Locality-Sensitive Hashing
and Beyond

llya Razenshteyn (MIT)
based on papers joint with
Alexandr Andoni (Columbia), Piotr Indyk (MIT),
Thijs Laarhoven (TU Eindhoven) and Ludwig Schmidt (MIT)

Outline

Outline

Approximate Near Neighbor
Search (ANN)
\

Locality-Sensitive
Hashing (LSH)
\
Optimal LSH for
a sphere

—

Beyond LSH for the Practical and optimal
whole R LSH for a sphere

Outline

Approximate Near Neighbor
Search (ANN)
\

Locality-Sensitive
Hashing (LSH)
[Andoni, Indyk,
[Andoni, R 2015] Optimal LSH for Laarhoven, R, Schmidt
STOC 2015 a sphere 2015] NIPS 2015
4 — \ 4
Beyond LSH for the Practical and optimal
whole R LSH for a sphere

Near Neighbor Search

Near Neighbor Search

- Dataset: n pointsinR9, r>0

Near Neighbor Search

- Dataset: n pointsinR9, r>0

 Goal: a data point within r from a
query

Near Neighbor Search

- Dataset: n pointsinR9, r>0

 Goal: a data point within r from a
query

Near Neighbor Search

- Dataset: n pointsinR9, r>0

 Goal: a data point within r from a
query

Near Neighbor Search

- Dataset: n pointsinR9, r>0

- Goal: a data point within r from a e
query
» Space, query time AN

Near Neighbor Search

- Dataset: n pointsinR9, r>0

 Goal: a data point within r from a
query

» Space, query time

« d = 2, Euclidean distance

* O(n) space
* O(log n) time

Near Neighbor Search

- Dataset: n pointsinR9, r>0

 Goal: a data point within r from a
query

» Space, query time

« d = 2, Euclidean distance

* O(n) space
* O(log n) time

Near Neighbor Search

- Dataset: n pointsinR9, r>0

 Goal: a data point within r from a
query

» Space, query time

« d = 2, Euclidean distance

* O(n) space
* O(log n) time

Near Neighbor Search

- Dataset: n pointsinR9, r>0

 Goal: a data point within r from a
query

» Space, query time

« d = 2, Euclidean distance

* O(n) space
* O(log n) time

Near Neighbor Search

- Dataset: n pointsinR9, r>0

 Goal: a data point within r from a
query

» Space, query time

« d = 2, Euclidean distance

* O(n) space
* O(log n) time

* Infeasible for large d:
« Space exponential in the dimension

Near Neighbor Search

- Dataset: n pointsinR9, r>0

 Goal: a data point within r from a
query

» Space, query time

« d = 2, Euclidean distance

* O(n) space
* O(log n) time

* Infeasible for large d:
« Space exponential in the dimension

« Most of the applications are in
high dimensions

Approximate Near Neighbor Search (ANN)

Approximate Near Neighbor Search (ANN)

* Given:
 n points in Rd
 distance threshold r >0
« approximation ¢ > 1

Approximate Near Neighbor Search (ANN)

* Given:
 n points in Rd
 distance threshold r >0
« approximation ¢ > 1 ° .

Approximate Near Neighbor Search (ANN)

* Given:
 n points in Rd
 distance threshold r >0
« approximation ¢ > 1 ° .

* Query: a point within r from a data ‘ o
point

Approximate Near Neighbor Search (ANN)

e Given:
 n points in Rd
e distance threshold r>0

« approximation ¢ > 1 .. o
* Query: a point within r from a data . by et
point

Approximate Near Neighbor Search (ANN)

e Given:
 n points in Rd
e distance threshold r>0

« approximation ¢ > 1 e ,.,"'_"
* Query: a point within r from a data ‘ ar el
point
« Want: a data point within cr from the .

gquery

Approximate Near Neighbor Search (ANN)

e Given:
 n points in Rd
e distance threshold r>0

- -
" i

« approximation ¢ > 1 v . :" ,.,"'" “x|

» Query: a point within r from a data y N

point S

» Want: a data point within cr from the . . o
query

Applications

Applications

« Similarity search for: images, audio, video, texts, biological
data etc

Applications

« Similarity search for: images, audio, video, texts, biological
data etc

 Cryptanalysis (the Shortest Vector Problem in lattices)
[Laarhoven 2015]

Applications

« Similarity search for: images, audio, video, texts, biological
data etc

 Cryptanalysis (the Shortest Vector Problem in lattices)
[Laarhoven 2015]

» Optimization: Coordinate Descent [Dhillon, Ravikumar,
Tewari 2011], Stochastic Gradient Descent [Hofmann,
Lucchi, McWilliams 2015] etc

Spherical case

Spherical case

* Very important case:
all points and queries lie on a unit sphere in Rd

Spherical case

* Very important case:
all points and queries lie on a unit sphere in Rd
* Why interesting?

