{bmatrix} \begin{bmatrix} \xi_{k} \\ \zeta_{k} \end{bmatrix} + \begin{bmatrix} B \\ B_{\Psi}^{u} \end{bmatrix} u_{k}$$
$$z_{k} = \begin{bmatrix} D_{\Psi}^{y}C & C_{\Psi} \end{bmatrix} \begin{bmatrix} \xi_{k} \\ \zeta_{k} \end{bmatrix} + D_{\Psi}^{u}u_{k}$$

Revisiting dynamical systems for first order methods

Recall:

$$\xi_{k+1} = A\xi_k + Bu_k$$
$$y_k = C\xi_k$$

• Combine with the map  $\Psi$  and eliminate y:

$$\begin{bmatrix} \xi_{k+1} \\ \zeta_{k+1} \end{bmatrix} = \begin{bmatrix} A & 0 \\ B_{\Psi}^{y}C & A_{\Psi} \end{bmatrix} \begin{bmatrix} \xi_{k} \\ \zeta_{k} \end{bmatrix} + \begin{bmatrix} B \\ B_{\Psi}^{u} \end{bmatrix} u_{k}$$
$$z_{k} = \begin{bmatrix} D_{\Psi}^{y}C & C_{\Psi} \end{bmatrix} \begin{bmatrix} \xi_{k} \\ \zeta_{k} \end{bmatrix} + D_{\Psi}^{u}u_{k}$$

More succinctly:

$$x_{k+1} = \hat{A}x_k + \hat{B}u_k$$
$$z_k = \hat{C}x_k + \hat{D}u_k$$

# Main result

#### Theorem

Suppose  $(\xi_*, \zeta_*, y_*, u_*, z_*)$  is a fixed point of the system. Suppose  $\phi$  satisfies the  $\rho$ -hard IQC defined by  $(\Psi, M, \rho, y_*, u_*)$  for  $\rho \in [0, 1]$ . If the LMI

$$\begin{bmatrix} \hat{A}^{T} P \hat{A} - \rho^{2} P & \hat{A}^{T} P \hat{B} \\ \hat{B}^{T} P \hat{A} & \hat{B}^{T} P \hat{B} \end{bmatrix} + \lambda \begin{bmatrix} \hat{C} & \hat{D} \end{bmatrix}^{T} M \begin{bmatrix} \hat{C} & \hat{D} \end{bmatrix} \preceq 0$$

is feasible for some  $P \succ 0$  and  $\lambda \ge 0$ , then for any  $\xi_0$  we have

$$\|\xi_k - \xi_\star\| \le \sqrt{\operatorname{cond}(P)}\rho^k \|\xi_0 - \xi_\star\| \ \forall k.$$

# Main result

#### Theorem

Suppose  $(\xi_{\star}, \zeta_{\star}, y_{\star}, u_{\star}, z_{\star})$  is a fixed point of the system. Suppose  $\phi$  satisfies the  $\rho$ -hard IQC defined by  $(\Psi, M, \rho, y_{\star}, u_{\star})$  for  $\rho \in [0, 1]$ . If the LMI

$$\begin{bmatrix} \hat{A}^{T} P \hat{A} - \rho^{2} P & \hat{A}^{T} P \hat{B} \\ \hat{B}^{T} P \hat{A} & \hat{B}^{T} P \hat{B} \end{bmatrix} + \lambda \begin{bmatrix} \hat{C} & \hat{D} \end{bmatrix}^{T} M \begin{bmatrix} \hat{C} & \hat{D} \end{bmatrix} \preceq 0$$

is feasible for some P  $\succ$  0 and  $\lambda \geq$  0, then for any  $\xi_0$  we have

$$\|\xi_k - \xi_\star\| \leq \sqrt{\operatorname{cond}(P)}\rho^k \|\xi_0 - \xi_\star\| \ \forall k.$$

### Proof.

Multiply on both sides by  $[(x_k - x_\star)^T (u_k - u_\star)^T]$  and its transpose. Then use the definition of  $\rho$ -hard IQC to find that  $||x_k - x_\star|| \le \sqrt{\operatorname{cond}(P)}\rho^k ||x_0 - x_\star||$ . Finally, use  $\zeta_0 = \zeta_\star$ ,  $x = (\xi, \zeta)$ , and the triangle inequality.

