
Ilya Razenshteyn (MIT)

based on papers joint with

Alexandr Andoni (Columbia), Piotr Indyk (MIT),

Thijs Laarhoven (TU Eindhoven) and Ludwig Schmidt (MIT)

Approximate Near Neighbor
Search (ANN)

Locality-Sensitive
Hashing (LSH)

Optimal LSH for
a sphere

Beyond LSH for the
whole Rd

Practical and optimal
LSH for a sphere

Approximate Near Neighbor
Search (ANN)

Locality-Sensitive
Hashing (LSH)

Optimal LSH for
a sphere

Beyond LSH for the
whole Rd

Practical and optimal
LSH for a sphere

[Andoni, R 2015]
STOC 2015

[Andoni, Indyk,
Laarhoven, R, Schmidt
2015] NIPS 2015

• Dataset: n points in Rd, r > 0

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Space, query time

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Space, query time

• d = 2, Euclidean distance
• O(n) space

• O(log n) time

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Space, query time

• d = 2, Euclidean distance
• O(n) space

• O(log n) time

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Space, query time

• d = 2, Euclidean distance
• O(n) space

• O(log n) time

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Space, query time

• d = 2, Euclidean distance
• O(n) space

• O(log n) time

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Space, query time

• d = 2, Euclidean distance
• O(n) space

• O(log n) time

• Infeasible for large d:
• Space exponential in the dimension

• Dataset: n points in Rd, r > 0

• Goal: a data point within r from a
query

• Space, query time

• d = 2, Euclidean distance
• O(n) space

• O(log n) time

• Infeasible for large d:
• Space exponential in the dimension

• Most of the applications are in
high dimensions

• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1

• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1

• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1

• Query: a point within r from a data
point

• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1

• Query: a point within r from a data
point

r

• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1

• Query: a point within r from a data
point

• Want: a data point within cr from the
query

r

• Given:
• n points in Rd

• distance threshold r > 0

• approximation c > 1

• Query: a point within r from a data
point

• Want: a data point within cr from the
query

r

cr

• Similarity search for: images, audio, video, texts, biological
data etc

• Similarity search for: images, audio, video, texts, biological
data etc

• Cryptanalysis (the Shortest Vector Problem in lattices)
[Laarhoven 2015]

• Similarity search for: images, audio, video, texts, biological
data etc

• Cryptanalysis (the Shortest Vector Problem in lattices)
[Laarhoven 2015]

• Optimization: Coordinate Descent [Dhillon, Ravikumar,
Tewari 2011], Stochastic Gradient Descent [Hofmann,
Lucchi, McWilliams 2015] etc

• Very important case:

all points and queries lie on a unit sphere in Rd

• Very important case:

all points and queries lie on a unit sphere in Rd

• Why interesting?

• Very important case:

all points and queries lie on a unit sphere in Rd

• Why interesting?

• In theory: can reduce general case to the spherical case
(later in the talk)

• Very important case:

all points and queries lie on a unit sphere in Rd

• Why interesting?

• In theory: can reduce general case to the spherical case
(later in the talk)

• In practice:
• Cosine similarity is widely used

• Oftentimes, can boldly pretend that the dataset lies on a sphere
and be just fine

• Dataset: n random points on a
sphere

• Dataset: n random points on a
sphere

• Query: a random query within 45
degrees from a data point

• Dataset: n random points on a
sphere

• Query: a random query within 45
degrees from a data point

• Distribution of angles: near
neighbor within 45 degrees,
other data points at ~90 degrees!

• Dataset: n random points on a
sphere

• Query: a random query within 45
degrees from a data point

• Distribution of angles: near
neighbor within 45 degrees,
other data points at ~90 degrees!

• Dataset: n random points on a
sphere

• Query: a random query within 45
degrees from a data point

• Distribution of angles: near
neighbor within 45 degrees,
other data points at ~90 degrees!

