Locality-Sensitive Hashing and Beyond

Ilya Razenshteyn (MIT)

based on papers joint with Alexandr Andoni (Columbia), Piotr Indyk (MIT), Thijs Laarhoven (TU Eindhoven) and Ludwig Schmidt (MIT)

Outline

Outline

Outline

- Near Neighbor Search
- Dataset: n points in R^d, r > 0

- Dataset: n points in R^d, r > 0
- **Goal:** a data point within **r** from a query

- Dataset: n points in R^d, r > 0
- **Goal:** a data point within **r** from a query

- Dataset: n points in R^d, r > 0
- **Goal:** a data point within **r** from a query

- Dataset: n points in R^d, r > 0
- **Goal:** a data point within **r** from a query
- Space, query time

- Dataset: n points in R^d, r > 0
- **Goal:** a data point within **r** from a query
- Space, query time
- **d** = **2**, Euclidean distance
 - **O(n)** space
 - **O(log n)** time

- Dataset: n points in R^d, r > 0
- **Goal:** a data point within **r** from a query
- Space, query time
- **d** = **2**, Euclidean distance
 - **O(n)** space
 - O(log n) time

- Dataset: n points in R^d, r > 0
- **Goal:** a data point within **r** from a query
- Space, query time
- **d** = **2**, Euclidean distance
 - **O(n)** space
 - O(log n) time

- Dataset: n points in R^d, r > 0
- **Goal:** a data point within **r** from a query
- Space, query time
- **d** = **2**, Euclidean distance
 - **O(n)** space
 - O(log n) time

- Dataset: n points in R^d, r > 0
- **Goal:** a data point within **r** from a query
- Space, query time
- **d** = **2**, Euclidean distance
 - **O(n)** space
 - O(log n) time
- Infeasible for large **d**:
 - Space exponential in the dimension

- Dataset: n points in R^d, r > 0
- **Goal:** a data point within **r** from a query
- Space, query time
- **d** = **2**, Euclidean distance
 - **O(n)** space
 - O(log n) time
- Infeasible for large d:
 - Space exponential in the dimension
- Most of the applications are in high dimensions

• Given:

- **n** points in **R**^d
- distance threshold r > 0
- approximation c > 1

- Given:
 - **n** points in **R**^d
 - distance threshold r > 0
 - approximation c > 1

• Given:

- **n** points in **R**^d
- distance threshold r > 0
- approximation c > 1
- Query: a point within r from a data point

• Given:

- **n** points in **R**^d
- distance threshold r > 0
- approximation c > 1
- Query: a point within r from a data point

- Given:
 - n points in R^d
 - distance threshold r > 0
 - approximation c > 1
- Query: a point within r from a data point
- Want: a data point within cr from the query

• Given:

- **n** points in **R**^d
- distance threshold r > 0
- approximation c > 1
- Query: a point within r from a data point
- Want: a data point within cr from the query

 Similarity search for: images, audio, video, texts, biological data etc

- Similarity search for: images, audio, video, texts, biological data etc
- Cryptanalysis (the Shortest Vector Problem in lattices) [Laarhoven 2015]

- Similarity search for: images, audio, video, texts, biological data etc
- Cryptanalysis (the Shortest Vector Problem in lattices) [Laarhoven 2015]
- Optimization: Coordinate Descent [Dhillon, Ravikumar, Tewari 2011], Stochastic Gradient Descent [Hofmann, Lucchi, McWilliams 2015] etc

• Very important case:

all points and queries lie on a **unit sphere** in **R**^d

• Very important case:

all points and queries lie on a **unit sphere** in **R**^d

• Why interesting?

• Very important case:

all points and queries lie on a **unit sphere** in **R**^d

- Why interesting?
- In theory: can reduce general case to the spherical case (later in the talk)

• Very important case:

all points and queries lie on a **unit sphere** in **R**^d

- Why interesting?
- In theory: can reduce general case to the spherical case (later in the talk)

• In practice:

- Cosine similarity is widely used
- Oftentimes, can boldly pretend that the dataset lies on a sphere and *be just fine*

• **Dataset: n** random points on a sphere

- **Dataset: n** random points on a sphere
- **Query:** a random query within **45** degrees from a data point

- **Dataset: n** random points on a sphere
- **Query:** a random query within **45** degrees from a data point
- Distribution of angles: near neighbor within 45 degrees, other data points at ~90 degrees!
Spherical *random* case

- **Dataset: n** random points on a sphere
- **Query:** a random query within **45** degrees from a data point
- Distribution of angles: near neighbor within 45 degrees, other data points at ~90 degrees!