Spherical case

* Very important case:
all points and queries lie on a unit sphere in Rd
* Why interesting?

* In theory: can reduce general case to the spherical case
(later in the talk)

Spherical case

* Very important case:
all points and queries lie on a unit sphere in Rd
* Why interesting?

* In theory: can reduce general case to the spherical case
(later in the talk)

* In practice:
 Cosine similarity is widely used

« Oftentimes, can boldly pretend that the dataset lies on a sphere
and be just fine

Spherical random case

Spherical random case

- Dataset: n random points on a
sphere

Spherical random case

- Dataset: n random points on a
sphere

* Query: a random query within 45
degrees from a data point

Spherical random case

- Dataset: n random points on a
sphere

* Query: a random query within 45
degrees from a data point

» Distribution of angles: near
neighbor within 45 degrees,
other data points at ~90 degrees!

Spherical random case

250

- Dataset: n random points on a
sphere

* Query: a random query within 45
degrees from a data point

» Distribution of angles: near
neighbor within 45 degrees,
other data points at ~90 degrees!

200

150

—

00

50

0 45 90 135 180

Spherical random case

- Dataset: n random points on a
sphere

* Query: a random query within 45
degrees from a data point

» Distribution of angles: near
neighbor within 45 degrees,
other data points at ~90 degrees!

 Instructive case to think about

« Concentration of angles around 90
degrees happens in practice

250

200

150

—

00

50

45

90

135

180

Outline

Outline

Approximate Near Neighbor
Search (ANN)
\

Locality-Sensitive
Hashing (LSH)
\/
Optimal LSH for
a sphere

—

Beyond LSH for the Practical and optimal
whole R LSH for a sphere

Locality-Sensitive Hashing (LLSH)

Locality-Sensitive Hashing (LLSH)

* Introduced in [Indyk, Motwani 1998]

Locality-Sensitive Hashing (LLSH)

* Introduced in [Indyk, Motwani 1998]

« Main idea: random partitions of R9 s.t.
closer pairs of points collide more often

Locality-Sensitive Hashing (LLSH)

* Introduced in [Indyk, Motwani 1998]

« Main idea: random partitions of R9 s.t.
closer pairs of points collide more often

Locality-Sensitive Hashing (LLSH)

* Introduced in [Indyk, Motwani 1998]

« Main idea: random partitions of R9 s.t.
closer pairs of points collide more often

« A random partition R is (r, cr, p,, P,)-
sensitive if for every p, q:
 If llp - qll < r, then Prg[R(p) = R(q)] = p,
 If llp - qll = cr, then Prg[R(p) = R(q)] < p,

Locality-Sensitive Hashing (LLSH)

* Introduced in [Indyk, Motwani 1998]

« Main idea: random partitions of R9 s.t.
closer pairs of points collide more often

« A random partition R is (r, cr, p,, P,)-
sensitive if for every p, q:
 If llp - qll < r, then Prg[R(p) = R(q)] = p,
 If llp - qll = €r, then Prg[R(p) = R(q)] < p,

From the definition of ANN

Locality-Sensitive Hashing (LLSH)

* Introduced in [Indyk, Motwani 1998]

« Main idea: random partitions of R9 s.t.
closer pairs of points collide more often

« A random partition R is (r, cr, p,, P,)-
sensitive if for every p, q:
 If llp - qll < r, then Prg[R(p) = R(q)] = p,
 If llp - qll = €r, then Prg[R(p) = R(q)] < p,

From the definition of ANN

collision prob.
1.0

p1 0.8

0.6

0.4

pz 0.2

Hyperplane LSH

Hyperplane LSH

* Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

Hyperplane LSH

* Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

« Sample unit r uniformly, hash p into
sgn <r, p>

Hyperplane LSH

* Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

« Sample unit r uniformly, hash p into
sgn <r, p>

Hyperplane LSH

* Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

« Sample unit r uniformly, hash p into
sgn <r, p>

* Prlh(p) =h(g)]=1-a/ 1 where ais
the angle between p and q

Hyperplane LSH

* Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

« Sample unit r uniformly, hash p into
sgn <r, p>

* Prlh(p) =h(g)]=1-a/ 1 where ais
the angle between p and q

Hyperplane LSH

* Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

« Sample unit r uniformly, hash p into
sgn <r, p>

* Prlh(p) =h(g)]=1-a/ 1 where ais
the angle between p and q

1.00

0.75

0.50

0.25

90

135

180

Using LSH to solve ANN

Using LSH to solve ANN

« K hash functions at once (p into
(hq(p), .., h(p)))