• Instructive case to think about
• Concentration of angles around 90

degrees happens in practice

Approximate Near Neighbor
Search (ANN)

Locality-Sensitive
Hashing (LSH)

Optimal LSH for
a sphere

Beyond LSH for the
whole Rd

Practical and optimal
LSH for a sphere

• Introduced in [Indyk, Motwani 1998]

• Introduced in [Indyk, Motwani 1998]

• Main idea: random partitions of Rd s.t.
closer pairs of points collide more often

• Introduced in [Indyk, Motwani 1998]

• Main idea: random partitions of Rd s.t.
closer pairs of points collide more often

• Introduced in [Indyk, Motwani 1998]

• Main idea: random partitions of Rd s.t.
closer pairs of points collide more often

• A random partition R is (r, cr, p1, p2)-
sensitive if for every p, q:
• If ‖p - q‖ ≤ r, then PrR[R(p) = R(q)] ≥ p1

• If ‖p - q‖ ≥ cr, then PrR[R(p) = R(q)] ≤ p2

• Introduced in [Indyk, Motwani 1998]

• Main idea: random partitions of Rd s.t.
closer pairs of points collide more often

• A random partition R is (r, cr, p1, p2)-
sensitive if for every p, q:
• If ‖p - q‖ ≤ r, then PrR[R(p) = R(q)] ≥ p1

• If ‖p - q‖ ≥ cr, then PrR[R(p) = R(q)] ≤ p2

From the definition of ANN

• Introduced in [Indyk, Motwani 1998]

• Main idea: random partitions of Rd s.t.
closer pairs of points collide more often

• A random partition R is (r, cr, p1, p2)-
sensitive if for every p, q:
• If ‖p - q‖ ≤ r, then PrR[R(p) = R(q)] ≥ p1

• If ‖p - q‖ ≥ cr, then PrR[R(p) = R(q)] ≤ p2

From the definition of ANN

r cr

p2

p1

• Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

• Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

• Sample unit r uniformly, hash p into
sgn <r, p>

• Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

• Sample unit r uniformly, hash p into
sgn <r, p>

• Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

• Sample unit r uniformly, hash p into
sgn <r, p>

• Pr[h(p) = h(q)] = 1 – α / π, where α is
the angle between p and q

• Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

• Sample unit r uniformly, hash p into
sgn <r, p>

• Pr[h(p) = h(q)] = 1 – α / π, where α is
the angle between p and q

• Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

• Sample unit r uniformly, hash p into
sgn <r, p>

• Pr[h(p) = h(q)] = 1 – α / π, where α is
the angle between p and q

• K hash functions at once (p into
(h1(p), …, hK(p)))

• K hash functions at once (p into
(h1(p), …, hK(p)))

• K hash functions at once (p into
(h1(p), …, hK(p)))

• K hash functions at once (p into
(h1(p), …, hK(p)))

• K hash functions at once (p into
(h1(p), …, hK(p)))

• K hash functions at once (p into
(h1(p), …, hK(p)))

• K hash functions at once (p into
(h1(p), …, hK(p)))

• K hash functions at once (p into
(h1(p), …, hK(p)))

• If 0.5K ~ 1/n, then query time is
O(1)

• K hash functions at once (p into
(h1(p), …, hK(p)))

• If 0.5K ~ 1/n, then query time is
O(1)

• Collides with near neighbor with
probability 0.75K ~ 1/n0.42

• Thus, need L = O(n0.42) tables to
boost the success probability to
0.99

• K hash functions at once (p into
(h1(p), …, hK(p)))

• If 0.5K ~ 1/n, then query time is
O(1)

• Collides with near neighbor with
probability 0.75K ~ 1/n0.42

• Thus, need L = O(n0.42) tables to
boost the success probability to
0.99

• Overall: O(n1.42) space, O(n0.42)
query time, K·L hyperplanes

In general [Indyk, Motwani 1998]: can always choose K (# of
functions / table) and L (# of tables) to get space O(n1+ρ) and
query time O(nρ), where

In general [Indyk, Motwani 1998]: can always choose K (# of
functions / table) and L (# of tables) to get space O(n1+ρ) and
query time O(nρ), where

ρ = ln(1/p1) / ln(1/p2)

In general [Indyk, Motwani 1998]: can always choose K (# of
functions / table) and L (# of tables) to get space O(n1+ρ) and
query time O(nρ), where

ρ = ln(1/p1) / ln(1/p2)

Recap:

• p1 is collision probability for close pairs

• p2 — for far pairs

Approximate Near Neighbor
Search (ANN)

Locality-Sensitive
Hashing (LSH)

Optimal LSH for
a sphere

Beyond LSH for the
whole Rd

Practical and optimal
LSH for a sphere

• Can one improve upon O(n1.42) space and O(n0.42) query time
for the 45-degree random instance?