Spherical *random* case

- **Dataset: n** random points on a sphere
- **Query:** a random query within **45** degrees from a data point
- Distribution of angles: near neighbor within 45 degrees, other data points at ~90 degrees!
- Instructive case to think about
 - Concentration of angles around **90** degrees happens in practice

Outline

Outline

• Introduced in [Indyk, Motwani 1998]

- Introduced in [Indyk, Motwani 1998]
- Main idea: *random* partitions of R^d s.t. closer pairs of points collide more often

- Introduced in [Indyk, Motwani 1998]
- Main idea: *random* partitions of R^d s.t. closer pairs of points collide more often

- Introduced in [Indyk, Motwani 1998]
- Main idea: *random* partitions of R^d s.t. closer pairs of points collide more often
- A random partition R is (r, cr, p₁, p₂)sensitive if for every p, q:
 - If $\|\mathbf{p} \mathbf{q}\| \le \mathbf{r}$, then $\Pr_{\mathbb{R}}[\mathbb{R}(\mathbf{p}) = \mathbb{R}(\mathbf{q})] \ge \mathbf{p}_1$
 - If $\|\mathbf{p} \mathbf{q}\| \ge \mathbf{cr}$, then $\mathbf{Pr}_{R}[\mathbf{R}(\mathbf{p}) = \mathbf{R}(\mathbf{q})] \le \mathbf{p}_{2}$

- Introduced in [Indyk, Motwani 1998]
- Main idea: *random* partitions of R^d s.t. closer pairs of points collide more often
- A random partition R is (r, cr, p₁, p₂)sensitive if for every p, q:
 - If $\|\mathbf{p} \mathbf{q}\| \le \mathbf{r}$, then $\Pr_{\mathbb{R}}[\mathbb{R}(\mathbf{p}) = \mathbb{R}(\mathbf{q})] \ge \mathbf{p}_1$
 - If $\|\mathbf{p} \mathbf{q}\| \ge \hat{\mathbf{cr}}$, then $\mathbf{Pr}_{R}[\mathbf{R}(\mathbf{p}) = \mathbf{R}(\mathbf{q})] \le \mathbf{p}_{2}$

^{*I*}From the definition of ANN

- Introduced in [Indyk, Motwani 1998]
- Main idea: random partitions of R^d s.t.
 closer pairs of points collide more often
- A random partition R is (r, cr, p₁, p₂)sensitive if for every p, q:
 - If $\|\mathbf{p} \mathbf{q}\| \le \mathbf{r}$, then $\Pr_{\mathbb{R}}[\mathbb{R}(\mathbf{p}) = \mathbb{R}(\mathbf{q})] \ge \mathbf{p}_1$
 - If $\|\mathbf{p} \mathbf{q}\| \ge \hat{\mathbf{c}}\mathbf{r}$, then $\mathbf{Pr}_{\mathbf{R}}[\mathbf{R}(\mathbf{p}) = \mathbf{R}(\mathbf{q})] \le \mathbf{p}_2$

[/]From the definition of ANN

 Introduced in [Charikar 2002], inspired by [Goemans, Williamson 1995]

- Introduced in [Charikar 2002], inspired by [Goemans, Williamson 1995]
- Sample unit r uniformly, hash p into sgn <r, p>

- Introduced in [Charikar 2002], inspired by [Goemans, Williamson 1995]
- Sample unit r uniformly, hash p into sgn <r, p>

- Introduced in [Charikar 2002], inspired by [Goemans, Williamson 1995]
- Sample unit r uniformly, hash p into sgn <r, p>
- Pr[h(p) = h(q)] = 1 α / π, where α is the angle between p and q

