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• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a 
query

• Space, query time

• d = 2, Euclidean distance
• O(n) space

• O(log n) time

• Infeasible for large d:
• Space exponential in the dimension

• Most of the applications are in 
high dimensions
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• Similarity search for: images, audio, video, texts, biological 
data etc

• Cryptanalysis (the Shortest Vector Problem in lattices) 
[Laarhoven 2015]

• Optimization: Coordinate Descent [Dhillon, Ravikumar, 
Tewari 2011], Stochastic Gradient Descent [Hofmann, 
Lucchi, McWilliams 2015] etc
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• Very important case:

all points and queries lie on a unit sphere in Rd

• Why interesting?

• In theory: can reduce general case to the spherical case 
(later in the talk)

• In practice:
• Cosine similarity is widely used

• Oftentimes, can boldly pretend that the dataset lies on a sphere 
and be just fine
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• Dataset: n random points on a 
sphere

• Query: a random query within 45
degrees from a data point

• Distribution of angles: near 
neighbor within 45 degrees, 
other data points at ~90 degrees!

• Instructive case to think about
• Concentration of angles around 90

degrees happens in practice
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• Main idea: random partitions of Rd s.t. 
closer pairs of points collide more often

• A random partition R is (r, cr, p1, p2)-
sensitive if for every p, q:
• If ‖p - q‖ ≤ r, then PrR[R(p) = R(q)] ≥ p1

• If ‖p - q‖ ≥ cr, then PrR[R(p) = R(q)] ≤ p2

From the definition of ANN

r cr

p2

p1
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• K hash functions at once (p into 
(h1(p), …, hK(p)))

• If 0.5K ~ 1/n, then query time is 
O(1)

• Collides with near neighbor with 
probability 0.75K ~ 1/n0.42

• Thus, need L = O(n0.42) tables to 
boost the success probability to 
0.99

• Overall: O(n1.42) space, O(n0.42)
query time, K·L hyperplanes
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In general [Indyk, Motwani 1998]: can always choose K (# of 
functions / table) and L (# of tables) to get space O(n1+ρ) and 
query time O(nρ), where

ρ = ln(1/p1) / ln(1/p2)

Recap:

• p1 is collision probability for close pairs

• p2 — for far pairs
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• Can one improve upon O(n1.42) space and O(n0.42) query time 
for the 45-degree random instance?

• Yes!
• [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve 

space O(n1.18) and query time O(n0.18)

• [Andoni, R ??]: this is tight for the hashing-based approaches!

• Works for the general case of ANN on a sphere!
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• From [Andoni, Indyk, Nguyen, R 2014], 
[Andoni, R 2015]; inspired by [Karger, 
Motwani, Sudan 1998]: Voronoi LSH

• Sample T i.i.d. standard d-dimensional 
Gaussians

g1, g2, …, gT

• Hash p into h(p) = argmax1≤ i ≤T<p, gi>

• T = 2 is simply Hyperplane LSH
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• Let us compare K hyperplanes 
vs. Voronoi LSH with T = 2K (in 
both cases K-bit hashes)

• As T grows, the gap between 
Hyperplane LSH and Voronoi LSH 
increases and

ρ = ln(1/p1) / ln(1/p2)

approaches 0.18





Approximate Near Neighbor 
Search (ANN)

Locality-Sensitive 
Hashing (LSH)

Optimal LSH for 
a sphere

Beyond LSH for the 
whole Rd

Practical and optimal 
LSH for a sphere



Approximate Near Neighbor 
Search (ANN)

Locality-Sensitive 
Hashing (LSH)

Optimal LSH for 
a sphere

Beyond LSH for the 
whole Rd

Practical and optimal 
LSH for a sphere

[Andoni, R 2015] 
STOC 2015





Distance metric
𝜌 =

ln 1/𝑝1
ln 1/𝑝2

𝒄 = 𝟐 Reference

Euclidean (ℓ2) ≤  𝟏 𝒄𝟐 + 𝒐(𝟏) 1/4 [Andoni, Indyk 2006]

 ≥ 1 𝑐2 − 𝑜(1) [O’Donnell, Wu, Zhou 2011]

Manhattan, Hamming (ℓ1) ≤  𝟏 𝒄 1/2 [Indyk, Motwani 1998]

≥  1 𝑐 − 𝑜(1) [O’Donnell, Wu, Zhou 2011]



Distance metric
𝜌 =

ln 1/𝑝1
ln 1/𝑝2

𝒄 = 𝟐 Reference

Euclidean (ℓ2) ≤  𝟏 𝒄𝟐 + 𝒐(𝟏) 1/4 [Andoni, Indyk 2006]

 ≥ 1 𝑐2 − 𝑜(1) [O’Donnell, Wu, Zhou 2011]

Manhattan, Hamming (ℓ1) ≤  𝟏 𝒄 1/2 [Indyk, Motwani 1998]

≥  1 𝑐 − 𝑜(1) [O’Donnell, Wu, Zhou 2011]

Space 𝑂(𝑛  3 2), query time 𝑂(𝑛  1 2)



Distance metric
𝜌 =

ln 1/𝑝1
ln 1/𝑝2

𝒄 = 𝟐 Reference

Euclidean (ℓ2) ≤  𝟏 𝒄𝟐 + 𝒐(𝟏) 1/4 [Andoni, Indyk 2006]

 ≥ 1 𝑐2 − 𝑜(1) [O’Donnell, Wu, Zhou 2011]

Manhattan, Hamming (ℓ1) ≤  𝟏 𝒄 1/2 [Indyk, Motwani 1998]

≥  1 𝑐 − 𝑜(1) [O’Donnell, Wu, Zhou 2011]

Can one improve upon LSH?