Using LSH to solve ANN

« K hash functions at once (p into
(hq(p), .., h(p)))

1.00

0.75

0.50

0.25

query
point

near far
neighbor points

Using LSH to solve ANN

« K hash functions at once (p into
(hq(p), .., h(p)))

1.00

0.75

0.50

0.25

query
point

near far
neighbor points

Using LSH to solve ANN

« K hash functions at once (p into
(hq(p), .., h(p)))

K=3

1.00

0.75

0.50

0.25

query
point

near far
neighbor points

Using LSH to solve ANN

« K hash functions at once (p into
(hq(p), .., h(p)))

1.00 K = 4
0.75
0.50
0.25
I
query near far

point

neighbor points

Using LSH to solve ANN

« K hash functions at once (p into
(hq(p), .., h(p)))

1.00

0.75

0.50

0.25

?

query
point

near far
neighbor points

Using LSH to solve ANN

« K hash functions at once (p into
(hq(p), .., h(p)))

K

6

1.00

0.75

0.50

0.25

[J

query
point

near far
neighbor points

Using LSH to solve ANN

« K hash functions at once (p into
(hq(p), .., h(p)))

* [f 0.5% ~ 1/n, then query time is
O(1)

K

6

1.00

0.75

0.50

0.25

[J

query
point

near far
neighbor points

Using LSH to solve ANN

« K hash functions at once (p into
(hq(p), .., h(p)))

* [f 0.5% ~ 1/n, then query time is
O(1)

* Collides with near neighbor with
probability 0.75X ~ 1/n%42

e Thus, need L = O(n%42) tables to
boost the success probability to
0.99

K=6

1.00

0.75

0.50

0.25

|]

query
point

near far
neighbor points

Using LSH to solve ANN

« K hash functions at once (p into
(hq(p), .., h(p)))

* [f 0.5% ~ 1/n, then query time is
O(1)

* Collides with near neighbor with
probability 0.75X ~ 1/n%42

e Thus, need L = O(n%42) tables to
boost the success probability to
0.99

 Overall: O(n142) space, O(n%42)
query time, K-L hyperplanes

K=6

1.00

0.75

0.50

0.25

|]

query
point

near far
neighbor points

Using LSH to solve ANN (in general)

Using LSH to solve ANN (in general)

In general [Indyk, Motwani 1998]. can always choose K (# of
functions / table) and L (# of tables) to get space O(n'*?) and
guery time O(nP), where

Using LSH to solve ANN (in general)

In general [Indyk, Motwani 1998]. can always choose K (# of
functions / table) and L (# of tables) to get space O(n'*?) and
guery time O(nP), where

p = In(1/p1) / In(1/p2)

Using LSH to solve ANN (in general)

In general [Indyk, Motwani 1998]. can always choose K (# of
functions / table) and L (# of tables) to get space O(n'*?) and
guery time O(nP), where

p =In(1/p,) / In(1/p,)
Recap:
* p, is collision probability for close pairs
* p, — for far pairs

Outline

Outline

Approximate Near Neighbor
Search (ANN)
\/

Locality-Sensitive
Hashing (LSH)
\
Optimal LSH for
a sphere

—

Beyond LSH for the Practical and optimal
whole R LSH for a sphere

Better than Hyperplane LSH?

Better than Hyperplane LSH?

« Can one improve upon O(n'42) space and O(n%4?) query time
for the 45-degree random instance?

Better than Hyperplane LSH?

« Can one improve upon O(n'42) space and O(n%4?) query time
for the 45-degree random instance?

* Yes!

* [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve
space O(n"18) and query time O(n®18)

Better than Hyperplane LSH?

« Can one improve upon O(n'42) space and O(n%4?) query time
for the 45-degree random instance?

* Yes!

* [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve
space O(n"18) and query time O(n®18)

* [Andoni, R ??]: this is tight for the hashing-based approaches!

Better than Hyperplane LSH?

« Can one improve upon O(n'42) space and O(n%4?) query time
for the 45-degree random instance?

* Yes!

* [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve
space O(n"18) and query time O(n®18)

* [Andoni, R ??]: this is tight for the hashing-based approaches!
« Works for the general case of ANN on a sphere!