• Can one improve upon O(n1.42) space and O(n0.42) query time
for the 45-degree random instance?

• Yes!
• [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve

space O(n1.18) and query time O(n0.18)

• Can one improve upon O(n1.42) space and O(n0.42) query time
for the 45-degree random instance?

• Yes!
• [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve

space O(n1.18) and query time O(n0.18)

• [Andoni, R ??]: this is tight for the hashing-based approaches!

• Can one improve upon O(n1.42) space and O(n0.42) query time
for the 45-degree random instance?

• Yes!
• [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve

space O(n1.18) and query time O(n0.18)

• [Andoni, R ??]: this is tight for the hashing-based approaches!

• Works for the general case of ANN on a sphere!

• From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

• From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

• Sample T i.i.d. standard d-dimensional
Gaussians

g1, g2, …, gT

• From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

• Sample T i.i.d. standard d-dimensional
Gaussians

g1, g2, …, gT

• Hash p into h(p) = argmax1≤ i ≤T<p, gi>

• From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

• Sample T i.i.d. standard d-dimensional
Gaussians

g1, g2, …, gT

• Hash p into h(p) = argmax1≤ i ≤T<p, gi>

• From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

• Sample T i.i.d. standard d-dimensional
Gaussians

g1, g2, …, gT

• Hash p into h(p) = argmax1≤ i ≤T<p, gi>

• From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

• Sample T i.i.d. standard d-dimensional
Gaussians

g1, g2, …, gT

• Hash p into h(p) = argmax1≤ i ≤T<p, gi>

• From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

• Sample T i.i.d. standard d-dimensional
Gaussians

g1, g2, …, gT

• Hash p into h(p) = argmax1≤ i ≤T<p, gi>

• T = 2 is simply Hyperplane LSH

• Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

• Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

• Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

• Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

• Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

• Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

• Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

• Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

• As T grows, the gap between
Hyperplane LSH and Voronoi LSH
increases and

ρ = ln(1/p1) / ln(1/p2)

approaches 0.18

Approximate Near Neighbor
Search (ANN)

Locality-Sensitive
Hashing (LSH)

Optimal LSH for
a sphere

Beyond LSH for the
whole Rd

Practical and optimal
LSH for a sphere

Approximate Near Neighbor
Search (ANN)

Locality-Sensitive
Hashing (LSH)

Optimal LSH for
a sphere

Beyond LSH for the
whole Rd

Practical and optimal
LSH for a sphere

[Andoni, R 2015]
STOC 2015

Distance metric
𝜌 =

ln 1/𝑝1
ln 1/𝑝2

𝒄 = 𝟐 Reference

Euclidean (ℓ2) ≤ 𝟏 𝒄𝟐 + 𝒐(𝟏) 1/4 [Andoni, Indyk 2006]

 ≥ 1 𝑐2 − 𝑜(1) [O’Donnell, Wu, Zhou 2011]

Manhattan, Hamming (ℓ1) ≤ 𝟏 𝒄 1/2 [Indyk, Motwani 1998]

≥ 1 𝑐 − 𝑜(1) [O’Donnell, Wu, Zhou 2011]

Distance metric
𝜌 =

ln 1/𝑝1
ln 1/𝑝2

𝒄 = 𝟐 Reference

Euclidean (ℓ2) ≤ 𝟏 𝒄𝟐 + 𝒐(𝟏) 1/4 [Andoni, Indyk 2006]

 ≥ 1 𝑐2 − 𝑜(1) [O’Donnell, Wu, Zhou 2011]

Manhattan, Hamming (ℓ1) ≤ 𝟏 𝒄 1/2 [Indyk, Motwani 1998]

≥ 1 𝑐 − 𝑜(1) [O’Donnell, Wu, Zhou 2011]

Space 𝑂(𝑛 3 2), query time 𝑂(𝑛 1 2)

Distance metric
𝜌 =

ln 1/𝑝1
ln 1/𝑝2

𝒄 = 𝟐 Reference

Euclidean (ℓ2) ≤ 𝟏 𝒄𝟐 + 𝒐(𝟏) 1/4 [Andoni, Indyk 2006]

 ≥ 1 𝑐2 − 𝑜(1) [O’Donnell, Wu, Zhou 2011]

Manhattan, Hamming (ℓ1) ≤ 𝟏 𝒄 1/2 [Indyk, Motwani 1998]

≥ 1 𝑐 − 𝑜(1) [O’Donnell, Wu, Zhou 2011]

Can one improve upon LSH?