Space 𝑂(𝑛  3 2), query time 𝑂(𝑛  1 2)



Distance metric
𝜌 =

ln 1/𝑝1
ln 1/𝑝2

𝒄 = 𝟐 Reference

Euclidean (ℓ2) ≤  𝟏 𝒄𝟐 + 𝒐(𝟏) 1/4 [Andoni, Indyk 2006]

 ≥ 1 𝑐2 − 𝑜(1) [O’Donnell, Wu, Zhou 2011]
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Can one improve upon LSH?

Space 𝑂(𝑛  3 2), query time 𝑂(𝑛  1 2)
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• Main idea: data-dependent space partitions

• A distribution over partitions R is (r, cr, p1, p2)-sensitive if for every p, 
q:
• If ‖p - q‖ ≤ r, then PrR[R(p) = R(q)] ≥ p1

• If ‖p - q‖ ≥ cr, then PrR[R(p) = R(q)] ≤ p2

• Too strong! Can assume that p is a data point!
• Exploit the geometry of P to design better partitions

• Able to obtain improvement for every P





Optimal* data-dependent space partitions for 
the Euclidean and Manhattan/Hamming distances

* After proper formalization
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• Worst-case dataset → randomly-looking parts (data-dependent)
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• W.l.o.g. points and queries lie on a sphere of radius R

• Random instance; near neighbors are planted within √2 R/c

• Voronoi LSH gives ρ = log(1/p1) / log(1/p2) = 1 / (2c2 – 1)

• What if the dataset does not look random?
• Voronoi LSH is suboptimal

R

R

√2 R
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• The dataset does not look random

• Remove structure—clusters of small 
radius with n1-δ points—until there 
are none
• Will handle them separately

• The remainder looks like a random 
set
• No dense areas → points are spread

• Apply Voronoi LSH, recurse
• dense clusters can appear again!

• Query all the clusters and one part
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• Enclose a cluster of radius (√2 - ε)R in a ball of radius (1 – Ω(ε2)) R

• Recurse with reduced radius
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• For clusters reduce the radius
• after several reductions the problem 

becomes trivial

• For the random remainder, 
Voronoi LSH works well

• Can be seen as a decision tree
• Nodes correspond to clusters and 

parts of the remainder

• During the query go to several 
subtrees

• A tree occupies space n1+o(1), query 
time is no(1) (can control depth and 
branching)

• Need nρ trees to succeed w.h.p.

Root

Random

Part PartPart

Voronoi LSH

ClusterCluster

Clustering
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[Andoni, Indyk, 
Laarhoven, R, Schmidt 
2015] NIPS 2015
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Is Voronoi LSH practical?

No!
• Slow convergence to the optimal exponent: Θ(1 / log T)
• Large T to notice any improvement
• Takes O(d · T) time (even say T = 64 is bad)

At the same time:
• Hyperplane LSH is very useful in practice
• Can practice benefit from theory?

This work: yes!
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• Cross-polytope LSH introduced by 
[Terasawa, Tanaka 2007]:
• To hash p, apply a random rotation S to p

• Set hash value to a vertex of a cross-polytope 
{±ei} closest to Sp

• This paper: almost the same quality as 
Voronoi LSH with T = 2d
• Blessing of dimensionality: exponent improves 

as d grows!

• Impractical: a random rotation costs O(d2)
time and space

• The second step is cheap (only O(d) time)
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• Introduced in [Ailon, Chazelle 2009], 
used in [Dasgupta, Kumar, Sarlos 
2011], [Ailon, Rauhut 2014], [Ve, 
Sarlos, Smola, 2013] etc

• True random rotations are expensive!

• Hadamard transform: an orthogonal 
map that
• “Mixes well”

• Fast: can be computed in time O(d log d) 𝐻0 = 1

𝐻𝑛 =
1

√2

𝐻𝑛−1 𝐻𝑛−1

𝐻𝑛−1 −𝐻𝑛−1

p = (p1, p2, …, pn)

p’ = (±p1, ±p2, …, ±pn)

Hp’

Flip signs

Hadamard

Repeat (2-3 times)
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• Perform 2–3 rounds of “flip signs / Hadamard”

• Find the closest vector from {±ei} (maximum coordinate)

• Evaluation time O(d log d)

• Equivalent to Voronoi LSH with T = 2d Gaussians
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• LSH consumes lots of memory: myth or reality?

• For n = 106 random points and queries within 45 degrees, 
need 725 tables for success probability 0.9 (if using 
Hyperplane LSH)

• Can be reduced substantially via Multiprobe LSH [Lv, 
Josephson, Wang, Charikar, Li 2007]

• Our contribution: Multiprobe for Cross-polytope LSH
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• SIFT features for a dataset of images

• n = 1M, d = 128

• Linear scan: 38ms

• Hyperplane: 3.7ms, Cross-polytope: 3.1ms

• Clustering and re-centering helps
• Hyperplane: 2.75ms

• Cross-polytope: 1.75ms

• Adding more memory helps
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• Can we make the first bullet practical?
• Practical “worst-case to random” reduction?