Optimal LSH family: Voronoi LSH

Optimal LSH family: Voronoi LSH

* From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

Optimal LSH family: Voronoi LSH

* From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

« Sample T i.i.d. standard d-dimensional
Gaussians

S1r 821 oo 87T

Optimal LSH family: Voronoi LSH

* From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

« Sample T i.i.d. standard d-dimensional
Gaussians

S1r 821 oo 87T
* Hash p into h(p) = argmax,_; +<p., &>

Optimal LSH family: Voronoi LSH

* From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

« Sample T i.i.d. standard d-dimensional
Gaussians

S1r 821 oo 87T
* Hash p into h(p) = argmax,_; +<p., &>

Optimal LSH family: Voronoi LSH

* From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

« Sample T i.i.d. standard d-dimensional
Gaussians

S1r 821 oo 87T
* Hash p into h(p) = argmax,_; +<p., &>

Optimal LSH family: Voronoi LSH

* From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

« Sample T i.i.d. standard d-dimensional
Gaussians

S1r 821 oo 87T
* Hash p into h(p) = argmax,_; +<p., &>

Optimal LSH family: Voronoi LSH

* From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

« Sample T i.i.d. standard d-dimensional
Gaussians

S1r 821 oo 87T
* Hash p into h(p) = argmax,_; +<p., &>
« T=2is simply Hyperplane LSH

Hyperplane LSH vs. Voronoi LSH

Hyperplane LSH vs. Voronoi LSH

 Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

Hyperplane LSH vs. Voronoi LSH

 Let us compare K hyperplanes 1.00 K=1vs.T=2
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)
0.75
0.50
0.25
query near far

point neighbor points

Hyperplane LSH vs. Voronoi LSH
K=2vs.T=4

 Let us compare K hyperplanes 1.00

vs. Voronoi LSH with T = 2K (in
0.75 \\
0.50

both cases K-bit hashes)
0.25

query near far
point neighbor points

Hyperplane LSH vs. Voronoi LSH

 Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

K=3vs. T=8

1.00

0.75

\

0.50

K\

0.25

S

query
point

near far
neighbor points

Hyperplane LSH vs. Voronoi LSH

 Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

K=4vs.T=16

1.00

0.75

\

0.50

\

0.25

N

query
point

near far
neighbor points

Hyperplane LSH vs. Voronoi LSH

 Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

K=5vs. T=32

1.00

0.75

\

0.50

\

0.25

N

query
point

near far
neighbor points

Hyperplane LSH vs. Voronoi LSH

 Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)

1.00

0.75

0.50

0.25

K=6vs.T=64

\

query

point

near far

neighbor points

Hyperplane LSH vs. Voronoi LSH

 Let us compare K hyperplanes 1.00 K=6vs.T=064
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes) -
« As T grows, the gap between |
Hyperplane LSH and Voronoi LSH
increases and 0.50
p=In(1/p,) / In(1/p,)
approaches 0.18 0.25
query near far

point neighbor points

Outline

Outline

Approximate Near Neighbor
Search (ANN)
\/

Locality-Sensitive
Hashing (LSH)
\
Optimal LSH for
a sphere

—

Beyond LSH for the Practical and optimal
whole R LSH for a sphere

Outline

Approximate Near Neighbor
Search (ANN)
\/

Locality-Sensitive
Hashing (LSH)
\
[Andoni, R 2015] Optimal LSH for
STOC 2015 a sphere
@ /\
Beyond LSH for the Practical and optimal
whole R LSH for a sphere

Bounds on LLSH

Bounds on LLSH

Distance metric _In1/p, c =2 |Reference
P~ n 1/p,

Euclidean (¢,) <1/c*+o0(1) 1/4 [Andoni, Indyk 2006]
>1/c? —0(1) [O’'Donnell, Wu, Zhou 2011]
Manhattan, Hamming (¢,) <1/c 1/2 [Indyk, Motwani 1998]

>1/c—o0(1) [O’'Donnell, Wu, Zhou 2011]

BOllIldS on LSH Space 0(n3/?), query time 0(n'/?)

Distance metric _Inl/p, c =2 |Reference
ST 1/p,

Euclidean (¢,) <1/c*+o0(1) 1/4 Andoni, Indyk 2006]
>1/c? —0(1) [O’'Donnell, Wu, Zhou 2011]
Manhattan, Hamming (¢,) <1/c 1/2 [Indyk, Motwani 1998]

>1/c—o0(1) [O’'Donnell, Wu, Zhou 2011]

BOllIldS on LSH Space 0(n3/?), query time 0(n'/?)

Distance metric _Inl/p, c = 2 |Reference
ST 1/p,

Euclidean (¢,) <1/c*+o0(1) 1/4 Andoni, Indyk 2006]
>1/c? —0(1) [O’'Donnell, Wu, Zhou 2011]

Manhattan, Hamming (¢,) <1/c 1/2 [Indyk, Motwani 1998]
>1/c—o0(1) [O’'Donnell, Wu, Zhou 2011]

Can one improve upon LSH?

