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Near Neighbor Search

- Dataset: n pointsinR9, r>0

 Goal: a data point within r from a
query

» Space, query time

« d = 2, Euclidean distance

* O(n) space
* O(log n) time

* Infeasible for large d:
« Space exponential in the dimension

« Most of the applications are in
high dimensions
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Approximate Near Neighbor Search (ANN)

e Given:
 n points in Rd
e distance threshold r>0

- -
" i

« approximation ¢ > 1 v . :" ,.,"'" “x|

» Query: a point within r from a data y N

point S

» Want: a data point within cr from the . . o
query
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Applications

« Similarity search for: images, audio, video, texts, biological
data etc

 Cryptanalysis (the Shortest Vector Problem in lattices)
[Laarhoven 2015]

» Optimization: Coordinate Descent [Dhillon, Ravikumar,
Tewari 2011], Stochastic Gradient Descent [Hofmann,
Lucchi, McWilliams 2015] etc
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Spherical case

* Very important case:
all points and queries lie on a unit sphere in Rd
* Why interesting?

* In theory: can reduce general case to the spherical case
(later in the talk)

* In practice:
 Cosine similarity is widely used

« Oftentimes, can boldly pretend that the dataset lies on a sphere
and be just fine
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Spherical random case

- Dataset: n random points on a
sphere

* Query: a random query within 45
degrees from a data point

» Distribution of angles: near
neighbor within 45 degrees,
other data points at ~90 degrees!

 Instructive case to think about

« Concentration of angles around 90
degrees happens in practice
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* Introduced in [Indyk, Motwani 1998]

« Main idea: random partitions of R9 s.t.
closer pairs of points collide more often

« A random partition R is (r, cr, p,, P,)-
sensitive if for every p, q:
 If llp - qll < r, then Prg[R(p) = R(q)] = p,
 If llp - qll = €r, then Prg[R(p) = R(q)] < p,

From the definition of ANN
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Hyperplane LSH

* Introduced in [Charikar 2002],
inspired by [Goemans, Williamson
1995]

« Sample unit r uniformly, hash p into
sgn <r, p>

* Prlh(p) =h(g)]=1-a/ 1 where ais
the angle between p and q
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Using LSH to solve ANN

« K hash functions at once (p into
(hq(p), .., h(p)))

* [f 0.5% ~ 1/n, then query time is
O(1)

* Collides with near neighbor with
probability 0.75X ~ 1/n%42

e Thus, need L = O(n%42) tables to
boost the success probability to
0.99
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Using LSH to solve ANN

« K hash functions at once (p into
(hq(p), .., h(p)))

* [f 0.5% ~ 1/n, then query time is
O(1)

* Collides with near neighbor with
probability 0.75X ~ 1/n%42

e Thus, need L = O(n%42) tables to
boost the success probability to
0.99

 Overall: O(n142) space, O(n%42)
query time, K-L hyperplanes
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Using LSH to solve ANN (in general)

In general [Indyk, Motwani 1998]. can always choose K (# of
functions / table) and L (# of tables) to get space O(n'*?) and
guery time O(nP), where

p =In(1/p,) / In(1/p,)
Recap:
* p, is collision probability for close pairs
* p, — for far pairs
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Better than Hyperplane LSH?

« Can one improve upon O(n'42) space and O(n%4?) query time
for the 45-degree random instance?

* Yes!