- Introduced in [Charikar 2002], inspired by [Goemans, Williamson 1995]
- Sample unit r uniformly, hash p into sgn <r, p>
- Pr[h(p) = h(q)] = 1 α / π, where α is the angle between p and q

- Introduced in [Charikar 2002], inspired by [Goemans, Williamson 1995]
- Sample unit r uniformly, hash p into sgn <r, p>
- Pr[h(p) = h(q)] = 1 α / π, where α is the angle between p and q

- K hash functions at once (p into (h₁(p), ..., h_K(p)))
- If **0.5^K ~ 1/n**, then query time is **O(1)**

- K hash functions at once (p into (h₁(p), ..., h_K(p)))
- If 0.5^K ~ 1/n, then query time is
 O(1)
- Collides with near neighbor with probability 0.75^K ~ 1/n^{0.42}
- Thus, need L = O(n^{0.42}) tables to boost the success probability to 0.99

- K hash functions at once (p into (h₁(p), ..., h_K(p)))
- If **0.5^K ~ 1/n**, then query time is **O(1)**
- Collides with near neighbor with probability 0.75^K ~ 1/n^{0.42}
- Thus, need L = O(n^{0.42}) tables to boost the success probability to 0.99
- Overall: O(n^{1.42}) space, O(n^{0.42}) query time, K·L hyperplanes

In general **[Indyk, Motwani 1998]**: can always choose **K** (# of functions / table) and **L** (# of tables) to get space **O**(**n**¹⁺*P*) and query time **O**(**n**^{*P*}), where

In general **[Indyk, Motwani 1998]**: can always choose **K** (# of functions / table) and **L** (# of tables) to get space **O**(**n**¹⁺*P*) and query time **O**(**n***P*), where

 $\rho = \ln(1/p_1) / \ln(1/p_2)$

In general **[Indyk, Motwani 1998]**: can always choose **K** (# of functions / table) and **L** (# of tables) to get space **O**(**n**¹⁺*P*) and query time **O**(**n***P*), where

$\rho = \ln(1/p_1) / \ln(1/p_2)$

Recap:

- **p**₁ is collision probability for close pairs
- **p**₂ for far pairs

Outline

Outline

Better than Hyperplane LSH?
Can one improve upon O(n^{1.42}) space and O(n^{0.42}) query time for the 45-degree random instance?

- Can one improve upon O(n^{1.42}) space and O(n^{0.42}) query time for the 45-degree random instance?
- Yes!
 - [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve space O(n^{1.18}) and query time O(n^{0.18})

 Can one improve upon O(n^{1.42}) space and O(n^{0.42}) query time for the 45-degree random instance?

• Yes!

- [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve space O(n^{1.18}) and query time O(n^{0.18})
- [Andoni, R ??]: this is tight for the hashing-based approaches!

 Can one improve upon O(n^{1.42}) space and O(n^{0.42}) query time for the 45-degree random instance?

• Yes!

- [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve space O(n^{1.18}) and query time O(n^{0.18})
- [Andoni, R ??]: this is tight for the hashing-based approaches!
- Works for the general case of ANN on a sphere!

 From [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]; inspired by [Karger, Motwani, Sudan 1998]: Voronoi LSH

- From [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]; inspired by [Karger, Motwani, Sudan 1998]: Voronoi LSH
- Sample **T** i.i.d. standard **d**-dimensional Gaussians

g₁, **g**₂, ..., **g**_T

- From [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]; inspired by [Karger, Motwani, Sudan 1998]: Voronoi LSH
- Sample **T** i.i.d. standard **d**-dimensional Gaussians

g₁, g₂, ..., g_T

- From [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]; inspired by [Karger, Motwani, Sudan 1998]: Voronoi LSH
- Sample T i.i.d. standard d-dimensional Gaussians

g₁, g₂, ..., g_T

- From [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]; inspired by [Karger, Motwani, Sudan 1998]: Voronoi LSH
- Sample T i.i.d. standard d-dimensional Gaussians

g₁, **g**₂, ..., **g**_T

- From [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]; inspired by [Karger, Motwani, Sudan 1998]: Voronoi LSH
- Sample T i.i.d. standard d-dimensional Gaussians

g₁, **g**₂, ..., **g**_T

- From [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]; inspired by [Karger, Motwani, Sudan 1998]: Voronoi LSH
- Sample T i.i.d. standard d-dimensional Gaussians

g₁, **g**₂, ..., **g**_T

- Hash p into h(p) = argmax_{1≤i≤T} < p, g_i >
- **T** = **2** is simply Hyperplane LSH