Space 𝑂(𝑛 3 2), query time 𝑂(𝑛 1 2)

Distance metric
𝜌 =

ln 1/𝑝1
ln 1/𝑝2

𝒄 = 𝟐 Reference

Euclidean (ℓ2) ≤ 𝟏 𝒄𝟐 + 𝒐(𝟏) 1/4 [Andoni, Indyk 2006]

 ≥ 1 𝑐2 − 𝑜(1) [O’Donnell, Wu, Zhou 2011]

Manhattan, Hamming (ℓ1) ≤ 𝟏 𝒄 1/2 [Indyk, Motwani 1998]

≥ 1 𝑐 − 𝑜(1) [O’Donnell, Wu, Zhou 2011]

Can one improve upon LSH?

Space 𝑂(𝑛 3 2), query time 𝑂(𝑛 1 2)

Yes!

• Main idea: data-dependent space partitions

• Main idea: data-dependent space partitions

• A distribution over partitions R is (r, cr, p1, p2)-sensitive if for every p,
q:
• If ‖p - q‖ ≤ r, then PrR[R(p) = R(q)] ≥ p1

• If ‖p - q‖ ≥ cr, then PrR[R(p) = R(q)] ≤ p2

• Main idea: data-dependent space partitions

• A distribution over partitions R is (r, cr, p1, p2)-sensitive if for every p,
q:
• If ‖p - q‖ ≤ r, then PrR[R(p) = R(q)] ≥ p1

• If ‖p - q‖ ≥ cr, then PrR[R(p) = R(q)] ≤ p2

• Too strong! Can assume that p is a data point!
• Exploit the geometry of P to design better partitions

• Able to obtain improvement for every P

Optimal* data-dependent space partitions for
the Euclidean and Manhattan/Hamming distances

* After proper formalization

Distance metric
ρ =

ln 1/p1
ln 1/p2

𝐜 = 𝟐 Reference

Euclidean (ℓ2) ≤ 1 c2 + o(1) 1/4 [Andoni, Indyk 2006]

 ≥ 1 c2 − o(1) [O’Donnell, Wu, Zhou 2011]

𝟏

𝟐𝐜𝟐 − 𝟏
+ 𝐨(𝟏)

1/7 [Andoni, R 2015]

Hamming (ℓ1) ≤ 1 c 1/2 [Indyk, Motwani 1998]

≥ 1 c − o(1) [O’Donnell, Wu, Zhou 2011]

𝟏

𝟐𝐜 − 𝟏
+ 𝐨(𝟏)

1/3 [Andoni, R 2015]

Distance metric
ρ =

ln 1/p1
ln 1/p2

𝐜 = 𝟐 Reference

Euclidean (ℓ2) ≤ 1 c2 + o(1) 1/4 [Andoni, Indyk 2006]

 ≥ 1 c2 − o(1) [O’Donnell, Wu, Zhou 2011]

𝟏

𝟐𝐜𝟐 − 𝟏
+ 𝐨(𝟏)

1/7 [Andoni, R 2015]

Hamming (ℓ1) ≤ 1 c 1/2 [Indyk, Motwani 1998]

≥ 1 c − o(1) [O’Donnell, Wu, Zhou 2011]

𝟏

𝟐𝐜 − 𝟏
+ 𝐨(𝟏)

1/3 [Andoni, R 2015]

• Random datasets (data-independent, via Voronoi LSH)

• Random datasets (data-independent, via Voronoi LSH)

• Worst-case dataset → randomly-looking parts (data-dependent)

• W.l.o.g. points and queries lie on a sphere of radius R

• W.l.o.g. points and queries lie on a sphere of radius R

• Random instance; near neighbors are planted within √2 R/c

• W.l.o.g. points and queries lie on a sphere of radius R

• Random instance; near neighbors are planted within √2 R/c

R

R

√2 R

• W.l.o.g. points and queries lie on a sphere of radius R

• Random instance; near neighbors are planted within √2 R/c

• Voronoi LSH gives ρ = log(1/p1) / log(1/p2) = 1 / (2c2 – 1)

R

R

√2 R

• W.l.o.g. points and queries lie on a sphere of radius R

• Random instance; near neighbors are planted within √2 R/c

• Voronoi LSH gives ρ = log(1/p1) / log(1/p2) = 1 / (2c2 – 1)

