Convex Optimization

(EE227A: UC Berkeley)

Lecture 6
(Conic optimization)

07 Feb, 2013

o

Suvrit Sra



Organizational Info

» Quiz coming up on 19th Feb.
» Project teams by 19th Feb
» Good if you can mix your research with class projects

» More info in a few days

N
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Mini Challenge

Kummer's confluent hypergeometric function

(a),mj
M(G,C,%) :Zﬁ?a CL,C,JJER,
j=0 ~ 0

and (a)o =1, (a); = a(a+1)---(a+j—1) is the rising-factorial.
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Mini Challenge

Kummer's confluent hypergeometric function

(a),mj
M(G,C,%) :Zﬁ?’ CL,C,JJER,
j=0 ~ 0

and (a)o =1, (a); = a(a+1)---(a+j—1) is the rising-factorial.

Claim: Let ¢ > a > 0 and £ > 0. Then the function

['(a+ p)

Ma+ p,c+ p,x

hac(p; @) == p—

is strictly log-convex on [0, 00) (note that h is a function of ).

Recall: I'(z) := [;~ t*~'e~'dt is the Gamma function (which is
known to be log-convex for = > 1; see also Exercise 3.52 of BV).
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LP formulation

Write min  ||Axz — b||; as a linear program.

mi |Az — bl reR"

min Z laTz — by
(2

=

. T .
min Ziti’ laj . —b;)| <t;, i=1,...,m.
min 1Tt, —t; < a;fpx —b; <t;, i=1,...,m.

Tt



LP formulation

Write min  ||Axz — b||; as a linear program.

min | Az — b1 reR?

1 T
i ZZ |a; © — by
Hzl,ltn Ziti’ ‘a?x_bilgti, 1=1,....,m.
min 174, —ti<alex—b<t;, i=1,....m.
Z‘7

Exercise: Recast || Az — b||2 + \||Bz||; as a QP.



Cone programs — overview

» Last time we briefly saw LP, QP, SOCP, SDP
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Cone programs — overview

» Last time we briefly saw LP, QP, SOCP, SDP
LP (standard form)
min  flz st Az=b, x>0.
Feasible set X = {z | Az = b} NR’} (nonneg orthant)

Input data: (A4,b,c¢)
Structural constraints: z > 0.

‘ How should we generalize this model?
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Cone programs — overview

» Replace linear map z — Ax by a nonlinear map?
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Cone programs — overview

» Replace linear map z — Ax by a nonlinear map?

» Quickly becomes nonconvex, potentially intractable

O Generalize structural constraint R’}

& Replace nonneg orthant by a convex cone K;
& Replace > by conic inequality >
& Nesterov and Nemirovski developed nice theory in late 80s

& Rich class of cones for which cone programs are tractable

6
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Conic inequalities

» We are looking for “good” vector inequalities = on R"
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Conic inequalities

» We are looking for “good” vector inequalities = on R"

» Characterized by the set
K:={xeR"|z >0}
of vector nonneg w.r.t. >

zr-y < z—y>=0 < z—yek.
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Conic inequalities

» We are looking for “good” vector inequalities = on R"
» Characterized by the set

K:={xeR"|z >0}
of vector nonneg w.r.t. >
zr-y < z—y>=0 < z—yek.

» Necessary and sufficient condition for a set L C R" to define
a useful vector inequality > is: it should be a nonempty,
pointed cone.
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Cone programs — inequalities

K is nonempty: K # 0

K is closed wrt addition: z,y e K = z+y <K

K closed wrt noneg scaling: t € £, a >0 = ax € K
K is pointed: z,—x e X = =0
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Cone programs — inequalities

K is nonempty: K # 0

K is closed wrt addition: z,y e K = z+y <K

K closed wrt noneg scaling: t € £, a >0 = ax € K
K is pointed: z,—x e X = =0

Cone inequality
rrgy <= z—-yek
r-xy <= z-—ycint(K).
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Conic inequalities

» Cone underlying standard coordinatewise vector inequalities:

>y & 2y S -y >0,

is the nonegative orthant R'}.
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Conic inequalities

» Cone underlying standard coordinatewise vector inequalities:

>y & 2y S -y >0,

is the nonegative orthant R'}.

