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Eigenvalues and Eigenvectors

Def. If A € C"*" and x € C". Consider the equation
Az = Az, x#0, XeC.

If scalar A and vector x satisfy this equation, then X is called an
eigenvalue and x and eigenvector of A.
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Def. If A € C"*" and x € C". Consider the equation
Az = Az, x#0, XeC.

If scalar A and vector x satisfy this equation, then X is called an
eigenvalue and x and eigenvector of A.

Above equation may be rewritten equivalently as
(M —A)x=0, z#0.

Thus, A is an eigenvalue, if and only if
det(AI — A) = 0.
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Def. If A € C"*" and x € C". Consider the equation
Az = Az, x#0, XeC.

If scalar A and vector x satisfy this equation, then X is called an
eigenvalue and x and eigenvector of A.

Above equation may be rewritten equivalently as
(M —A)x=0, z#0.

Thus, A is an eigenvalue, if and only if
det(AI — A) = 0.
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Eigenvalues and Eigenvectors

Def. If A € C"*" and x € C". Consider the equation
Az = Az, x#0, XeC.

If scalar A and vector x satisfy this equation, then X is called an
eigenvalue and z and eigenvector of A.

Above equation may be rewritten equivalently as
(M —A)x=0, z#0.

Thus, A is an eigenvalue, if and only if
det(AI — A) = 0.

’Def. pA(t) := det(tI — A) is called characteristic polynomial.

’Eigenvalues are roots of characteristic polynomial.
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Eigenvalues and Eigenvectors

Theorem Let \q, ..., \, be eigenvalues of A € C"*™. Then,

Tr(A) = Zz Qi = Zz /\Z',

det(A4) = Hi Ai-
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Theorem Let \q, ..., \, be eigenvalues of A € C"*™. Then,

Tr(A) = Zi ai = Zi Ai,  det(A) = Hi Ai-

Def. Matrix U € C"™" wnitary if U*U = I ([U*];; = [1;i])

42



Eigenvalues and Eigenvectors
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Def. Matrix U € C"™" wnitary if U*U = I ([U*];; = [1;i])

Theorem (Schur factorization). If A € C"*" with eigenvalues
AL, ..., An, then there is a unitary matrix U € C"*" (i.e., U*U = I),
such that

U AU =T = [ty]

is upper triangular with diagonal entries t;; = \;.
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Theorem (Schur factorization). If A € C"*" with eigenvalues
AL, ..., An, then there is a unitary matrix U € C"*" (i.e., U*U = I),
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Corollary. If A*A = AA*, then there exists a unitary U such that
A =UAU*. We will call this the Eigenvector Decomposition.




Eigenvalues and Eigenvectors

., A\n, be eigenvalues of A € C™*"™. Then,

Theorem Let Ay, ..
Tr(A) = Zi ai = Zi Ai,  det(A) = Hi Ai-

Def. Matrix U € C"™" wnitary if U*U = I ([U*];; = [1;i])

Theorem (Schur factorization). If A € C"*" with eigenvalues
AL, ..., An, then there is a unitary matrix U € C"*" (i.e., U*U = I),

such that
U'AU =T = [t;]

is upper triangular with diagonal entries t;; = \;.

Corollary. If A*A = AA*, then there exists a unitary U such that
A =UAU*. We will call this the Eigenvector Decomposition.

Proof. A=VTV*, A* =VT*V* so AA* =TT* =T*T = A*A. But
T is upper triangular, so only way for TT* = T*T, some easy but tedious

induction shows that 7" must be diagonal. Hence, T'= A.




Singular value decomposition

Theorem (SVD) Let A € C™*™. There are unitaries s.t. U and V/
U*AV = Diag(o1,...,0p), p=min(m,n),

where 01 > 09 > --- 0, > 0. Usually written as
A=UXV*
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Singular value decomposition

Theorem (SVD) Let A € C™*™. There are unitaries s.t. U and V/
U*AV = Diag(o1,...,0p), p=min(m,n),

where 01 > 09 > --- 0, > 0. Usually written as
A=UXV*

left singular vectors U are eigenvectors of AA*
right singular vectors V are eigenvectors of A*A

nonzero singular values o; = \/\;(AA*) = \/)\;(A*A)
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Positive definite matrices

Def. Let A € R"*" be symmetric, i.e., a;; = a;;. Then, A is called
positive definite if

T
' Ar = Zij ziai;x; >0, Va#£0.