BOllIldS on LSH Space 0(n3/?), query time 0(n'/?)

Distance metric _Inl/p, c = 2 |Reference
ST 1/p,

Euclidean (¢,) <1/c*+o0(1) 1/4 Andoni, Indyk 2006]
>1/c? —0(1) [O’'Donnell, Wu, Zhou 2011]

Manhattan, Hamming (¢,) <1/c 1/2 [Indyk, Motwani 1998]
>1/c—o0(1) [O’'Donnell, Wu, Zhou 2011]

Can one improve upon LSH?

Yes!

How to do better than LSH?

How to do better than LSH?

- Main idea: data-dependent space partitions

How to do better than LSH?

- Main idea: data-dependent space partitions

* A distribution over partitions R is (r, cr, p,4, pP,)-sensitive if for every p,
g

 Ifllp - gqll £r, then Prg[R(p) = R(q)] = p,

 If llp - qll = cr, then Prg[R(p) = R(q)] < p,

How to do better than LSH?

- Main idea: data-dependent space partitions

* A distribution over partitions R is (r, cr, p,4, pP,)-sensitive if for every p,
g

 Ifllp - gqll £r, then Prg[R(p) = R(q)] = p,

 If llp - qll = cr, then Prg[R(p) = R(q)] < p,

* Too strong! Can assume that p is a data point!
 Exploit the geometry of P to design better partitions
« Able to obtain improvement for every P

The result

The result

Optimal* data-dependent space partitions for
the Euclidean and Manhattan/Hamming distances

* After proper formalization

The main result (quantitative)

The main result (quantitative)

Distance metric _In1/py c =2 |Reference
P~ T 1/p-

Euclidean (¢,) <1/c?*+o0(1) 1/4 [Andoni, Indyk 2006]
>1/c* —o0(1) [O’'Donnell, Wu, Zhou 2011]
Hamming (4;) <1/c 1/2 [Indyk, Motwani 1998]

>1/c—o0(1) [O'Donnell, Wu, Zhou 2011]

The main result (quantitative)

Distance metric _In1/py c =2 |Reference
P~ T 1/p-

Euclidean (#,) <1/c*+o0(1) 1/4 [Andoni, Indyk 2006]
>1/c* —o0(1) [O’'Donnell, Wu, Zhou 2011]
177 [Andoni, R 2015]
2¢2 — 1 +0(1)
Hamming (4;) <1/c 1/2 [Indyk, Motwani 1998]
>1/c—o0(1) [O’'Donnell, Wu, Zhou 2011]
+o(1) 1/3 [Andoni, R 2015]

2c—1

The plan

The plan

- Random datasets (data-independent, via Voronoi LSH)

The plan

- Random datasets (data-independent, via Voronoi LSH)
- Worst-case dataset — randomly-looking parts (data-dependent)

Random case

Random case

« W.l.o.g. points and queries lie on a sphere of radius R

Random case

« W.l.o.g. points and queries lie on a sphere of radius R
- Random instance; near neighbors are planted within v2 R/c

Random case

« W.l.o.g. points and queries lie on a sphere of radius R
- Random instance; near neighbors are planted within v2 R/c

250 y @
|
200 '\/2 R, ‘ I
. 'R
150 /7 I
¢----- 5

100 R

50

0 45 90 135 180

Random case

« W.l.o.g. points and queries lie on a sphere of radius R

- Random instance; near neighbors are planted within v2 R/c
« Voronoi LSH gives p = log(1/p,) / log(1/p,) =1/ (2c?>-1)

250 y @
|
200 '\/2 R/ ‘ I
. 'R
150 /7 I
¢----- 5

100 R

50

0 45 90 135 180

Random case

« W.l.o.g. points and queries lie on a sphere of radius R
- Random instance; near neighbors are planted within v2 R/c
« Voronoi LSH gives p = log(1/p,) / log(1/p,) =1/ (2c?>-1)

« What if the dataset does not look random?
« Voronoi LSH is suboptimal

250 y @
|
200 '\/2 R i I
7 'R
150 /7 I
¢----- 5

100 R

50

0 45 90 135 180

General case

General case

 The dataset does not look
random

General case

 The dataset does not look
random

e Remove structure—clusters of
small radius with n'® points—
until there are none

« Will handle them separately

General case

 The dataset does not look
random

e Remove structure—clusters of
small radius with n'® points—
until there are none

« Will handle them separately

General case

 The dataset does not look
random

e Remove structure—clusters of
small radius with n'® points—
until there are none

« Will handle them separately

General case

 The dataset does not look
random

e Remove structure—clusters of
small radius with n'® points—
until there are none