### A few notes

• Pointwise IQC satisfied  $\implies \rho$ -hard IQC satisfied for any  $\rho$ , so find the smallest  $\rho$  with the LMI feasible

### A few notes

- Pointwise IQC satisfied  $\implies \rho$ -hard IQC satisfied for any  $\rho$ , so find the smallest  $\rho$  with the LMI feasible
- Hard IQC means 1-hard IQC, which implies bounded iterates but not convergence

### A few notes

- Pointwise IQC satisfied  $\implies \rho$ -hard IQC satisfied for any  $\rho$ , so find the smallest  $\rho$  with the LMI feasible
- Hard IQC means 1-hard IQC, which implies bounded iterates but not convergence
- If φ satisfies multiple IQCs, replace λM with a block diagonal matrix with λ<sub>i</sub>M<sub>i</sub> on the diagonal

### Lemma (Sector IQC)

Suppose  $f_k \in S(m, L)$  and  $u_* = \nabla f_k(y_*)$  for all k. Let  $\phi = (\nabla f_0, \nabla f_1, ...)$ . If  $u = \phi(y)$ , then  $\phi$  satisfies the pointwise IQC defined by

$$\Psi = \begin{bmatrix} LI_d & -I_d \\ -mI_d & I_d \end{bmatrix} \text{ and } M = \begin{bmatrix} 0_d & I_d \\ I_d & 0_d \end{bmatrix}$$

This corresponds to the constraint that for all sequences y,

$$\begin{bmatrix} y_k - y_\star \\ u_k - u_\star \end{bmatrix}^T \begin{bmatrix} -2mLI_d & (L+m)I_d \\ (L+m)I_d & -2I_d \end{bmatrix} \begin{bmatrix} y_k - y_\star \\ u_k - u_\star \end{bmatrix} \ge 0.$$

### Lemma (Sector IQC)

Suppose  $f_k \in S(m, L)$  and  $u_* = \nabla f_k(y_*)$  for all k. Let  $\phi = (\nabla f_0, \nabla f_1, ...)$ . If  $u = \phi(y)$ , then  $\phi$  satisfies the pointwise IQC defined by

$$\Psi = \begin{bmatrix} LI_d & -I_d \\ -mI_d & I_d \end{bmatrix} \text{ and } M = \begin{bmatrix} 0_d & I_d \\ I_d & 0_d \end{bmatrix}$$

This corresponds to the constraint that for all sequences y,

$$\begin{bmatrix} y_k - y_\star \\ u_k - u_\star \end{bmatrix}^T \begin{bmatrix} -2mLI_d & (L+m)I_d \\ (L+m)I_d & -2I_d \end{bmatrix} \begin{bmatrix} y_k - y_\star \\ u_k - u_\star \end{bmatrix} \ge 0.$$

Note: this  $\Psi$  corresponds to no  $\zeta$ , and

$$z = \Psi \begin{bmatrix} y \\ u \end{bmatrix} = \begin{bmatrix} Ly - u \\ -my + u \end{bmatrix}$$

# Sector IQC proof

#### Proof.

If f has L-Lipschitz gradient, then we have

$$(x_1 - x_2)^T (
abla f(x_1) - 
abla f(x_2)) \geq rac{1}{L} \|
abla f(x_1) - 
abla f(x_2)\|^2$$

which is known as *co-coercivity*. Note  $f(x) - \frac{m}{2} ||x||^2 \in S(0, L - m)$  has Lipschitz gradient with parameter L - m. By co-coercivity, and replacing  $x_1, x_2$  with  $y_k, y_*$ , etc., we see that

$$(m+L)(y_k-y_\star)^T(u_k-u_\star) \ge mL\|y_k-y_\star\|^2 + \|u_k-u_\star\|^2$$

which we can rearrange into matrix form.