» Two more important properties that R’} has as a cone:
mltisclosed {z' €R}} -2 = z €RY}
m It has nonempty interior (contains Euclidean ball of
positive radius)
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Conic inequalities

» Cone underlying standard coordinatewise vector inequalities:

>y & 2y S -y >0,

is the nonegative orthant R'}.

» Two more important properties that R’} has as a cone:
mltisclosed {z' €R}} -2 = z €RY}
m It has nonempty interior (contains Euclidean ball of
positive radius)

» We'll require our cones to also satisfy these two properties.
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Conic optimization problems

Standard form cone program
min  flz st Az=0b, €K
min  flz s.t. Az =g b.
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Conic optimization problems

Standard form cone program
min  flz st Az=0b, €K
min  flz s.t. Az =g b.

& The nonnegative orthant R}

& The second order cone Q" := {(z,t) € R" | ||z||2 < t}
& The semidefinite cone: S := {X =XT > 0}.

& Other cones K given by Cartesian products of these

& These cones are "nice”:

& LP, QP, SOCP, SDP: all are cone programs

& Can treat them theoretically in a uniform way (roughly)

& Not all cones are nice!

10/31



Cone programs — tough case

Copositive cone

Def. Let CP, := {A e S | T Az >0, Vo > 0}.

Exercise: Verify that CP, is a convex cone.
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Cone programs — tough case

Copositive cone

Def. Let CP, := {A e S | T Az >0, Vo > 0}.

Exercise: Verify that CP, is a convex cone.

If someone told you convex is “easy” ... they lied!

» Testing membership in C'P, is co-NP complete.

(Deciding whether given matrix is not copositive is NP-complete.)

» Copositive cone programming: NP-Hard
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Cone programs — tough case

Copositive cone

Def. Let CP, := {A e S | T Az >0, Vo > 0}.

Exercise: Verify that CP, is a convex cone.

If someone told you convex is “easy” ... they lied!

» Testing membership in C'P, is co-NP complete.
(Deciding whether given matrix is not copositive is NP-complete.)
» Copositive cone programming: NP-Hard
Exercise: Verify that the following matrix is copositive:
1 -1 1 1 -1
-1 1 -1 1 1
A=]1 -1 1 -1 1

1 1 -1 1 -1
-1 1 1 -1 1

11/31



SOCP in conic form

min  flz st Az +billa <clz+d; i=1,...,m

Let A; € R%*™: so A,z + b, € R™,
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SOCP in conic form

min  flz st Az +billa <clz+d; i=1,...,m

Let A; € R%*™: so A,z + b, € R™,

EIG

T

G dy
— A, ba

K=Qmx@2x..xQm, A=||-d||, b=]d
A, b
_C% _dm_

SOCP in conic form

min  fTz Az <k b

12/31



SOCP representation

Exercise: Let 0 < Q = LL", then show that

TQr+br4+ec<0e HLTx + L*1b||2 < \/m
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SOCP representation

Exercise: Let 0 < Q = LL", then show that

tTQr+ble+c<0e |LTz+ L7y < VOTQ b —c

Rotated second-order cone

Q= {(z,y,2) e R" | [lz]l2 < \fyz,y > 0,2 > 0} .
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SOCP representation

Exercise: Let 0 < Q = LL", then show that
2TQr+b 'z +c<0s ||[LTz+ L7 |y < VBTQ b —c
Rotated second-order cone
Qr = {(z,y.2) € R [|lz]l2 < /7.y > 0,2 > 0}

Convert into standard SOC (verify!)

Il=].<

Exercise: Rewrite the constraint xTQa: < t, where both = and ¢
are variables using the rotated second order cone.