« Will handle them separately

General case

 The dataset does not look
random

e Remove structure—clusters of
small radius with n'® points—
until there are none

« Will handle them separately

General case

 The dataset does not look
random

e Remove structure—clusters of
small radius with n'® points—
until there are none

« Will handle them separately

e The remainder looks like a
random set

« No dense areas — points are spread

General case L o

 The dataset does not look random

 Remove structure—clusters of small
radius with n1-® points—until there ®
are none ®
« Will handle them separately

 The remainder looks like a random O
set
« No dense areas — points are spread

* Apply Voronoi LSH, recurse ®
 dense clusters can appear again! LT
V4

General case

 The dataset does not look random

» Remove structure—clusters of small
radius with n1-® points—until there Rt
are none S~

» Will handle them separately s

 The remainder looks like a random O
set

« No dense areas — points are spread

* Apply Voronoi LSH, recurse

» dense clusters can appear again! o=~

/
S

General case

 The dataset does not look random

» Remove structure—clusters of small
radius with n1-® points—until there It
are none S~

» Will handle them separately s

e The remainder looks like a random
set

« No dense areas — points are spread

* Apply Voronoi LSH, recurse

» dense clusters can appear again! o=~

/
S

General case

 The dataset does not look random
« Remove structure—clusters of small

radius with n1-® points—until there s

dare none
« Will handle them separately

e The remainder looks like a random
set

« No dense areas — points are spread

* Apply Voronoi LSH, recurse

» dense clusters can appear again! =

l \

/©
- Query all the clusters and one parti Q%O-

\ R4

ﬁ-ﬂ

S

Handling clusters

Handling clusters

 Enclose a cluster of radius (V2 - €)R in a ball of radius (1 - Q(g2)) R

(V2—e)R

Handling clusters

 Enclose a cluster of radius (V2 - €)R in a ball of radius (1 - Q(g2)) R

Handling clusters

 Enclose a cluster of radius (V2 - €)R in a ball of radius (1 - Q(g2)) R
e Recurse with reduced radius

Overall bookkeeping

Overall bookkeeping

e For clusters reduce the radius

- after several reductions the problem
becomes trivial

Overall bookkeeping

* For clusters reduce the radius
- after several reductions the problem
becomes trivial

 For the random remainder,
Voronoi LSH works well

Overall bookkeeping

* For clusters reduce the radius
- after several reductions the problem
becomes trivial

 For the random remainder,
Voronoi LSH works well

« Can be seen as a decision tree

« Nodes correspond to clusters and
parts of the remainder

Overall bookkeeping

* For clusters reduce the radius
- after several reductions the problem
becomes trivial

 For the random remainder,
Voronoi LSH works well

« Can be seen as a decision tree

« Nodes correspond to clusters and
parts of the remainder

Overall bookkeeping

 For clusters reduce the radius
- after several reductions the problem .
Clustering

becomes trivial

 For the random remainder,
Voronoi LSH works well
« Can be seen as a decision tree

« Nodes correspond to clusters and
parts of the remainder

Overall bookkeeping

* For clusters reduce the radius
- after several reductions the problem
becomes trivial

 For the random remainder,
Voronoi LSH works well

« Can be seen as a decision tree

« Nodes correspond to clusters and
parts of the remainder

Clustering

Overall bookkeeping

* For clusters reduce the radius
- after several reductions the problem
becomes trivial

 For the random remainder,
Voronoi LSH works well

« Can be seen as a decision tree

« Nodes correspond to clusters and
parts of the remainder

Clustering

Overall bookkeeping

» For clusters reduce the radius
- after several reductions the problem .
Clustering

becomes trivial

 For the random remainder,
Voronoi LSH works well Random
« Can be seen as a decision tree

« Nodes correspond to clusters and O (Voronoi LSH

parts of the remainder O O @ @ @
O O O U O U

Overall bookkeeping

e For clusters reduce the radius

- after several reductions the problem
becomes trivial

 For the random remainder,
Voronoi LSH works well Random
« Can be seen as a decision tree

» Nodes correspond to clusters and O () Voronoi LSH
parts of the remainder OO
 During the query go to several
subtrees
O O O O O O

Clustering

Overall bookkeeping

e For clusters reduce the radius

- after several reductions the problem
becomes trivial

 For the random remainder,
Voronoi LSH works well Random
« Can be seen as a decision tree

» Nodes correspond to clusters and O () Voronoi LSH
parts of the remainder OO
 During the query go to several
subtrees
O O O O O O

Clustering

Overall bookkeeping

e For clusters reduce the radius

- after several reductions the problem
becomes trivial

 For the random remainder,
Voronoi LSH works well Random
« Can be seen as a decision tree