- Let us compare K hyperplanes vs. Voronoi LSH with T = 2^K (in both cases K-bit hashes)
- As T grows, the gap between Hyperplane LSH and Voronoi LSH increases and

ρ = ln(1/p₁) / ln(1/p₂) approaches **0.18**

Outline

Outline

Outline

Bounds on LSH

Bounds on LSH

Distance metric	$\rho = \frac{\ln 1/p_1}{\ln 1/p_2}$	<i>c</i> = 2	Reference
Euclidean (ℓ_2)	$\leq 1/c^2 + o(1)$	1/4	[Andoni, Indyk 2006]
	$\geq 1/c^2 - o(1)$		[O'Donnell, Wu, Zhou 2011]
Manhattan, Hamming (ℓ_1)	$\leq 1/c$	1/2	[Indyk, Motwani 1998]
	$\geq 1/c - o(1)$		[O'Donnell, Wu, Zhou 2011]

Bounds on LSH		Space	$0(n^{3/2})$, query time $O(n^{1/2})$
Distance metric	$\rho = \frac{\ln 1/p_1}{\ln 1/p_2}$	<i>c</i> = 2	Reference
Euclidean (ℓ_2)	$\leq 1/c^2 + o(1)$	1/4	[Andoni, Indyk 2006]
	$\geq 1/c^2 - o(1)$		[O'Donnell, Wu, Zhou 2011]
Manhattan, Hamming (ℓ_1)	$\leq 1/c$	1/2	[Indyk, Motwani 1998]
	$\geq 1/c - o(1)$		[O'Donnell, Wu, Zhou 2011]

Bounds on LSH		Space	$0(n^{3/2})$, query time $O(n^{1/2})$
Distance metric	$\rho = \frac{\ln 1/p_1}{\ln 1/p_2}$	<i>c</i> = 2	Reference
Euclidean (₂)	$\leq 1/c^2 + o(1)$	1/4	[Andoni, Indyk 2006]
	$\geq 1/c^2 - o(1)$		[O'Donnell, Wu, Zhou 2011]
Manhattan, Hamming (ℓ_1)	$\leq 1/c$	1/2	[Indyk, Motwani 1998]
	$\geq 1/c - o(1)$		[O'Donnell, Wu, Zhou 2011]

Can one improve upon LSH?

Bounds on LSH		Space	$O(n^{3/2})$, query time $O(n^{1/2})$
Distance metric	$\rho = \frac{\ln 1/p_1}{\ln 1/p_2}$	<i>c</i> = 2	Reference
Euclidean (₂)	$\leq 1/c^2 + o(1)$	1/4	[Andoni, Indyk 2006]
	$\geq 1/c^2 - o(1)$		[O'Donnell, Wu, Zhou 2011]
Manhattan, Hamming (ℓ_1)	$\leq 1/c$	1/2	[Indyk, Motwani 1998]
	$\geq 1/c - o(1)$		[O'Donnell, Wu, Zhou 2011]

Can one improve upon LSH?

Yes!

Main idea: data-dependent space partitions

- Main idea: data-dependent space partitions
- A distribution over partitions R is (r, cr, p₁, p₂)-sensitive if for every p,
 q:
 - If $\|\mathbf{p} \mathbf{q}\| \le \mathbf{r}$, then $\Pr_{\mathbb{R}}[\mathbb{R}(\mathbf{p}) = \mathbb{R}(\mathbf{q})] \ge p_1$
 - If $\|\mathbf{p} \mathbf{q}\| \ge \mathbf{cr}$, then $\mathbf{Pr}_{R}[\mathbf{R}(\mathbf{p}) = \mathbf{R}(\mathbf{q})] \le \mathbf{p}_{2}$