• What if the dataset does not look random?
• Voronoi LSH is suboptimal

R

R

√2 R

• The dataset does not look
random

• The dataset does not look
random

• Remove structure—clusters of
small radius with n1-δ points—
until there are none
• Will handle them separately

• The dataset does not look
random

• Remove structure—clusters of
small radius with n1-δ points—
until there are none
• Will handle them separately

• The dataset does not look
random

• Remove structure—clusters of
small radius with n1-δ points—
until there are none
• Will handle them separately

• The dataset does not look
random

• Remove structure—clusters of
small radius with n1-δ points—
until there are none
• Will handle them separately

• The dataset does not look
random

• Remove structure—clusters of
small radius with n1-δ points—
until there are none
• Will handle them separately

• The dataset does not look
random

• Remove structure—clusters of
small radius with n1-δ points—
until there are none
• Will handle them separately

• The remainder looks like a
random set
• No dense areas → points are spread

• The dataset does not look random

• Remove structure—clusters of small
radius with n1-δ points—until there
are none
• Will handle them separately

• The remainder looks like a random
set
• No dense areas → points are spread

• Apply Voronoi LSH, recurse
• dense clusters can appear again!

• The dataset does not look random

• Remove structure—clusters of small
radius with n1-δ points—until there
are none
• Will handle them separately

• The remainder looks like a random
set
• No dense areas → points are spread

• Apply Voronoi LSH, recurse
• dense clusters can appear again!

• The dataset does not look random

• Remove structure—clusters of small
radius with n1-δ points—until there
are none
• Will handle them separately

• The remainder looks like a random
set
• No dense areas → points are spread

• Apply Voronoi LSH, recurse
• dense clusters can appear again!

• The dataset does not look random

• Remove structure—clusters of small
radius with n1-δ points—until there
are none
• Will handle them separately

• The remainder looks like a random
set
• No dense areas → points are spread

• Apply Voronoi LSH, recurse
• dense clusters can appear again!