If > replaced by >, we call A positive semidefinite.
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Positive definite matrices

Def. Let A € R"*" be symmetric, i.e., a;; = a;;. Then, A is called
positive definite if

T
' Ar = Zij ziai;x; >0, Va#£0.

If > replaced by >, we call A positive semidefinite.

Theorem A symmetric real matrix is positive semidefinite (positive
definite) iff all its eigenvalues are nonnegative (positive).
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Positive definite matrices

Def. Let A € R"*" be symmetric, i.e., a;; = a;;. Then, A is called
positive definite if

T
' Ar = Zij ziai;x; >0, Va#£0.

If > replaced by >, we call A positive semidefinite.

Theorem A symmetric real matrix is positive semidefinite (positive
definite) iff all its eigenvalues are nonnegative (positive).

Theorem Every semidefinite matrix can be written as BT B

Exercise: Prove this claim. Also prove converse.
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Positive definite matrices

Def. Let A € R"*" be symmetric, i.e., a;; = a;;. Then, A is called
positive definite if

T
' Ar = Zij ziai;x; >0, Va#£0.

If > replaced by >, we call A positive semidefinite.

Theorem A symmetric real matrix is positive semidefinite (positive
definite) iff all its eigenvalues are nonnegative (positive).

Theorem Every semidefinite matrix can be written as BT B

Exercise: Prove this claim. Also prove converse.

‘ Notation: A > 0 (posdef) or A = 0 (semidef) ‘

‘ Amongst most important objects in convex optimization! ‘




Matrix and vector calculus

f(z) | Vi)

tla=Y, za | a
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http://en.wikipedia.org/wiki/Matrix_calculus
http://people.kyb.tuebingen.mpg.de/suvrit/work/mcal.pdf.gz
http://orion.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Matrix and vector calculus

f(@) | V()
xla = > Tl a
2T Az = >ij Tiaijry | (A+ ATz

/42


http://en.wikipedia.org/wiki/Matrix_calculus
http://people.kyb.tuebingen.mpg.de/suvrit/work/mcal.pdf.gz
http://orion.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Matrix and vector calculus

f(z) | V@)
xla = > Tl a
2T Az = >oij Tiaijry | (A+ ATz
log det(X) Xt
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Matrix and vector calculus

f(z) | V(=)
xla = > Tl a
a2l Ax = Zij T T (A+ ATz
log det(X) Xt

Tr(XA) =325 wijaj AT
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Matrix and vector calculus

/) Vi)
xla = > Tl a
a2l Ax = Zij T T (A+ ATz
log det(X) Xt
Tr(XA) = Zij Tijji AT
TI‘(XTA) = Zz’j L5 Qi A
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Matrix and vector calculus

f(z) Vi)
xla = > Tl a
2T Ax = >ijriairy | (A+ ATz
log det(X) X1
Tr(XA) = Zij Tijji AT
TI‘(XTA) = Zz’j L5 Qi A
Tr(XTAX) (A+ATX

Easily derived using “brute-force” rules
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Matrix and vector calculus

/(@) Vi)
xla = > Tl a
vl Az = >ijriairy | (A+ ATz
log det(X) X1
Tr(XA) = Zij Tijji AT
TI‘(XTA) = Zz’j L5 Qi A
Tr(XTAX) (A+ATX

‘ Easily derived using “brute-force” rules

& Wikipedia
& My ancient notes
& Matrix cookbook

& | hope to put up notes on less brute-forced approach.
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Convex Sets
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Convex sets
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Convex sets

Def. A set C C R" is called convex, if for any z,y € C, the
line-segment 6z + (1 — 0)y (here 6 > 0) also lies in C.
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Convex sets

Def. A set C C R" is called convex, if for any z,y € C, the
line-segment 6z + (1 — 0)y (here 6 > 0) also lies in C.

Combinations

» Convex: 61z + 6oy € C', where 61,09 > 0 and 0; + 65 = 1.
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Convex sets

Def. A set C C R" is called convex, if for any z,y € C, the
line-segment 6z + (1 — 0)y (here 6 > 0) also lies in C.