- Main idea: data-dependent space partitions
- A distribution over partitions R is (r, cr, p₁, p₂)-sensitive if for every p,
 q:
 - If $\|\mathbf{p} \mathbf{q}\| \le \mathbf{r}$, then $\Pr_{\mathbb{R}}[\mathbb{R}(\mathbf{p}) = \mathbb{R}(\mathbf{q})] \ge p_1$
 - If $\|\mathbf{p} \mathbf{q}\| \ge \mathbf{cr}$, then $\mathbf{Pr}_{R}[\mathbf{R}(\mathbf{p}) = \mathbf{R}(\mathbf{q})] \le \mathbf{p}_{2}$
- Too strong! Can assume that p is a data point!
 - Exploit the geometry of **P** to design better partitions
 - Able to obtain improvement for every P

The result

The result

Optimal* data-dependent space partitions for the Euclidean and Manhattan/Hamming distances

* After proper formalization

The main result (quantitative)
The main result (quantitative)

Distance metric	$\rho = \frac{\ln 1/p_1}{\ln 1/p_2}$	c = 2	Reference
Euclidean (ℓ_2)	$\leq 1/c^2 + o(1)$	1/4	[Andoni, Indyk 2006]
	$\geq 1/c^2 - o(1)$		[O'Donnell, Wu, Zhou 2011]

Hamming (ℓ_1)	$\leq 1/c$	1/2	[Indyk, Motwani 1998]
	$\geq 1/c - o(1)$		[O'Donnell, Wu, Zhou 2011]

The main result (quantitative)

Distance metric	$\rho = \frac{\ln 1/p_1}{\ln 1/p_2}$	c = 2	Reference
Euclidean (ℓ_2)	$\leq 1/c^2 + o(1)$	1/4	[Andoni, Indyk 2006]
	$\geq 1/c^2 - o(1)$		[O'Donnell, Wu, Zhou 2011]
	$\frac{1}{2c^2-1} + o(1)$	1/7	[Andoni, <mark>R</mark> 2015]
Hamming (ℓ_1)	$\leq 1/c$	1/2	[Indyk, Motwani 1998]
	$\geq 1/c - o(1)$		[O'Donnell, Wu, Zhou 2011]
	$\frac{1}{2c-1} + o(1)$	1/3	[Andoni, <mark>R</mark> 2015]

The plan

The plan

• Random datasets (data-independent, via Voronoi LSH)

The plan

- Random datasets (data-independent, via Voronoi LSH)
- Worst-case dataset \rightarrow randomly-looking parts (data-dependent)

• W.I.o.g. points and queries lie on a sphere of radius **R**

- W.I.o.g. points and queries lie on a sphere of radius **R**
- Random instance; near neighbors are planted within $\sqrt{2}$ R/c

- W.I.o.g. points and queries lie on a sphere of radius **R**
- Random instance; near neighbors are planted within $\sqrt{2}$ R/c

- W.I.o.g. points and queries lie on a sphere of radius **R**
- Random instance; near neighbors are planted within $\sqrt{2}$ R/c
- Voronoi LSH gives ρ = log(1/p₁) / log(1/p₂) = 1 / (2c² 1)

- W.I.o.g. points and queries lie on a sphere of radius **R**
- Random instance; near neighbors are planted within $\sqrt{2}$ R/c
- Voronoi LSH gives ρ = log(1/p₁) / log(1/p₂) = 1 / (2c² 1)
- What if the dataset does not look random?
 - Voronoi LSH is suboptimal

• The dataset does not look random

- The dataset does not look random
- Remove structure—clusters of small radius with $n^{1-\delta}$ points—until there are none
 - Will handle them separately

- The dataset does not look random
- Remove structure—clusters of small radius with $n^{1-\delta}$ points—until there are none
 - Will handle them separately

- The dataset does not look random
- Remove structure—clusters of small radius with $n^{1-\delta}$ points—until there are none
 - Will handle them separately

- The dataset does not look random
- Remove structure—clusters of small radius with $n^{1-\delta}$ points—until there are none
 - Will handle them separately

- The dataset does not look random
- Remove structure—clusters of small radius with n^{1-δ} points until there are none
 - Will handle them separately

- The dataset does not look random
- Remove structure—clusters of small radius with n^{1-δ} points until there are none
 - Will handle them separately
- The remainder looks like a random set
 - No dense areas \rightarrow points are spread

- The dataset does not look random
- Remove structure—clusters of small radius with n^{1-δ} points—until there are none
 - Will handle them separately
- The remainder looks like a random set
 - No dense areas \rightarrow points are spread
- Apply Voronoi LSH, recurse
 - dense clusters can appear again!