• Query all the clusters and one part

• Enclose a cluster of radius (√2 - ε)R in a ball of radius (1 – Ω(ε2)) R

• Enclose a cluster of radius (√2 - ε)R in a ball of radius (1 – Ω(ε2)) R

• Enclose a cluster of radius (√2 - ε)R in a ball of radius (1 – Ω(ε2)) R

• Recurse with reduced radius

• For clusters reduce the radius
• after several reductions the problem

becomes trivial

• For clusters reduce the radius
• after several reductions the problem

becomes trivial

• For the random remainder,
Voronoi LSH works well

• For clusters reduce the radius
• after several reductions the problem

becomes trivial

• For the random remainder,
Voronoi LSH works well

• Can be seen as a decision tree
• Nodes correspond to clusters and

parts of the remainder

• For clusters reduce the radius
• after several reductions the problem

becomes trivial

• For the random remainder,
Voronoi LSH works well

• Can be seen as a decision tree
• Nodes correspond to clusters and

parts of the remainder

Root

• For clusters reduce the radius
• after several reductions the problem

becomes trivial

• For the random remainder,
Voronoi LSH works well

• Can be seen as a decision tree
• Nodes correspond to clusters and

parts of the remainder

Root

ClusterCluster

Clustering

• For clusters reduce the radius
• after several reductions the problem

becomes trivial

• For the random remainder,
Voronoi LSH works well

• Can be seen as a decision tree
• Nodes correspond to clusters and

parts of the remainder

Root

RandomClusterCluster

Clustering

• For clusters reduce the radius
• after several reductions the problem

becomes trivial

• For the random remainder,
Voronoi LSH works well

• Can be seen as a decision tree
• Nodes correspond to clusters and

parts of the remainder

Root

Random

Part PartPart

Voronoi LSH

ClusterCluster

Clustering

• For clusters reduce the radius
• after several reductions the problem

becomes trivial

• For the random remainder,
Voronoi LSH works well

• Can be seen as a decision tree
• Nodes correspond to clusters and

parts of the remainder

Root

Random

Part PartPart

Voronoi LSH

ClusterCluster

Clustering

• For clusters reduce the radius
• after several reductions the problem

becomes trivial

• For the random remainder,
Voronoi LSH works well

• Can be seen as a decision tree
• Nodes correspond to clusters and

parts of the remainder

• During the query go to several
subtrees

Root

Random

Part PartPart

Voronoi LSH

ClusterCluster

Clustering

• For clusters reduce the radius
• after several reductions the problem

becomes trivial

• For the random remainder,
Voronoi LSH works well

• Can be seen as a decision tree
• Nodes correspond to clusters and

parts of the remainder

• During the query go to several
subtrees

Root

Random

Part PartPart

Voronoi LSH

ClusterCluster

Clustering

• For clusters reduce the radius
• after several reductions the problem

becomes trivial

• For the random remainder,
Voronoi LSH works well

• Can be seen as a decision tree
• Nodes correspond to clusters and

parts of the remainder

• During the query go to several
subtrees

Root

Random

Part PartPart

Voronoi LSH

ClusterCluster

Clustering

• For clusters reduce the radius
• after several reductions the problem

becomes trivial

• For the random remainder,
Voronoi LSH works well

• Can be seen as a decision tree
• Nodes correspond to clusters and

parts of the remainder

• During the query go to several
subtrees

Root

Random

Part PartPart

Voronoi LSH

ClusterCluster

Clustering

• For clusters reduce the radius
• after several reductions the problem

becomes trivial

• For the random remainder,
Voronoi LSH works well

• Can be seen as a decision tree
• Nodes correspond to clusters and

parts of the remainder

• During the query go to several
subtrees

Root

Random

Part PartPart

Voronoi LSH

ClusterCluster

Clustering

• For clusters reduce the radius
• after several reductions the problem

becomes trivial

• For the random remainder,
Voronoi LSH works well

• Can be seen as a decision tree
• Nodes correspond to clusters and

parts of the remainder

• During the query go to several
subtrees

• A tree occupies space n1+o(1), query
time is no(1) (can control depth and
branching)

• Need nρ trees to succeed w.h.p.

Root

Random

Part PartPart

Voronoi LSH

ClusterCluster

Clustering

Approximate Near Neighbor
Search (ANN)

Locality-Sensitive
Hashing (LSH)

Optimal LSH for
a sphere

Beyond LSH for the
whole Rd

Practical and optimal
LSH for a sphere

Approximate Near Neighbor
Search (ANN)

Locality-Sensitive
Hashing (LSH)

Optimal LSH for
a sphere

Beyond LSH for the
whole Rd

Practical and optimal
LSH for a sphere

[Andoni, Indyk,
Laarhoven, R, Schmidt
2015] NIPS 2015

Is Voronoi LSH practical?

Is Voronoi LSH practical?

No!

Is Voronoi LSH practical?

No!
• Slow convergence to the optimal exponent: Θ(1 / log T)
• Large T to notice any improvement

Is Voronoi LSH practical?

No!
• Slow convergence to the optimal exponent: Θ(1 / log T)
• Large T to notice any improvement
• Takes O(d · T) time (even say T = 64 is bad)

Is Voronoi LSH practical?

No!
• Slow convergence to the optimal exponent: Θ(1 / log T)
• Large T to notice any improvement
• Takes O(d · T) time (even say T = 64 is bad)

At the same time:
• Hyperplane LSH is very useful in practice
• Can practice benefit from theory?

Is Voronoi LSH practical?

No!
• Slow convergence to the optimal exponent: Θ(1 / log T)
• Large T to notice any improvement
• Takes O(d · T) time (even say T = 64 is bad)

At the same time:
• Hyperplane LSH is very useful in practice
• Can practice benefit from theory?

This work: yes!

• Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
• To hash p, apply a random rotation S to p

• Set hash value to a vertex of a cross-polytope
{±ei} closest to Sp

• Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
• To hash p, apply a random rotation S to p

• Set hash value to a vertex of a cross-polytope
{±ei} closest to Sp

• Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
• To hash p, apply a random rotation S to p

• Set hash value to a vertex of a cross-polytope
{±ei} closest to Sp

• This paper: almost the same quality as
Voronoi LSH with T = 2d
• Blessing of dimensionality: exponent improves

as d grows!

• Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
• To hash p, apply a random rotation S to p

• Set hash value to a vertex of a cross-polytope
{±ei} closest to Sp

• This paper: almost the same quality as
Voronoi LSH with T = 2d
• Blessing of dimensionality: exponent improves

as d grows!