» Nodes correspond to clusters and O () Voronoi LSH
parts of the remainder OO
 During the query go to several
subtrees
O O O O O O

Clustering

Overall bookkeeping

e For clusters reduce the radius

- after several reductions the problem
becomes trivial

 For the random remainder,
Voronoi LSH works well Random
« Can be seen as a decision tree _

» Nodes correspond to clusters and O () Voronoi LSH
parts of the remainder OO
 During the query go to several
subtrees
O O O O O O

Clustering

Overall bookkeeping

» For clusters reduce the radius
- after several reductions the problem .
Clustering

becomes trivial

 For the random remainder,
Voronoi LSH works well Random
« Can be seen as a decision tree _

» Nodes correspond to clusters and ® @ Voronoi LSH
parts of the remainder O ®@
 During the query go to several
subtrees
O O @ @ O O

O Q ® O O QO

Overall bookkeeping

e For clusters reduce the radius

- after several reductions the problem
becomes trivial

 For the random remainder,
Voronoi LSH works well Random
« Can be seen as a decision tree _

« Nodes correspond to clusters and ® @ Voronoi LSH

parts of the remainder O ®@
 During the query go to several
subtrees
O O @ @ O O

A tree occupies space n'° query
time is n°™ (can control depth and
branching)

« Need nP trees to succeed w.h.p.

Clustering

O Q ® O O QO

Outline

Outline

Approximate Near Neighbor
Search (ANN)
\/

Locality-Sensitive
Hashing (LSH)
\
Optimal LSH for
a sphere

—

Beyond LSH for the Practical and optimal
whole R LSH for a sphere

Outline

Approximate Near Neighbor
Search (ANN)
\/

Locality-Sensitive
Hashing (LSH)
\ [Andoni, Indyk,
Optimal LSH for Laarhoven, R, Schmidt
a sphere 2015] NIPS 2015
— \ 4
Beyond LSH for the Practical and optimal
whole R LSH for a sphere

Practicality

Practicality

Is Voronoi LSH practical?

Practicality

Is Voronoi LSH practical?

No!

Practicality

Is Voronoi LSH practical?

No!
« Slow convergence to the optimal exponent: ©(1 / log T)
« Large T to notice any improvement

Practicality

Is Voronoi LSH practical?

No!
« Slow convergence to the optimal exponent: ©(1/ log T)

« Large T to notice any improvement
« Takes O(d - T) time (even say T = 64 is bad)

Practicality

Is Voronoi LSH practical?

No!
Slow convergence to the optimal exponent: ©(1 / log T)
Large T to notice any improvement
Takes O(d - T) time (even say T = 64 is bad)
At the same time:
Hyperplane LSH is very useful in practice
« (Can practice benefit from theory?

Practicality

Is Voronoi LSH practical?

No!
Slow convergence to the optimal exponent: ©(1 / log T)
Large T to notice any improvement
Takes O(d - T) time (even say T = 64 is bad)
At the same time:
Hyperplane LSH is very useful in practice
« (Can practice benefit from theory?

This work: yes!

First idea: Cross-polytope LSH

First idea: Cross-polytope LSH

 Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
« To hash p, apply a random rotation S to p

 Set hash value to a vertex of a cross-polytope
{te.} closest to Sp

First idea: Cross-polytope LSH

 Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
« To hash p, apply a random rotation S to p

 Set hash value to a vertex of a cross-polytope
{te.} closest to Sp

First idea: Cross-polytope LSH

 Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
« To hash p, apply a random rotation S to p

 Set hash value to a vertex of a cross-polytope
{te.} closest to Sp

 This paper: almost the same quality as
Voronoi LSH with T = 2d

* Blessing of dimensionality: exponent improves
as d grows!

First idea: Cross-polytope LSH

 Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
« To hash p, apply a random rotation S to p

 Set hash value to a vertex of a cross-polytope
{te.} closest to Sp

 This paper: almost the same quality as
Voronoi LSH with T = 2d

* Blessing of dimensionality: exponent improves
as d grows!

« Impractical: a random rotation costs O(d?)
time and space

First idea: Cross-polytope LSH

 Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
« To hash p, apply a random rotation S to p

 Set hash value to a vertex of a cross-polytope
{te.} closest to Sp

 This paper: almost the same quality as
Voronoi LSH with T = 2d

* Blessing of dimensionality: exponent improves
as d grows!

« Impractical: a random rotation costs O(d?)
time and space

* The second step is cheap (only O(d) time)

Second idea: pseudo-random rotations

Second idea: pseudo-random rotations

* Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

Second idea: pseudo-random rotations

* Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

* True random rotations are expensive!