- The dataset does not look random
- Remove structure—clusters of small radius with n^{1-δ} points—until there are none
 - Will handle them separately
- The remainder looks like a random set
 - No dense areas \rightarrow points are spread
- Apply Voronoi LSH, recurse
 - dense clusters can appear again!

- The dataset does not look random
- Remove structure—clusters of small radius with n^{1-δ} points—until there are none
 - Will handle them separately
- The remainder looks like a random set
 - No dense areas \rightarrow points are spread
- Apply Voronoi LSH, recurse
 - dense clusters can appear again!

- The dataset does not look random
- Remove structure—clusters of small radius with $n^{1-\delta}$ points—until there are none
 - Will handle them separately
- The remainder looks like a random set
 - No dense areas \rightarrow points are spread
- Apply Voronoi LSH, recurse
 - dense clusters can appear again!
- Query **all** the clusters and **one** part

• Enclose a cluster of radius $(\sqrt{2} - \varepsilon)R$ in a ball of radius $(1 - \Omega(\varepsilon^2))R$

• Enclose a cluster of radius $(\sqrt{2} - \varepsilon)R$ in a ball of radius $(1 - \Omega(\varepsilon^2))R$

- Enclose a cluster of radius ($\sqrt{2} \varepsilon$)R in a ball of radius (1 $\Omega(\varepsilon^2)$) R
- Recurse with reduced radius

- For **clusters** reduce the radius
 - after several reductions the problem becomes trivial

- For **clusters** reduce the radius
 - after several reductions the problem becomes trivial
- For the **random remainder**, Voronoi LSH works well

- For **clusters** reduce the radius
 - after several reductions the problem becomes trivial
- For the **random remainder**, Voronoi LSH works well
- Can be seen as a decision tree
 - Nodes correspond to clusters and parts of the remainder

- For **clusters** reduce the radius
 - after several reductions the problem becomes trivial
- For the **random remainder**, Voronoi LSH works well
- Can be seen as a decision tree
 - Nodes correspond to clusters and parts of the remainder

- For **clusters** reduce the radius
 - after several reductions the problem becomes trivial
- For the **random remainder**, Voronoi LSH works well
- Can be seen as a decision tree
 - Nodes correspond to clusters and parts of the remainder

- For **clusters** reduce the radius
 - after several reductions the problem becomes trivial
- For the **random remainder**, Voronoi LSH works well
- Can be seen as a decision tree
 - Nodes correspond to clusters and parts of the remainder

- For **clusters** reduce the radius
 - after several reductions the problem becomes trivial
- For the **random remainder**, Voronoi LSH works well
- Can be seen as a decision tree
 - Nodes correspond to clusters and parts of the remainder

- For **clusters** reduce the radius
 - after several reductions the problem becomes trivial
- For the **random remainder**, Voronoi LSH works well
- Can be seen as a decision tree
 - Nodes correspond to clusters and parts of the remainder

- For **clusters** reduce the radius
 - after several reductions the problem becomes trivial
- For the **random remainder**, Voronoi LSH works well
- Can be seen as a decision tree
 - Nodes correspond to clusters and parts of the remainder
 - During the query go to several subtrees

- For **clusters** reduce the radius
 - after several reductions the problem becomes trivial
- For the **random remainder**, Voronoi LSH works well
- Can be seen as a decision tree
 - Nodes correspond to clusters and parts of the remainder
 - During the query go to several subtrees

- For **clusters** reduce the radius
 - after several reductions the problem becomes trivial
- For the **random remainder**, Voronoi LSH works well
- Can be seen as a decision tree
 - Nodes correspond to clusters and parts of the remainder
 - During the query go to several subtrees

- For **clusters** reduce the radius
 - after several reductions the problem becomes trivial
- For the **random remainder**, Voronoi LSH works well
- Can be seen as a decision tree
 - Nodes correspond to clusters and parts of the remainder
 - During the query go to several subtrees