<Sy+z) =zl < vz

13 /31



Convex QP as SOCP

min ' Qz+c’'z st Az =b.
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Convex QP as SOCP

min ' Qz+c’'z st Az =b.

min clx+t
z,t

st. Ar=0b, 27Qx<t.
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Convex QP as SOCP

min ' Qz+c’'z st Az =b.

min clx+t
z,t

st. Ar=0b, 27Qx<t.
min x4t
Tt

st. Ar=0b, (2LTz,t,1) € Q"

Since, 27 Qz = 2T LL Tz = || LT z|3
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Convex QCQPs as SOCP

Quadratically Constrained QP

min go(z) st gi(z) <0, i=1,....,m

where each ¢;(z) = 2T Pz + blTx + ¢; is a convex quadratic.
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min go(z) st gi(z) <0, i=1,....,m
where each ¢;(z) = 2T Pz + b;fpx + ¢; is a convex quadratic.

Exercise: Show how QCQPs can be cast at SOCPs using Q}
Hint: See Lecture 5!
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Convex QCQPs as SOCP

Quadratically Constrained QP
min go(z) st gi(z) <0, i=1,....,m
where each ¢;(z) = 2T Pz + b;fpx + ¢; is a convex quadratic.

Exercise: Show how QCQPs can be cast at SOCPs using Q}
Hint: See Lecture 5!

Exercise: Explain why we cannot cast SOCPs as QCQPs. That is,

why cannot we simply use the equivalence
|Az +blls < Tz 4+d e |Az + 0|3 < (T +d)?, Tz+d>0.

Hint: Look carefully at the inequality!

15/31



Robust LP

min

s.t. alTl‘ <b; Va; €&
where & :={a; + Pou | |lulj2 < 1}.
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Robust LP

min

s.t. a?m <b; Va; €&
where & :={a; + Pou | |lulj2 < 1}.

Robust half-space constraint:

» Wish to ensure al-Ta: < b; holds irrespective of which a; we pick
from the uncertainty set &;.

16

31



Robust LP

min

s.t. a?m <b; Va; €&
where & :={a;, + Pu | |lulls < 1}.
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where & :={a;, + Pu | |lulls < 1}.
Robust half-space constraint:

» Wish to ensure al-Ta: < b; holds irrespective of which a; we pick

from the uncertainty set &. This happens, if b; > sup, ¢, aZTm.

sup (a; + Pu)'z = alz + | PF ).
l[ufl2<1
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Robust LP

min

s.t. a?m <b; Va; €&
where & :={a; + Pou | |lulj2 < 1}.

Robust half-space constraint:
» Wish to ensure al-Ta: < b; holds irrespective of which a; we pick
from the uncertainty set &. This happens, if b; > sup, ¢, aZTm.

sup (a; + Pu)'z = alz + | PF ).
l[ufl2<1

» We used the fact that supj,,< uTv = ||v||2 (recall dual-norms)

16

31



Robust LP

min

s.t. a?m <b; Va; €&
where & :={a; + Pou | |lulj2 < 1}.

Robust half-space constraint:

» Wish to ensure al-Ta: < b; holds irrespective of which a; we pick
from the uncertainty set &. This happens, if b; > sup, ¢, aZTm.

sup (a; + Pu)'z = alz + | PF ).
l[ufl2<1

» We used the fact that supj,,< uTv = ||v||2 (recall dual-norms)

SOCP formulation

min 'z, st alx+||Plally <bi, i=1,...,m.

16
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Semidefinite Program (SDP)

Cone program (semidefinite)

min ¢’z st Az=0b, z€eKk,

where K is a product of semidefinite cones.
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Cone program (semidefinite)

min ¢’z st Az=0b, z€eKk,

where K is a product of semidefinite cones.

Standard form
» Think of £ as a matrix variable X
» Wilog we may assume IC = S} (Why?)
> Say K =S8 x )2

17/31



Semidefinite Program (SDP)

Cone program (semidefinite)

min ¢’z st Az=0b, z€eKk,

where K is a product of semidefinite cones.

Standard form
» Think of z as a matrix variable X
» Wilog we may assume IC = S} (Why?)
> Say K =S8 x )2
» The condition (X1, Xs) € K < X := Diag(X1, Xo) € ST
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Semidefinite Program (SDP)

Cone program (semidefinite)

min ¢’z st Az=0b, z€eKk,

where K is a product of semidefinite cones.

Standard form

» Think of x as a matrix variable X

» Wilog we may assume IC = S} (Why?)