Combinations

» Convex: 61z + 6oy € C', where 61,09 > 0 and 0; + 65 = 1.
» Linear: if restrictions on 61, 6> are dropped

» Conic: if restriction 61 4+ 03 = 1 is dropped

11/42



Convex sets

Theorem (Intersection).
Let C1, C5 be convex sets. Then, C; N Csy is also convex.

Proof. If Cy N Cy = (), then true vacuously.
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Theorem (Intersection).
Let C1, C5 be convex sets. Then, C; N Csy is also convex.

Proof. If Cy N Cy = (), then true vacuously.
Let x,y € C1NCs. Then, z,y € Cy and x,y € Cs.

But C4, Cy are convex, hence 0z + (1 — 0)y € C4, and also in Cs.

Thus, 0z + (1 — )y € C1 N Cs.



Convex sets

Theorem (Intersection).
Let C1, C5 be convex sets. Then, C; N Csy is also convex.

Proof. If Cy N Cy = (), then true vacuously.
Let x,y € C1NCs. Then, z,y € Cy and x,y € Cs.

But C4, Cy are convex, hence 0z + (1 — 0)y € C4, and also in Cs.

Thus, 0x + (1 —0)y € C1 N Cs.
Inductively follows that NI, C; is also convex.



Convex sets — more examples

(psdcone image from convexoptimization.com, Dattorro)
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Convex sets — more examples

O Let z1,x9,...,2Ty, € R™. Their convex hull is

co(T1, ..., Ty) 1= {ZZ Oix; | 0; > O,Zi 0; = 1}.
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Convex sets — more examples

Q Let z1,x2,...,2Zm € R™. Their convex hull is

co(T1, ..., Ty) 1= {ZZ Oix; | 0; > O,Zlﬂi = 1}.

Q Let A € R™ ™, and b € R™. The set {z | Ax = b} is convex (it
is an affine space over subspace of solutions of Az = 0).
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Q Let z1,x2,...,2Zm € R™. Their convex hull is

co(T1, ..., Ty) 1= {ZZ Oix; | 0; > O,Zlﬂi = 1}.

Q Let A € R™ ™, and b € R™. The set {z | Ax = b} is convex (it
is an affine space over subspace of solutions of Az = 0).

O halfspace {z | a’x < b}.
QO polyhedron {zx | Ax <b,Cx = d}.
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Convex sets — more examples

Let x1,29,...,2T;m € R®. Their convex hull is

co(T1, ..., Ty) 1= {ZZGZx, | 0; > O,Zlﬂi = 1}.

Let A € R™*™, and b € R™. The set {z | Az = b} is convex (it
is an affine space over subspace of solutions of Az = 0).

halfspace {x | a”x < b}.
polyhedron {z | Ax <b,Cx = d}.
ellipsoid {x | (x — )T A(x — z9) < 1}, (A: semidefinite)
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Convex sets — more examples

3

ACERCERCERG!

Let x1,29,...,2T;m € R®. Their convex hull is

co(T1, ..., Ty) 1= {ZZGZx, | 0; > O,Zlﬂi = 1}.

Let A € R™*™, and b € R™. The set {z | Az = b} is convex (it
is an affine space over subspace of solutions of Az = 0).

halfspace {x | a”x < b}.

polyhedron {z | Ax <b,Cx = d}.

ellipsoid {x | (x — )T A(x — z9) < 1}, (A: semidefinite)
probability simplex {x | x > 0,) . x; = 1}
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Convex sets — more examples

Q Let z1,x2,...,2Zm € R™. Their convex hull is

co(T1, ..., Ty) 1= {ZZGZ(/U, | 0; > O,Zlﬂi = 1}.

Q Let A € R™ ™, and b € R™. The set {z | Ax = b} is convex (it
is an affine space over subspace of solutions of Az = 0).

O halfspace {z | a’x < b}.

QO polyhedron {zx | Ax <b,Cx = d}.

O ellipsoid {x | (x — x0)T A(x — o) < 1}, (A: semidefinite)

QO probability simplex {z | z >0, ", x; =1}

(e]

Quiz: Prove that these sets are convex.
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Convex functions
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Convex functions

Def. Function f: I — R on interval I called midpoint convex if

f(5Y) < [@)+1 ) Hf(y) whenever z,y € I.
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Convex functions

Def. Function f: I — R on interval I called midpoint convex if

f(Er) < [ W - whenever z,y € 1.