- For **clusters** reduce the radius
 - after several reductions the problem becomes trivial
- For the **random remainder**, Voronoi LSH works well
- Can be seen as a decision tree
 - Nodes correspond to clusters and parts of the remainder
 - During the query go to several subtrees

- For **clusters** reduce the radius
 - after several reductions the problem becomes trivial
- For the **random remainder**, Voronoi LSH works well
- Can be seen as a decision tree
 - Nodes correspond to clusters and parts of the remainder
 - During the query go to several subtrees
 - A tree occupies space n^{1+o(1)}, query time is n^{o(1)} (can control depth and branching)
 - Need **n**^p trees to succeed w.h.p.

Outline

Outline

Outline

Practicality

- *Slow* convergence to the optimal exponent: Θ(1 / log T)
- Large **T** to notice any improvement

- *Slow* convergence to the optimal exponent: Θ(1 / log T)
- Large **T** to notice any improvement
- Takes $O(d \cdot T)$ time (even say T = 64 is bad)

Practicality

Is Voronoi LSH practical?

- *Slow* convergence to the optimal exponent: Θ(1 / log T)
- Large **T** to notice any improvement
- Takes O(d · T) time (even say T = 64 is bad)
 At the same time:
- Hyperplane LSH is *very* useful in practice
- Can practice benefit from theory?

Practicality

Is Voronoi LSH practical?

No!

- *Slow* convergence to the optimal exponent: Θ(1 / log T)
- Large **T** to notice any improvement
- Takes O(d · T) time (even say T = 64 is bad)
 At the same time:
- Hyperplane LSH is *very* useful in practice
- Can practice benefit from theory?

This work: yes!

- Cross-polytope LSH introduced by [Terasawa, Tanaka 2007]:
 - To hash **p**, apply a *random rotation* **S** to **p**
 - Set hash value to a vertex of a cross-polytope {±e_i} closest to Sp

- Cross-polytope LSH introduced by [Terasawa, Tanaka 2007]:
 - To hash **p**, apply a *random rotation* **S** to **p**
 - Set hash value to a vertex of a cross-polytope {±e_i} closest to Sp

- Cross-polytope LSH introduced by [Terasawa, Tanaka 2007]:
 - To hash **p**, apply a *random rotation* **S** to **p**
 - Set hash value to a vertex of a cross-polytope {±e_i} closest to Sp
- **This paper:** almost the same quality as Voronoi LSH with **T = 2d**
 - Blessing of dimensionality: exponent improves as d grows!

- Cross-polytope LSH introduced by [Terasawa, Tanaka 2007]:
 - To hash **p**, apply a *random rotation* **S** to **p**
 - Set hash value to a vertex of a cross-polytope {±e_i} closest to Sp
- **This paper:** almost the same quality as Voronoi LSH with **T = 2d**
 - Blessing of dimensionality: exponent improves as d grows!
- Impractical: a random rotation costs O(d²) time and space

- Cross-polytope LSH introduced by [Terasawa, Tanaka 2007]:
 - To hash **p**, apply a *random rotation* **S** to **p**
 - Set hash value to a vertex of a cross-polytope {±e_i} closest to Sp
- **This paper:** almost the same quality as Voronoi LSH with **T = 2d**
 - Blessing of dimensionality: exponent improves as d grows!
- Impractical: a random rotation costs O(d²) time and space
- The second step is cheap (only **O(d)** time)

 Introduced in [Ailon, Chazelle 2009], used in [Dasgupta, Kumar, Sarlos 2011], [Ailon, Rauhut 2014], [Ve, Sarlos, Smola, 2013] etc

- Introduced in [Ailon, Chazelle 2009], used in [Dasgupta, Kumar, Sarlos 2011], [Ailon, Rauhut 2014], [Ve, Sarlos, Smola, 2013] etc
- True random rotations are expensive!