* [Andoni, Indyk, Nguyen, R 2014], [Andoni, R 2015]: can achieve
space O(n"18) and query time O(n®18)

* [Andoni, R ??]: this is tight for the hashing-based approaches!
« Works for the general case of ANN on a sphere!
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Optimal LSH family: Voronoi LSH

* From [Andoni, Indyk, Nguyen, R 2014],
[Andoni, R 2015]; inspired by [Karger,
Motwani, Sudan 1998]: Voronoi LSH

« Sample T i.i.d. standard d-dimensional
Gaussians

S1r 821 oo 87T
* Hash p into h(p) = argmax,_; +<p., &>
« T=2is simply Hyperplane LSH
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 Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)
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Hyperplane LSH vs. Voronoi LSH

 Let us compare K hyperplanes
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes)
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Hyperplane LSH vs. Voronoi LSH

 Let us compare K hyperplanes 1.00 K=6vs.T=064
vs. Voronoi LSH with T = 2K (in
both cases K-bit hashes) -
« As T grows, the gap between |
Hyperplane LSH and Voronoi LSH
increases and 0.50
p=In(1/p,) / In(1/p,)
approaches 0.18 0.25
query near far

point  neighbor points
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BOllIldS on LSH Space 0(n3/?), query time 0(n'/?)

Distance metric _Inl/p, c = 2 |Reference
ST 1/p,

Euclidean (¢,) <1/c*+o0(1) 1/4 Andoni, Indyk 2006]
>1/c? —0(1) [O’'Donnell, Wu, Zhou 2011]

Manhattan, Hamming (¢,) <1/c 1/2 [Indyk, Motwani 1998]
>1/c—o0(1) [O’'Donnell, Wu, Zhou 2011]

Can one improve upon LSH?

Yes!
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How to do better than LSH?

- Main idea: data-dependent space partitions

* A distribution over partitions R is (r, cr, p,4, pP,)-sensitive if for every p,
g

 Ifllp - gqll £r, then Prg[R(p) = R(q)] = p,

 If llp - qll = cr, then Prg[R(p) = R(q)] < p,

* Too strong! Can assume that p is a data point!
 Exploit the geometry of P to design better partitions
« Able to obtain improvement for every P
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The result

Optimal* data-dependent space partitions for
the Euclidean and Manhattan/Hamming distances

* After proper formalization
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The main result (quantitative)

Distance metric _In1/py c =2 |Reference
P~ T 1/p-

Euclidean (#,) <1/c*+o0(1) 1/4 [Andoni, Indyk 2006]
>1/c* —o0(1) [O’'Donnell, Wu, Zhou 2011]
177 [Andoni, R 2015]
2¢2 — 1 +0(1)
Hamming (4;) <1/c 1/2 [Indyk, Motwani 1998]
>1/c—o0(1) [O’'Donnell, Wu, Zhou 2011]
+o(1) 1/3 [Andoni, R 2015]

2c—1
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The plan

- Random datasets (data-independent, via Voronoi LSH)
- Worst-case dataset — randomly-looking parts (data-dependent)
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Random case

« W.l.o.g. points and queries lie on a sphere of radius R

- Random instance; near neighbors are planted within v2 R/c
« Voronoi LSH gives p = log(1/p,) / log(1/p,) =1/ (2c?>-1)
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Random case

« W.l.o.g. points and queries lie on a sphere of radius R
- Random instance; near neighbors are planted within v2 R/c
« Voronoi LSH gives p = log(1/p,) / log(1/p,) =1/ (2c?>-1)

« What if the dataset does not look random?
« Voronoi LSH is suboptimal
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 The dataset does not look random

 Remove structure—clusters of small
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General case

 The dataset does not look random
« Remove structure—clusters of small

radius with n1-® points—until there s

dare none
« Will handle them separately

e The remainder looks like a random
set

« No dense areas — points are spread

* Apply Voronoi LSH, recurse

» dense clusters can appear again! =

l \

/©
- Query all the clusters and one parti Q%O-

\ R4

ﬁ-ﬂ
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Handling clusters

 Enclose a cluster of radius (V2 - €)R in a ball of radius (1 - Q(g2)) R
e Recurse with reduced radius
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Overall bookkeeping

e For clusters reduce the radius

- after several reductions the problem
becomes trivial

 For the random remainder,
Voronoi LSH works well Random
« Can be seen as a decision tree _

« Nodes correspond to clusters and ® @ Voronoi LSH

parts of the remainder O ®@
 During the query go to several
subtrees
O O @ @ O O

A tree occupies space n'° query
time is n°™ (can control depth and
branching)

« Need nP trees to succeed w.h.p.