#### Lemma (IQC for general convex functions)

Suppose  $f_k \in S(0,\infty)$  and  $u_* \in \partial f_k(y_*)$  for all k. Let  $\phi$  be such that  $u_k \in \partial f_k(y_k)$  for all k. Then  $\phi$  satisfies the pointwise IQC defined by

$$\Psi = \begin{bmatrix} I_d & 0\\ 0 & I_d \end{bmatrix} = I_{2d} \text{ and } M = \begin{bmatrix} 0_d & I_d\\ I_d & 0_d \end{bmatrix}.$$

This corresponds to the constraint that for all sequences y,

$$\begin{bmatrix} y_k - y_\star \\ u_k - u_\star \end{bmatrix}^T \begin{bmatrix} 0_d & I_d \\ I_d & 0_d \end{bmatrix} \begin{bmatrix} y_k - y_\star \\ u_k - u_\star \end{bmatrix} \ge 0.$$

#### Lemma (IQC for general convex functions)

Suppose  $f_k \in S(0,\infty)$  and  $u_* \in \partial f_k(y_*)$  for all k. Let  $\phi$  be such that  $u_k \in \partial f_k(y_k)$  for all k. Then  $\phi$  satisfies the pointwise IQC defined by

$$\Psi = \begin{bmatrix} I_d & 0\\ 0 & I_d \end{bmatrix} = I_{2d} \text{ and } M = \begin{bmatrix} 0_d & I_d\\ I_d & 0_d \end{bmatrix}.$$

This corresponds to the constraint that for all sequences y,

$$\begin{bmatrix} y_k - y_\star \\ u_k - u_\star \end{bmatrix}^T \begin{bmatrix} 0_d & I_d \\ I_d & 0_d \end{bmatrix} \begin{bmatrix} y_k - y_\star \\ u_k - u_\star \end{bmatrix} \ge 0.$$

#### Proof.

This is equivalent to  $(y_k - y_\star)^T (u_k - u_\star) \ge 0$ , i.e. that the subdifferential of a convex function is a monotone operator. (combine  $f(y_\star) \ge f(y_k) + u_k^T (y_\star - y_k)$  and vice-versa per EE236C)

# Table of Contents

- Introduction
- First order methods as dynamical systems
  - Dynamical systems
  - Formulations for first order methods
  - Convergence when everything is linear
- 3 Integral Quadratic Constraints
  - Core idea
  - Definition
  - IQCs and convergence rates
  - Some IQCs for convex functions
- Case studies (a.k.a. actually applying IQCs)
  - Gradient descent
  - Nesterov's accelerated gradient descent
  - Heavy ball method
  - ADMM

### Dealing with noise

Conclusior

# SDP tractibility

• We prove convergence by finding  $P \succ 0 \dots$  how big is P?

# SDP tractibility

- We prove convergence by finding  $P \succ 0 \dots$  how big is P?
- Our LMI has the term  $\hat{A}^T P \hat{A}$ , where  $\hat{A}$  operates on  $(\xi, \zeta)$ . Hence P is  $n \times n$  where  $(\xi, \zeta) \in \mathbb{R}^n$ .

# SDP tractibility

- We prove convergence by finding  $P \succ 0 \dots$  how big is P?
- Our LMI has the term  $\hat{A}^T P \hat{A}$ , where  $\hat{A}$  operates on  $(\xi, \zeta)$ . Hence P is  $n \times n$  where  $(\xi, \zeta) \in \mathbb{R}^n$ .
- Better than Drori and Teboulle '13, where the SDP scales with the number of time steps, but still too large to e.g. analyze gradient descent in high dimensions.