Second idea: pseudo-random rotations

* Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

* True random rotations are expensive!

- Hadamard transform: an orthogonal
map that
« “Mixes well”
 Fast: can be computed in time O(d log d)

Second idea: pseudo-random rotations

* Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

* True random rotations are expensive!

- Hadamard transform: an orthogonal
map that
« “Mixes well”
 Fast: can be computed in time O(d log d)

_1
Y/,

HO=

(

Hp—q
Hn—l

1

Hn—1
_Hn—l

Second idea: pseudo-random rotations

* Introduced in [Ailon, Chazelle 2009], P = (P P2 Pn)
used in [Dasgupta, Kumar, Sarlos) Fiipsigns

2011], [Ailon, Rauhut 2014], [Ve, P’ = (£pq, P2 ... P,)
Sarlos, Smola, 2013] etc ‘, Hadamard
* True random rotations are expensive! Hp’
- Hadamard transform: an orthogonal & Repeat (2:3 times)
map that
* “Mixes well”
 Fast: can be computed in time O(d log d) Hy=1
H. = i (Hn—l Hn—l)
" \/2 Hn—l _Hn—l

Overall hashing scheme

Overall hashing scheme

* Perform 2-3 rounds of “flip signs / Hadamard”

Overall hashing scheme

* Perform 2-3 rounds of “flip signs / Hadamard”
* Find the closest vector from {te;} (maximum coordinate)

Overall hashing scheme

* Perform 2-3 rounds of “flip signs / Hadamard”
* Find the closest vector from {te;} (maximum coordinate)
e Evaluation time O(d log d)

Overall hashing scheme

* Perform 2-3 rounds of “flip signs / Hadamard”

* Find the closest vector from {te;} (maximum coordinate)
e Evaluation time O(d log d)

 Equivalent to Voronoi LSH with T = 2d Gaussians

Memory consumption

Memory consumption

* LSH consumes lots of memory: myth or reality?

Memory consumption

* LSH consumes lots of memory: myth or reality?

« For n = 10° random points and queries within 45 degrees,
need 725 tables for success probability 0.9 (if using
Hyperplane LSH)

Memory consumption

* LSH consumes lots of memory: myth or reality?

« For n = 10° random points and queries within 45 degrees,
need 725 tables for success probability 0.9 (if using
Hyperplane LSH)

« Can be reduced substantially via Multiprobe LSH [Lv,
Josephson, Wang, Charikar, Li 2007]

Memory consumption

* LSH consumes lots of memory: myth or reality?

« For n = 10° random points and queries within 45 degrees,
need 725 tables for success probability 0.9 (if using
Hyperplane LSH)

« Can be reduced substantially via Multiprobe LSH [Lv,
Josephson, Wang, Charikar, Li 2007]

« Our contribution: Multiprobe for Cross-polytope LSH

Experiments: ANN_SIFT1M

Experiments: ANN_SIFT1M

 SIFT features for a dataset of images

Experiments: ANN_SIFT1M

 SIFT features for a dataset of images
‘n=1M,d =128

Experiments: ANN_SIFT1M

 SIFT features for a dataset of images
‘n=1M,d =128
* Linear scan: 38ms

Experiments: ANN_SIFT1M

 SIFT features for a dataset of images
‘n=1M,d =128

* Linear scan: 38ms

« Hyperplane: 3.7ms, Cross-polytope: 3.1ms

Experiments: ANN_SIFT1M

 SIFT features for a dataset of images
‘n=1M,d =128

* Linear scan: 38ms

« Hyperplane: 3.7ms, Cross-polytope: 3.1ms

* Clustering and re-centering helps
« Hyperplane: 2.75ms
« Cross-polytope: 1.75ms

Experiments: ANN_SIFT1M

 SIFT features for a dataset of images
‘n=1M,d =128

* Linear scan: 38ms

« Hyperplane: 3.7ms, Cross-polytope: 3.1ms

* Clustering and re-centering helps
« Hyperplane: 2.75ms
« Cross-polytope: 1.75ms

« Adding more memory helps

Conclusions and open problems

Conclusions and open problems

« Optimal data-dependent hashing for the whole L,

Conclusions and open problems

« Optimal data-dependent hashing for the whole L,
* Practical and optimal LSH for the spherical case

Conclusions and open problems

« Optimal data-dependent hashing for the whole L,
* Practical and optimal LSH for the spherical case

« Can we make the first bullet practical?
e Practical “worst-case to random” reduction?

Conclusions and open problems

« Optimal data-dependent hashing for the whole L,
* Practical and optimal LSH for the spherical case

« Can we make the first bullet practical?
e Practical “worst-case to random” reduction?

Questions?