> Say K =S8 x )2

» The condition (X1, Xs) € K < X := Diag(X1, Xo) € ST

» Thus, by imposing non diagonals blocks to be zero, we reduce to
where K is the semidefinite cone itself (of suitable dimension).
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Semidefinite Program (SDP)

Cone program (semidefinite)

min ¢’z st Az=0b, z€eKk,

where K is a product of semidefinite cones.

vVvyvyyvyy

v

Standard form

Think of x as a matrix variable X
Wlog we may assume K = S} (Why?)
Say K =S8 x 82
The condition (X1, X2) € K < X := Diag(X1, X») € S}
Thus, by imposing non diagonals blocks to be zero, we reduce to
where K is the semidefinite cone itself (of suitable dimension).
So, in matrix notation:

mcl'z — Tr(OX);

m aiTa: =b; = Tr(A;X) = b;; and

mzrxelas X =0

17/31



SDP

SDP (conic form)
. T
2
st. A(y) := Ao+ 1141 +yAs+ ... +ypAdn = 0.
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SDP

min cTy
yeR?

sit. A(y) =

min
s.t.

SDP (conic form)

Ao+ y1A1 +y2 A2+ ...+ y Ay = 0.

Standard form SDP
Tr(CX)

Tr(A;X)=0b;, i=1,...,m
X =0.
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SDP

SDP (conic form)

min cTy

yeR?
st. A(y) := Ao+ 1141 +yAs+ ... +ypAdn = 0.

Standard form SDP

min  Tr(CX)
st. Tr(A4;X)=b, i=1,...,m
X = 0.

One can be converted into another
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SDP - CVX form

cvx_begin
variables X(n,n) symmetric;
minimize ( trace(CxX) )
subject to
for i = 1:m,
trace (A{i}*X) == b(i);
end

X == semidefinite(n);
cvx_end

Note: remember symmetric and semidefinite
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SDP representation — LP

LP as SDP

min  fTx s.t. Az <b.
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SDP representation — LP

LP as SDP

min  fTx s.t. Az <b.

SDP formulation
min  flz

st.  A(z) :=diag(by —alz,...,b, —al

m

x) = 0.
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SDP representation — SOCP

SOCP as SDP

min  fTx st. |ATz+ )| <clw+d;, i=1,...,m.
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SDP representation — SOCP

SOCP as SDP

min  fTx st. |ATz 4+ b)) <clz+d;, i=1,...,m.

SDP formulation

T

t
<
|22 <t <= [x i

K

T
Schur-complements: [A B

T -1
5 C}EO@A—BC B > 0.
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SDP representation — SOCP

SOCP as SDP

min  flz st. |ATz 4+ b)) <clz+d;, i=1,...,m.

SDP formulation

T

t
<
|22 <t <= [x i

K

T
Schur-complements: [A B

T -1
5 C}EO@A—BC B > 0.

T ) T NT
ATz 4+ bil| < T+ di = [ v+d; (ATz+b) }

ATz +b;, (cFx+d;)

> 0.
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SDP / LMI representation

Def. A set S C R" is called linear matrix inequality (LMI) repre-
sentable if there exist symmetric matrices Ay, ..., A, such that

S={zxeR"| Ay + 2141+ - +x,A, = 0}.

S is called SDP representable if it equals the projection of some
higher dimensional LMI representable set.

22
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SDP / LMI representation

Def. A set S C R" is called linear matrix inequality (LMI) repre-
sentable if there exist symmetric matrices Ay, ..., A, such that

S={zxeR"| Ay + 2141+ - +x,A, = 0}.

S is called SDP representable if it equals the projection of some
higher dimensional LMI representable set.

& Linear inequalities: Ax < b iff

by — a{x




SDP / LMI representation

& Convex quadratics: 2/ LLTz + bz < c iff

{1 LTy

—
2L e— bTx] =0
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SDP / LMI representation

& Convex quadratics: 2/ LLTz + bz < c iff

{1 LTy

—
2L e— bTx] =0

& Eigenvalue inequalities:
Amax(X) t, iff tI-—X>=0
Amin (X)) t iffX —tI >0

Amax CVX AminCOncave.