• First-order methods in dynamical system form often have block-diagonal structure

- First-order methods in dynamical system form often have block-diagonal structure
- Nesterov's accelerated gradient method has

$$\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} = \begin{bmatrix} (1+\beta)I_d & -\beta I_d & -\alpha I_d \\ I_d & 0_d & 0_d \\ \hline (1+\beta)I_d & -\beta I_d & 0_d \end{bmatrix}$$

- First-order methods in dynamical system form often have block-diagonal structure
- Nesterov's accelerated gradient method has

$$\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} = \begin{bmatrix} (1+\beta)I_d & -\beta I_d & -\alpha I_d \\ \hline I_d & 0_d & 0_d \\ \hline (1+\beta)I_d & -\beta I_d & 0_d \end{bmatrix}$$

• For example,

$$A = \begin{bmatrix} 1+\beta & -\beta \\ 1 & 0 \end{bmatrix} \otimes I_d$$

- First-order methods in dynamical system form often have block-diagonal structure
- Nesterov's accelerated gradient method has

$$\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} = \begin{bmatrix} (1+\beta)I_d & -\beta I_d & -\alpha I_d \\ \hline I_d & 0_d & 0_d \\ \hline (1+\beta)I_d & -\beta I_d & 0_d \end{bmatrix}$$

• For example,

$$A = \begin{bmatrix} 1+\beta & -\beta \\ 1 & 0 \end{bmatrix} \otimes I_d$$

• Even our IQCs have this form, e.g.

$$\Psi = \begin{bmatrix} L & -1 \\ -m & 0 \end{bmatrix} \otimes I_d \text{ and } M = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes I_d$$

for the sector IQC

Matthew Staib (MIT)

## Making the SDP small

 If each matrix (Â, B, Ĉ, D, M) from the LMI has the form e.g. = Â<sub>0</sub> ⊗ I<sub>d</sub> then we can instead solve the smaller LMI (which is the equivalent of the d = 1 case):

$$\begin{bmatrix} \hat{A}_0^T P_0 \hat{A}_0 - \rho^2 P_0 & \hat{A}_0^T P_0 \hat{B}_0 \\ \hat{B}_0^T P_0 \hat{A}_0 & \hat{B}_0^T P_0 \hat{B}_0 \end{bmatrix} + \lambda \begin{bmatrix} \hat{C}_0 & \hat{D}_0 \end{bmatrix}^T M_0 \begin{bmatrix} \hat{C}_0 & \hat{D}_0 \end{bmatrix} \preceq 0$$

## Making the SDP small

 If each matrix (Â, B, Ĉ, D, M) from the LMI has the form e.g. = Â<sub>0</sub> ⊗ I<sub>d</sub> then we can instead solve the smaller LMI (which is the equivalent of the d = 1 case):

$$\begin{bmatrix} \hat{A}_0^T P_0 \hat{A}_0 - \rho^2 P_0 & \hat{A}_0^T P_0 \hat{B}_0 \\ \hat{B}_0^T P_0 \hat{A}_0 & \hat{B}_0^T P_0 \hat{B}_0 \end{bmatrix} + \lambda \begin{bmatrix} \hat{C}_0 & \hat{D}_0 \end{bmatrix}^T M_0 \begin{bmatrix} \hat{C}_0 & \hat{D}_0 \end{bmatrix} \preceq 0$$

• We can get feasible P<sub>0</sub> from P and vice-versa, so solving this smaller SDP is completely equivalent

## Making the SDP small

 If each matrix (Â, B, Ĉ, D, M) from the LMI has the form e.g. = Â<sub>0</sub> ⊗ I<sub>d</sub> then we can instead solve the smaller LMI (which is the equivalent of the d = 1 case):

$$\begin{bmatrix} \hat{A}_0^T P_0 \hat{A}_0 - \rho^2 P_0 & \hat{A}_0^T P_0 \hat{B}_0 \\ \hat{B}_0^T P_0 \hat{A}_0 & \hat{B}_0^T P_0 \hat{B}_0 \end{bmatrix} + \lambda \begin{bmatrix} \hat{C}_0 & \hat{D}_0 \end{bmatrix}^T M_0 \begin{bmatrix} \hat{C}_0 & \hat{D}_0 \end{bmatrix} \preceq 0$$