Read: f of AM is less than or equal to AM of f.
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Convex functions

Def. Function f: I — R on interval I called midpoint convex if

f (L;w) S w’ Whenever '/L‘)y € I

Read: f of AM is less than or equal to AM of f.

Def. A function f : R™ — R is called convex if its domain dom(f)
is a convex set and for any z,y € dom(f) and 8 > 0

f0x+ (1 —0)y) <Of(x)+ (1—0)f(y).
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Convex functions

Def. Function f: I — R on interval I called midpoint convex if

f(LjQLy) SM’ whenever$,y€I~

Read: f of AM is less than or equal to AM of f.

Def. A function f : R™ — R is called convex if its domain dom(f)
is a convex set and for any z,y € dom(f) and 8 > 0

fOr+(1—0)y) <0f(x)+(1—0)f(y).

Theorem (J.L.W.V. Jensen). Let f : I — R be continuous. Then,
f is convex if and only if it is midpoint convex.

42



Convex functions

Def. Function f: I — R on interval I called midpoint convex if

f(L}Ly) SM’ wheneverm,yEL

Read: f of AM is less than or equal to AM of f.

Def. A function f : R™ — R is called convex if its domain dom(f)
is a convex set and for any z,y € dom(f) and 8 > 0

f0x+ (1 —0)y) <Of(x)+ (1—0)f(y).

Theorem (J.L.W.V. Jensen). Let f : I — R be continuous. Then,
f is convex if and only if it is midpoint convex.

» Theorem extends to functions f : X CR"™ — R. Very useful to
checking convexity of a given function.
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Convex functions
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Convex functions
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Convex functions

T o=+ (- Ny y

slope PQ < slope PR < slope QR
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Recognizing convex functions

& If f is continuous and midpoint convex, then it is convex.
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Recognizing convex functions

& If f is continuous and midpoint convex, then it is convex.

& If f is differentiable, then f is convex if and only if dom f is
convex and f(z) > f(y) + (Vf(y), x —y) for all z,y € dom f.
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Recognizing convex functions

& If f is continuous and midpoint convex, then it is convex.
& If f is differentiable, then f is convex if and only if dom f is
convex and f(z) > f(y) + (Vf(y), x —y) for all z,y € dom f.

& If f is twice differentiable, then f is convex if and only if dom f
is convex and V2 f(z) = 0 at every z € dom f.
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Convex functions

m Linear: f(6hz + O2y) = 01 f(x) + O2f(y) ; 61,02 unrestricted
m Concave: f(fx+ (1 —0)y) >0f(z)+ (1 —0)f(y)

m Strictly convex: If inequality is strict for z # y

20 /42



Convex functions

Example The pointwise maximum of a family of convex functions is
convex. That is, if f(x;y) is a convex function of x for every y in
some “index set” ), then

f(z) = max f(x;y)

yey

is a convex function of x (set ) is arbitrary).
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Convex functions

Example The pointwise maximum of a family of convex functions is
convex. That is, if f(x;y) is a convex function of x for every y in
some “index set” ), then

f(z) = max f(z;y)

yey

is a convex function of x (set ) is arbitrary).

Example Let f : R®™ — R be convex. Let A € R™*", and b € R™,
Prove that g(z) = f(Ax + b) is convex.




Convex functions

Example The pointwise maximum of a family of convex functions is
convex. That is, if f(x;y) is a convex function of x for every y in
some “index set” ), then

f(z) = max f(z;y)

yey

is a convex function of x (set ) is arbitrary).

Example Let f : R®™ — R be convex. Let A € R™*", and b € R™,
Prove that g(z) = f(Ax + b) is convex.

Exercise: Verify truth of above examples.



Convex functions

Theorem Let ) be a nonempty convex set. Suppose L(x,y) is

convex in (z,y), then,

fla) = inf L)

is a convex function of z, provided f(z) > —oc.
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Convex functions

Theorem Let ) be a nonempty convex set. Suppose L(x,y) is

convex in (z,y), then,

fla) = inf L)

is a convex function of z, provided f(z) > —oc.