IV IA
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SDP / LMI representation

& Convex quadratics: 2/ LLTz + bz < c iff

I LTy
—
LCTL c— bTx] =0

& Eigenvalue inequalities:

Amax(X) < ¢, iff tI-X =0
Amin(X) > t iffX —tI =0
Amax CVX AminCOncave.

& Matrix norm: X € R™ ", || X||2 <t (i.e., omax(X) < 1) iff

th, X
—
[XT tI,J = 0.

Proof. 21 = XXT = #? > Apax (X XT) = 02, (X).

max

23 /31



SDP / LMI representation

& Sum of top eigenvalues: For X € S”, % \(X) <t iff

t—ks—Tr(Z)>0
Z =0
Z—X+sl=0.
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SDP / LMI representation

& Sum of top eigenvalues: For X € S”, % \(X) <t iff

t—ks—Tr(Z)>0
Z =0
Z—X+sl=0.

Proof:
Suppose Zle Ai(X) <t.
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SDP / LMI representation

& Sum of top eigenvalues: For X € S”, % \(X) <t iff

t—ks—Tr(Z)>0
Z =0
Z — X +sl>=0.

Proof:
Suppose Zle Ai(X) < t. Then, choosing s = \; and
Z = Diag(A — s,..., A — 5,0,...,0), above LMIs hold.
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SDP / LMI representation

& Sum of top eigenvalues: For X € S”, % \(X) <t iff

t—ks—Tr(Z)>0
Z =0
Z — X +sl>=0.
Proof:
Suppose Zle Ai(X) < t. Then, choosing s = \; and
Z = Diag(A — s,..., A — 5,0,...,0), above LMIs hold.
Conversely, if above LMI holds, then, (since Z > 0)

X <Z+sl :>ZZ_ <Z@1 i

ijl Ni(Z) + ks

< t (from first ineq.).

IN
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SDP / LMI Representation

& Nuclear norm: X € R™*™; || X||¢ = > 1 03(X) < tiff
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SDP / LMI Representation

& Nuclear norm: X € R™*™; || X||¢ = > 1 03(X) < tiff

t—ns—Tr(2)
A

Y IV

0 X
XT o

Y
o

Z — |: :| +SIm+n
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SDP / LMI Representation

& Nuclear norm: X € R™*™; || X||¢ = > 1 03(X) < tiff

t—ns—Tr(Z) > 0
Z = 0
0 X
Z — |:XT 0:| +SIm+n t 0

Follows from: A ([)?T ﬂ) = (+0(X),0,...,0).
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SDP / LMI Representation

& Nuclear norm: X € R™*™; || X||¢ = > 1 03(X) < tiff

t—ns—Tr(Z) >
zZ =
Z — |: 0 X:| +SIm+n ~ 0

XT o

Follows from: A ([XF’T )0‘]) = (+0(X),0,...,0).

Alternatively, we may SDP-represent nuclear norm as

X[l <t < HU,V:[XUT ﬂto, Tr(U + V) < 2t.

Proof is slightly more involved (see lecture notes).
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SDP example

Logarithmic Chebyshev approximation

. T _ .
min 1r§niz%)§n\log(ai x) — log b;|

26 /31



SDP example

Logarithmic Chebyshev approximation
min  max |log(alz) — log b

1<i<m

|log(al'z) — log b;| = log max(a; z/b;, b;/al x)
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SDP example

Logarithmic Chebyshev approximation

. T _ .
min 1r§niz%)§n\log(ai x) — log b;|

|log(al'z) — log b;| = log max(a; z/b;, b;/al x)

Reformulation

min ¢ st 1/t <alz/b; <t, i=1,...,m.
Z,
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SDP example

Logarithmic Chebyshev approximation

. T _ .
min 1r§niz%)§n\log(ai x) — log b;|

|log(al'z) — log b;| = log max(a; z/b;, b;/al x)

Reformulation

min ¢ st 1/t <alz/b; <t, i=1,...,m.
Z,

[a?w/bi 1

> ,=1,... .
1 t]_O, 1=1, ,m

26
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Least-squares SDP

min  |X -Y|3 st X >0.