- We can get feasible P<sub>0</sub> from P and vice-versa, so solving this smaller SDP is completely equivalent
- In the first order methods we have looked at so far, this means  $P_0$  is no bigger than  $2\times 2$

Analytic results for gradient descent

• Using the sector IQC and the dimensionality reduction, the LMI for gradient descent is

$$\begin{bmatrix} (1-\rho^2)P & -\alpha P\\ -\alpha P & \alpha^2 P \end{bmatrix} + \lambda \begin{bmatrix} -2mL & L+m\\ L+m & -2 \end{bmatrix} \leq 0$$

Analytic results for gradient descent

• Using the sector IQC and the dimensionality reduction, the LMI for gradient descent is

$$\begin{bmatrix} (1-\rho^2)P & -\alpha P \\ -\alpha P & \alpha^2 P \end{bmatrix} + \lambda \begin{bmatrix} -2mL & L+m \\ L+m & -2 \end{bmatrix} \leq 0$$

• For 
$$\alpha = \frac{2}{L+m}$$
 (optimal for  $f$  quadratic), we find  $\lambda \ge \frac{2}{(L+m)^2}$  and  $\rho^2 \ge \frac{1}{2}\lambda(L-m)^2$  which yields optimal  $\rho = \frac{L-m}{L+m}$ .
Analytic results for gradient descent

 Using the sector IQC and the dimensionality reduction, the LMI for gradient descent is

$$\begin{bmatrix} (1-\rho^2)P & -\alpha P\\ -\alpha P & \alpha^2 P \end{bmatrix} + \lambda \begin{bmatrix} -2mL & L+m\\ L+m & -2 \end{bmatrix} \leq 0$$

• For 
$$\alpha = \frac{2}{L+m}$$
 (optimal for  $f$  quadratic), we find  $\lambda \ge \frac{2}{(L+m)^2}$  and  $\rho^2 \ge \frac{1}{2}\lambda(L-m)^2$  which yields optimal  $\rho = \frac{L-m}{L+m}$ .

• Can reformulate LMI so that it is linear in  $(\rho^2, \lambda, \alpha)$ . Hence, can answer "what range of stepsizes yield a given rate?" etc.

## Analyzing Nesterov's method

• Analyze  $\alpha = 1/L$  and  $\beta = (\sqrt{L} - \sqrt{m})/(\sqrt{L} + \sqrt{m})$  which are optimal when f is quadratic

# Analyzing Nesterov's method

- Analyze  $\alpha = 1/L$  and  $\beta = (\sqrt{L} \sqrt{m})/(\sqrt{L} + \sqrt{m})$  which are optimal when f is quadratic
- $\bullet$  Solve the LMI numerically. LMI is no longer linear in  $\rho^2$  but can find optimal via bisection search

# Analyzing Nesterov's method

- Analyze  $\alpha = 1/L$  and  $\beta = (\sqrt{L} \sqrt{m})/(\sqrt{L} + \sqrt{m})$  which are optimal when f is quadratic
- Solve the LMI numerically. LMI is no longer linear in  $\rho^2$  but can find optimal via bisection search
- Sector IQC actually fails for high  $\kappa = L/m$ , but more sophisticated weighted off-by-one IQC works

#### Convergence rate v. condition ratio



## Robustness of Nesterov's method

 Sector IQC (which allows different functions f<sub>k</sub> for each k) fails for large κ, unlike gradient descent

## Robustness of Nesterov's method

- Sector IQC (which allows different functions f<sub>k</sub> for each k) fails for large κ, unlike gradient descent
- Optimal parameters  $\alpha = 4/(3L + m)$  and  $\beta = \frac{\sqrt{3\kappa+1}-2}{\sqrt{3\kappa+1}+2}$  cause sector IQC to fail faster