- Introduced in [Ailon, Chazelle 2009], used in [Dasgupta, Kumar, Sarlos 2011], [Ailon, Rauhut 2014], [Ve, Sarlos, Smola, 2013] etc
- True random rotations are expensive!
- Hadamard transform: an orthogonal map that
 - "Mixes well"
 - Fast: can be computed in time O(d log d)

- Introduced in [Ailon, Chazelle 2009], used in [Dasgupta, Kumar, Sarlos 2011], [Ailon, Rauhut 2014], [Ve, Sarlos, Smola, 2013] etc
- True random rotations are expensive!
- Hadamard transform: an orthogonal map that
 - "Mixes well"
 - Fast: can be computed in time O(d log d)

$$H_{0} = 1$$

$$H_{n} = \frac{1}{\sqrt{2}} \begin{pmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{pmatrix}$$

- Introduced in [Ailon, Chazelle 2009], used in [Dasgupta, Kumar, Sarlos 2011], [Ailon, Rauhut 2014], [Ve, Sarlos, Smola, 2013] etc
- True random rotations are expensive!
- Hadamard transform: an orthogonal map that
 - "Mixes well"
 - Fast: can be computed in time O(d log d)

$$H_{0} = 1$$

$$H_{n} = \frac{1}{\sqrt{2}} \begin{pmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{pmatrix}$$

• Perform 2–3 rounds of "flip signs / Hadamard"

- Perform 2–3 rounds of "flip signs / Hadamard"
- Find the closest vector from {±e_i} (maximum coordinate)

- Perform 2–3 rounds of "flip signs / Hadamard"
- Find the closest vector from {±e_i} (maximum coordinate)
- Evaluation time O(d log d)

- Perform 2–3 rounds of "flip signs / Hadamard"
- Find the closest vector from {±e_i} (maximum coordinate)
- Evaluation time **O(d log d)**
- Equivalent to Voronoi LSH with **T = 2d** Gaussians

Memory consumption

Memory consumption

• *LSH consumes lots of memory:* myth or reality?

Memory consumption

- *LSH consumes lots of memory:* myth or reality?
- For n = 10⁶ random points and queries within 45 degrees, need 725 tables for success probability 0.9 (if using Hyperplane LSH)
Memory consumption

- *LSH consumes lots of memory:* myth or reality?
- For n = 10⁶ random points and queries within 45 degrees, need 725 tables for success probability 0.9 (if using Hyperplane LSH)
- Can be reduced substantially via **Multiprobe LSH [Lv**, **Josephson, Wang, Charikar, Li 2007]**

Memory consumption

- *LSH consumes lots of memory:* myth or reality?
- For n = 10⁶ random points and queries within 45 degrees, need 725 tables for success probability 0.9 (if using Hyperplane LSH)
- Can be reduced substantially via **Multiprobe LSH [Lv**, **Josephson, Wang, Charikar, Li 2007]**
- Our contribution: Multiprobe for Cross-polytope LSH

• SIFT features for a dataset of images

- SIFT features for a dataset of images
- n = 1M, d = 128

- SIFT features for a dataset of images
- n = 1M, d = 128
- Linear scan: 38ms

- SIFT features for a dataset of images
- n = 1M, d = 128
- Linear scan: **38ms**
- Hyperplane: **3.7ms**, Cross-polytope: **3.1ms**

- SIFT features for a dataset of images
- n = 1M, d = 128
- Linear scan: **38ms**
- Hyperplane: **3.7ms**, Cross-polytope: **3.1ms**
- Clustering and re-centering helps
 - Hyperplane: 2.75ms
 - Cross-polytope: **1.75ms**

- SIFT features for a dataset of images
- n = 1M, d = 128
- Linear scan: **38ms**
- Hyperplane: **3.7ms**, Cross-polytope: **3.1ms**
- Clustering and re-centering helps
 - Hyperplane: 2.75ms
 - Cross-polytope: **1.75ms**
- Adding more memory helps

• Optimal data-dependent hashing for the whole L₂

- Optimal data-dependent hashing for the whole L₂
- Practical and optimal LSH for the spherical case

- Optimal data-dependent hashing for the whole L₂
- Practical and optimal LSH for the spherical case
- Can we make the first bullet practical?
 - Practical "worst-case to random" reduction?

- Optimal data-dependent hashing for the whole L₂
- Practical and optimal LSH for the spherical case
- Can we make the first bullet practical?
 - Practical "worst-case to random" reduction?

Questions?