Exercise 1: Try solving using CVX (assume Y7 = Y); note |-z
above is the operator 2-norm; not the Frobenius norm.

Exercise 2: Recast as SDP. Hint: Begin with miny ;¢ st ...

Exercise 3: Solve the two questions also with || X — Y[

Exercise 4: Verify against analytic solution: X = UATU”, where
Y = UAUT, and AT = Diag(max(0, \1), ..., max(0, \,)).
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SDP relaxation

Binary Least-squares
min || Az — b||?
ze{-1,+1} i=1,...,n.
» Fundamental problem (engineering, computer science)
» Nonconvex; x; € {—1,+1} — 2" possible solutions

» Very hard in general (even to approximate)
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SDP relaxation

Binary Least-squares
min || Az — b||?
v e{-1,+1} i=1,...,n.
» Fundamental problem (engineering, computer science)
» Nonconvex; x; € {—1,+1} — 2" possible solutions
» Very hard in general (even to approximate)
min 2T AT Az — 22T ATb 4+ bTh =1

min Tr(AT Aza™) — 20T Az 7 =1
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SDP relaxation

Binary Least-squares
min || Az — b||?
ze{-1,+1} i=1,...,n.
» Fundamental problem (engineering, computer science)
» Nonconvex; x; € {—1,+1} — 2" possible solutions

» Very hard in general (even to approximate)

min 2T AT Az — 22T ATb 4+ bTh =1
min Tr(AT Aza™) — 20T Az 7 =1
Tr(ATAY) — 207 Az st Y = zz?, diag(Y) =1.

min
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SDP relaxation
Binary Least-squares
min || Az — b||?
ze{-1,+1} i=1,...,n.
» Fundamental problem (engineering, computer science)
» Nonconvex; x; € {—1,+1} — 2" possible solutions

» Very hard in general (even to approximate)

min 2T AT Az — 22T ATb 4+ bTh =1
min Tr(AT Aza™) — 20T Az 7 =1
Tr(ATAY) — 207 Az st Y = zz?, diag(Y) =1.

min

» Still hard: Y = zzT is a nonconvex constraint.
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SDP relaxation

Replace Y = z2” by Y > z2”. Thus, we obtain

min  Tr(ATAY) — 207 Az
Y = zzT, diag(Y) = 1.
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SDP relaxation

Replace Y = z2” by Y > z2”. Thus, we obtain

min  Tr(ATAY) — 207 Az

Y =z’ diag(Y) = 1.

This is an SDP, since

=0

Yt;m:T s [Y :E]

2T 1

(using Schur complements).
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SDP relaxation

Replace Y = z2” by Y > z2”. Thus, we obtain

min  Tr(ATAY) — 207 Az
Y = zzT, diag(Y) = 1.

This is an SDP, since

=0

Yt;m:T s [Y :r}

2T 1
(using Schur complements).
» Optimal value gives lower bound on binary LS
» Recover binary x by randomized rounding

Exercise: Try the above problem in CVX.
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Nonconvex quadratic optimization

min 27 Az +bTx

xTPi:c+b;fF:1:+c§0, i=1,...,m.
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Nonconvex quadratic optimization

min 27 Az +bTx

xTPix+b?x+c§0, i=1,...,m.

Exercise: Show that 27 Qxz = Tr(Qzz”) (where Q is symmetric).

30/31



Nonconvex quadratic optimization

min 27 Az +bTx

xTPi:c+biTa:+c§O, i=1,...,m.

Exercise: Show that 27 Qxz = Tr(Qzz”) (where Q is symmetric).

min  Tr(AX) +blz

X,z
Tr(PX)4+blz+c¢<0, i=1,....m
X >0, rank(X) = 1.
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Nonconvex quadratic optimization

min 27 Az +bTx

xTPi:z:+biTa:+c§O, i=1,...,m.

Exercise: Show that 27 Qxz = Tr(Qzz”) (where Q is symmetric).

min  Tr(AX) +blz

X,z
Tr(PX)4+blz+c¢<0, i=1,....m
X >0, rank(X) = 1.

» Relax nonconvex rank(X) =1to X = za?.

» Can be quite bad, but sometimes also quite tight.
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