## Robustness of Nesterov's method

- Sector IQC (which allows different functions f<sub>k</sub> for each k) fails for large κ, unlike gradient descent
- Optimal parameters  $\alpha = 4/(3L + m)$  and  $\beta = \frac{\sqrt{3\kappa+1-2}}{\sqrt{3\kappa+1+2}}$  cause sector IQC to fail faster
- In some sense, gradient descent, and even the suboptimal parameters  $\alpha,\beta$  more robust than fully optimal Nesterov

Robustness of heavy ball method

• Recall the heavy ball method:

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1})$$

#### Robustness of heavy ball method

• Recall the heavy ball method:

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1})$$

 For quadratic-optimal α, β for heavy ball method, not even weighted off-by-one IQC can guarantee convergence for κ = L/m at least ≈ 18.

#### Robustness of heavy ball method

• Recall the heavy ball method:

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1})$$

- For quadratic-optimal α, β for heavy ball method, not even weighted off-by-one IQC can guarantee convergence for κ = L/m at least ≈ 18.
- Informs a function f(x) with piecewise-linear gradient and  $\kappa = L/m = 25$  for which heavy ball method optimized for quadratics does not converge

## ADMM background

• ADMM seeks to solve the problem

minimize f(x) + g(z)subject to Ax + Bz = c

## ADMM background

• ADMM seeks to solve the problem

minimize 
$$f(x) + g(z)$$
  
subject to  $Ax + Bz = c$ 

• Updates are of the form:

$$x_{k+1} = \arg\min_{x} f(x) + \frac{\rho}{2} ||Ax + Bz_k - c + u_k||^2$$
  
$$z_{k+1} = \arg\min_{z} g(z) + \frac{\rho}{2} ||Ax_{k+1} + Bz - c + u_k||^2$$
  
$$u_{k+1} = u_k + Ax_{k+1} + Bz_{k+1} - c$$

## ADMM background

ADMM seeks to solve the problem

minimize 
$$f(x) + g(z)$$
  
subject to  $Ax + Bz = c$ 

• Updates are of the form:

$$x_{k+1} = \arg\min_{x} f(x) + \frac{\rho}{2} ||Ax + Bz_{k} - c + u_{k}||^{2}$$
$$z_{k+1} = \arg\min_{z} g(z) + \frac{\rho}{2} ||Ax_{k+1} + Bz - c + u_{k}||^{2}$$
$$u_{k+1} = u_{k} + Ax_{k+1} + Bz_{k+1} - c$$

• Over-relaxed ADMM given by replacing  $Ax_{k+1}$  with  $\alpha Ax_{k+1} - (1 - \alpha)(Bz_k - c)$  in z and u updates. Typically  $\alpha \in (0, 2]$ 

• Assume  $f \in S(m, L)$  and  $g \in S(0, \infty)$ . Then instead of one sequence  $u_k$  of gradients of  $y_k$ , instead have two sequences  $\beta_k = \nabla \hat{f}(r_k)$  and  $\gamma_k \in \partial \hat{g}(s_k)$  ( $\hat{f}$  and  $\hat{g}$  are versions of f, g scaled by  $A, B, \rho$ )

- Assume  $f \in S(m, L)$  and  $g \in S(0, \infty)$ . Then instead of one sequence  $u_k$  of gradients of  $y_k$ , instead have two sequences  $\beta_k = \nabla \hat{f}(r_k)$  and  $\gamma_k \in \partial \hat{g}(s_k)$  ( $\hat{f}$  and  $\hat{g}$  are versions of f, g scaled by  $A, B, \rho$ )
- Then we can write x, z iterates (now called r, s) in terms of  $\beta, \gamma$ , e.g.

$$x_{k+1} = A^{-1} \arg\min_{r} f(A^{-1}r) + \frac{\rho}{2} ||r + s_k - c + u_k||^2$$