Clustering

O Q ® O O QO
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Outline

Approximate Near Neighbor
Search (ANN)
\/

Locality-Sensitive
Hashing (LSH)
\ [Andoni, Indyk,
Optimal LSH for  Laarhoven, R, Schmidt
a sphere 2015] NIPS 2015
— \ 4
Beyond LSH for the Practical and optimal
whole R LSH for a sphere
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Practicality

Is Voronoi LSH practical?

No!
Slow convergence to the optimal exponent: ©(1 / log T)
Large T to notice any improvement
Takes O(d - T) time (even say T = 64 is bad)
At the same time:
Hyperplane LSH is very useful in practice
« (Can practice benefit from theory?

This work: yes!
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First idea: Cross-polytope LSH

 Cross-polytope LSH introduced by
[Terasawa, Tanaka 2007]:
« To hash p, apply a random rotation S to p

 Set hash value to a vertex of a cross-polytope
{te.} closest to Sp

 This paper: almost the same quality as
Voronoi LSH with T = 2d

* Blessing of dimensionality: exponent improves
as d grows!

« Impractical: a random rotation costs O(d?)
time and space

* The second step is cheap (only O(d) time)
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* Introduced in [Ailon, Chazelle 2009],
used in [Dasgupta, Kumar, Sarlos
2011], [Ailon, Rauhut 2014], [Ve,
Sarlos, Smola, 2013] etc

* True random rotations are expensive!

- Hadamard transform: an orthogonal
map that
« “Mixes well”
 Fast: can be computed in time O(d log d)
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Second idea: pseudo-random rotations

* Introduced in [Ailon, Chazelle 2009], P = (P P2 Pn)
used in [Dasgupta, Kumar, Sarlos ) Fiipsigns

2011], [Ailon, Rauhut 2014], [Ve, P’ = (£pq, P2 ... P,)
Sarlos, Smola, 2013] etc ‘, Hadamard
* True random rotations are expensive! Hp’
- Hadamard transform: an orthogonal & Repeat (2:3 times)
map that
* “Mixes well”
 Fast: can be computed in time O(d log d) Hy=1
H. = i (Hn—l Hn—l )
" \/2 Hn—l _Hn—l
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Overall hashing scheme

* Perform 2-3 rounds of “flip signs / Hadamard”

* Find the closest vector from {te;} (maximum coordinate)
e Evaluation time O(d log d)

 Equivalent to Voronoi LSH with T = 2d Gaussians
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Memory consumption

* LSH consumes lots of memory: myth or reality?

« For n = 10° random points and queries within 45 degrees,
need 725 tables for success probability 0.9 (if using
Hyperplane LSH)

« Can be reduced substantially via Multiprobe LSH [Lv,
Josephson, Wang, Charikar, Li 2007]

« Our contribution: Multiprobe for Cross-polytope LSH
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Experiments: ANN_SIFT1M

 SIFT features for a dataset of images
‘n=1M,d =128

* Linear scan: 38ms

« Hyperplane: 3.7ms, Cross-polytope: 3.1ms

* Clustering and re-centering helps
« Hyperplane: 2.75ms
« Cross-polytope: 1.75ms

« Adding more memory helps



Conclusions and open problems



Conclusions and open problems

« Optimal data-dependent hashing for the whole L,



Conclusions and open problems

« Optimal data-dependent hashing for the whole L,
* Practical and optimal LSH for the spherical case



Conclusions and open problems

« Optimal data-dependent hashing for the whole L,
* Practical and optimal LSH for the spherical case

« Can we make the first bullet practical?
e Practical “worst-case to random” reduction?
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« Optimal data-dependent hashing for the whole L,
* Practical and optimal LSH for the spherical case

« Can we make the first bullet practical?
e Practical “worst-case to random” reduction?

Questions?