• Impractical: a random rotation costs O(d2)
time and space

• Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
• To hash p, apply a random rotation S to p

• Set hash value to a vertex of a cross-polytope
{±ei} closest to Sp

• This paper: almost the same quality as
Voronoi LSH with T = 2d
• Blessing of dimensionality: exponent improves

as d grows!

• Impractical: a random rotation costs O(d2)
time and space

• The second step is cheap (only O(d) time)

• Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

• Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

• True random rotations are expensive!

• Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

• True random rotations are expensive!

• Hadamard transform: an orthogonal
map that
• “Mixes well”

• Fast: can be computed in time O(d log d)

• Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

• True random rotations are expensive!

• Hadamard transform: an orthogonal
map that
• “Mixes well”

• Fast: can be computed in time O(d log d) 𝐻0 = 1

𝐻𝑛 =
1

√2

𝐻𝑛−1 𝐻𝑛−1

𝐻𝑛−1 −𝐻𝑛−1

• Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

• True random rotations are expensive!

• Hadamard transform: an orthogonal
map that
• “Mixes well”

• Fast: can be computed in time O(d log d) 𝐻0 = 1

𝐻𝑛 =
1

√2

𝐻𝑛−1 𝐻𝑛−1

𝐻𝑛−1 −𝐻𝑛−1

p = (p1, p2, …, pn)

p’ = (±p1, ±p2, …, ±pn)

Hp’

Flip signs

Hadamard

Repeat (2-3 times)

• Perform 2–3 rounds of “flip signs / Hadamard”

• Perform 2–3 rounds of “flip signs / Hadamard”

• Find the closest vector from {±ei} (maximum coordinate)

• Perform 2–3 rounds of “flip signs / Hadamard”

• Find the closest vector from {±ei} (maximum coordinate)

• Evaluation time O(d log d)

• Perform 2–3 rounds of “flip signs / Hadamard”

• Find the closest vector from {±ei} (maximum coordinate)

• Evaluation time O(d log d)

• Equivalent to Voronoi LSH with T = 2d Gaussians

• LSH consumes lots of memory: myth or reality?

• LSH consumes lots of memory: myth or reality?

• For n = 106 random points and queries within 45 degrees,
need 725 tables for success probability 0.9 (if using
Hyperplane LSH)

• LSH consumes lots of memory: myth or reality?

• For n = 106 random points and queries within 45 degrees,
need 725 tables for success probability 0.9 (if using
Hyperplane LSH)

• Can be reduced substantially via Multiprobe LSH [Lv,
Josephson, Wang, Charikar, Li 2007]

• LSH consumes lots of memory: myth or reality?

• For n = 106 random points and queries within 45 degrees,
need 725 tables for success probability 0.9 (if using
Hyperplane LSH)

• Can be reduced substantially via Multiprobe LSH [Lv,
Josephson, Wang, Charikar, Li 2007]

• Our contribution: Multiprobe for Cross-polytope LSH

• SIFT features for a dataset of images

• SIFT features for a dataset of images

• n = 1M, d = 128

• SIFT features for a dataset of images

• n = 1M, d = 128

• Linear scan: 38ms

• SIFT features for a dataset of images

• n = 1M, d = 128

• Linear scan: 38ms

• Hyperplane: 3.7ms, Cross-polytope: 3.1ms

• SIFT features for a dataset of images

• n = 1M, d = 128

• Linear scan: 38ms

• Hyperplane: 3.7ms, Cross-polytope: 3.1ms

• Clustering and re-centering helps
• Hyperplane: 2.75ms

• Cross-polytope: 1.75ms

• SIFT features for a dataset of images

• n = 1M, d = 128

• Linear scan: 38ms

• Hyperplane: 3.7ms, Cross-polytope: 3.1ms

• Clustering and re-centering helps
• Hyperplane: 2.75ms

• Cross-polytope: 1.75ms

• Adding more memory helps

• Optimal data-dependent hashing for the whole L2

• Optimal data-dependent hashing for the whole L2

• Practical and optimal LSH for the spherical case

• Optimal data-dependent hashing for the whole L2

• Practical and optimal LSH for the spherical case

• Can we make the first bullet practical?
• Practical “worst-case to random” reduction?

• Optimal data-dependent hashing for the whole L2

• Practical and optimal LSH for the spherical case

• Can we make the first bullet practical?
• Practical “worst-case to random” reduction?