- Assume  $f \in S(m, L)$  and  $g \in S(0, \infty)$ . Then instead of one sequence  $u_k$  of gradients of  $y_k$ , instead have two sequences  $\beta_k = \nabla \hat{f}(r_k)$  and  $\gamma_k \in \partial \hat{g}(s_k)$  ( $\hat{f}$  and  $\hat{g}$  are versions of f, g scaled by  $A, B, \rho$ )
- Then we can write x, z iterates (now called r, s) in terms of  $\beta, \gamma$ , e.g.

$$x_{k+1} = A^{-1} \arg\min_{r} f(A^{-1}r) + rac{
ho}{2} \|r + s_k - c + u_k\|^2$$

$$\implies r_{k+1} = \arg\min_r \hat{f}(r) + \frac{1}{2} ||r + s_k - c + u_k||^2$$

- Assume  $f \in S(m, L)$  and  $g \in S(0, \infty)$ . Then instead of one sequence  $u_k$  of gradients of  $y_k$ , instead have two sequences  $\beta_k = \nabla \hat{f}(r_k)$  and  $\gamma_k \in \partial \hat{g}(s_k)$  ( $\hat{f}$  and  $\hat{g}$  are versions of f, g scaled by  $A, B, \rho$ )
- Then we can write x, z iterates (now called r, s) in terms of  $\beta, \gamma$ , e.g.

$$x_{k+1} = A^{-1} \arg\min_r f(A^{-1}r) + rac{
ho}{2} \|r + s_k - c + u_k\|^2$$

$$\implies r_{k+1} = \arg\min_r \hat{f}(r) + \frac{1}{2} \|r + s_k - c + u_k\|^2$$

and via optimality conditions implies

$$r_{k+1}=-s_k-u_k+c-\beta_{k+1}.$$

• One IQC for each of f, g

- One IQC for each of f, g
- Sector IQC for  $f \in S(m, L)$  and corresponding iterates

- One IQC for each of f, g
- Sector IQC for  $f \in S(m, L)$  and corresponding iterates
- More general pointwise IQC for  $g \in S(0,\infty)$  and corresponding iterates

- One IQC for each of f, g
- Sector IQC for  $f \in S(m, L)$  and corresponding iterates
- More general pointwise IQC for  $g \in S(0,\infty)$  and corresponding iterates
- Put  $M_1$  and  $M_2$  into a block diagonal matrix and solve

- One IQC for each of f, g
- Sector IQC for  $f \in S(m, L)$  and corresponding iterates
- More general pointwise IQC for  $g \in S(0,\infty)$  and corresponding iterates
- Put  $M_1$  and  $M_2$  into a block diagonal matrix and solve
- Given fixed  $\alpha, \rho, m, L$ , can bisection search on convergence rates  $\tau$ .

## Some results for ADMM

 Prior work limits us to α ∈ (0, 2) but depending on κ, we can find convergent α larger than 2



## Some results for ADMM

- Prior work limits us to α ∈ (0, 2) but depending on κ, we can find convergent α larger than 2
- Also able to analytically construct certificates λ, P that work for large enough κ (for α ∈ (0, 2) and specific choice of ρ



# Table of Contents

- **Introduction**
- First order methods as dynamical systems
  - Dynamical systems
  - Formulations for first order methods
  - Convergence when everything is linear
- 3 Integral Quadratic Constraints
  - Core idea
  - Definition
  - IQCs and convergence rates
  - Some IQCs for convex functions
- 4 Case studies (a.k.a. actually applying IQCs)
  - Gradient descent
  - Nesterov's accelerated gradient descent
  - Heavy ball method
  - ADMM

#### Dealing with noise

Conclusion

• Suppose instead of observing  $\nabla f(y)$ , we see  $u_k = \nabla f(y_k) + r_k$ , where  $||r_k|| \le \delta ||\nabla f(y_k)||$ 

- Suppose instead of observing  $\nabla f(y)$ , we see  $u_k = \nabla f(y_k) + r_k$ , where  $||r_k|| \le \delta ||\nabla f(y_k)||$
- If  $w_k$  is true gradient, we observe  $u_k$  with  $||u_k w_k|| \le \delta ||w_k||$

- Suppose instead of observing  $\nabla f(y)$ , we see  $u_k = \nabla f(y_k) + r_k$ , where  $||r_k|| \le \delta ||\nabla f(y_k)||$
- If  $w_k$  is true gradient, we observe  $u_k$  with  $||u_k w_k|| \le \delta ||w_k||$
- In IQC form:

$$\begin{bmatrix} w_k \\ u_k \end{bmatrix}^T \begin{bmatrix} \delta^2 - 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} w_k \\ u_k \end{bmatrix} \ge 0$$

- Suppose instead of observing  $\nabla f(y)$ , we see  $u_k = \nabla f(y_k) + r_k$ , where  $||r_k|| \le \delta ||\nabla f(y_k)||$
- If  $w_k$  is true gradient, we observe  $u_k$  with  $||u_k w_k|| \le \delta ||w_k||$
- In IQC form:

$$\begin{bmatrix} w_k \\ u_k \end{bmatrix}^T \begin{bmatrix} \delta^2 - 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} w_k \\ u_k \end{bmatrix} \ge 0$$

• We can use nearly the same LMI after augmenting our state with w, i.e. we keep track of (y, u, w), and instead solve for  $3 \times 3$  P for e.g. Nesterov's method

#### Nesterov's method convergence rates with noisy gradient



# Table of Contents

- Introduction
- First order methods as dynamical systems
  - Dynamical systems
  - Formulations for first order methods
  - Convergence when everything is linear
- 3 Integral Quadratic Constraints
  - Core idea
  - Definition
  - IQCs and convergence rates
  - Some IQCs for convex functions
- 4 Case studies (a.k.a. actually applying IQCs)
  - Gradient descent
  - Nesterov's accelerated gradient descent
  - Heavy ball method
  - ADMM

#### Dealing with noise





• Many optimization methods are (almost) linear dynamical systems

# Summary

- Many optimization methods are (almost) linear dynamical systems
- IQCs can replace nonlinearities in these systems

# Summary

- Many optimization methods are (almost) linear dynamical systems
- IQCs can replace nonlinearities in these systems
- IQCs exist which capture standard properties of convex functions

# Summary

- Many optimization methods are (almost) linear dynamical systems
- IQCs can replace nonlinearities in these systems
- IQCs exist which capture standard properties of convex functions
- Automatic numerical convergence rate bounds whenever we have bounds on m, L and (in the noisy case)  $\delta$
# Summary

- Many optimization methods are (almost) linear dynamical systems
- IQCs can replace nonlinearities in these systems
- IQCs exist which capture standard properties of convex functions
- Automatic numerical convergence rate bounds whenever we have bounds on m, L and (in the noisy case)  $\delta$
- Hence easy parameter tuning/algorithm design



#### • Analytic proofs doable if we can solve small SDPs in closed form

Analytic proofs doable if we can solve small SDPs in closed form
We don't usually know m, L; connections to e.g. adaptive control?

- Analytic proofs doable if we can solve small SDPs in closed form
- We don't usually know m, L; connections to e.g. adaptive control?
- More sophisticated parameter search needed if we want more steps of memory

- Analytic proofs doable if we can solve small SDPs in closed form
- We don't usually know m, L; connections to e.g. adaptive control?
- More sophisticated parameter search needed if we want more steps of memory
- Noise analysis is far from complete; IQCs that are valid in expectation?

- Analytic proofs doable if we can solve small SDPs in closed form
- We don't usually know m, L; connections to e.g. adaptive control?
- More sophisticated parameter search needed if we want more steps of memory
- Noise analysis is far from complete; IQCs that are valid in expectation?
- We translated convexity properties into IQCs; are there useful IQCs for certain nonconvex functions?