Proof. Let u,v € dom f. Since f(u) = inf, L(u,y), for each € > 0, there
isay €Y, st f(u)+ 5 is not the infimum. Thus, L(u,y1) < f(u) + 5.
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Convex functions

Theorem Let ) be a nonempty convex set. Suppose L(x,y) is
convex in (z,y), then,

fla) = inf L)

is a convex function of z, provided f(z) > —oc.

Proof. Let u,v € dom f. Since f(u) = inf, L(u,y), for each € > 0, there
isay €Y, st f(u)+ 5 is not the infimum. Thus, L(u,y1) < f(u) + 5.
Similarly, there is 5 € Y, such that L(v,y2) < f(v) + 5.
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Convex functions

Theorem Let ) be a nonempty convex set. Suppose L(x,y) is
convex in (z,y), then,

fla) = inf L)

is a convex function of z, provided f(z) > —oc.

Proof. Let u,v € dom f. Since f(u) = inf, L(u,y), for each € > 0, there
isay; €Y, st f(u)+§ is not the infimum. Thus, L(u,y1) < f(u)+ 5.
Similarly, there is 5 € Y, such that L(v,y2) < f(v) + 5.

Now we prove that f(Au+ (1 — A)v) < Af(u) + (1 —N)f(v) directly.
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Convex functions

Theorem Let ) be a nonempty convex set. Suppose L(x,y) is
convex in (z,y), then,

fla) = inf L)

is a convex function of z, provided f(z) > —oc.

Proof. Let u,v € dom f. Since f(u) = inf, L(u,y), for each € > 0, there

isay; €Y, st f(u)+§ is not the infimum. Thus, L(u,y1) < f(u)+ 5.
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Convex functions

Theorem Let ) be a nonempty convex set. Suppose L(x,y) is
convex in (z,y), then,

fla) = inf L)

is a convex function of z, provided f(z) > —oc.

Proof. Let u,v € dom f. Since f(u) = inf, L(u,y), for each € > 0, there

isay; €Y, st f(u)+§ is not the infimum. Thus, L(u,y1) < f(u)+ 5.

Similarly, there is 5 € Y, such that L(v,y2) < f(v) + 5.

Now we prove that f(Au+ (1 — A)v) < Af(u) + (1 —N)f(v) directly.
fOu+(1—-XNv) = ylrelg Lu+ (1 =XNv,y)

< LAu+ (1 —=MNv, yr + (1 — Nys)
< AL(u,y1) + (1= A)L(v, y2)



Convex functions

Theorem Let ) be a nonempty convex set. Suppose L(x,y) is
convex in (z,y), then,

fla) = inf L)

is a convex function of z, provided f(z) > —oc.

Proof. Let u,v € dom f. Since f(u) = inf, L(u,y), for each € > 0, there
isay €Y, st f(u)+ 5 is not the infimum. Thus, L(u,y1) < f(u) + 5.
Similarly, there is 5 € Y, such that L(v,y2) < f(v) + 5.
Now we prove that f(Au+ (1 — A)v) < Af(u) + (1 —N)f(v) directly.
fOu+(1—-XNv) = 11615 Lu+ (1 =XNv,y)
y

LAu+ (1= XNv, dyp + (1 — Nyo)
AL(u,y1) + (1 = A)L(v,y2)
Af(u)+ (1 =N f(v) +e

IAIACIA

Since € > 0 is arbitrary, claim follows.



Example: Schur complement

Let A, B, C be matrices such that C' > 0, and let

A B

then the Schur complement A — BC~'BT > 0.
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Let A, B, C be matrices such that C = 0, and let

A B
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A B
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Example: Schur complement

Let A, B, C be matrices such that C = 0, and let

A B

then the Schur complement A — BC~'BT > 0.
Proof. L(x,y) = [z,y]T Z[x,y] is convex in (z,y) since Z = 0

Observe that f(z) = inf, L(z,y) = 27 (A — BC7'BT)z is convex.

(We skipped ahead and solved V,L(z,y) = 0 to minimize).
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Recognizing convex functions

& If f is continuous and midpoint convex, then it is convex.
& If f is differentiable, then f is convex if and only if dom f is
convex and f(z) > f(y) + (Vf(y), x —y) for all z,y € dom f.

& If f is twice differentiable, then f is convex if and only if dom f
is convex and V2 f(z) = 0 at every z € dom f.
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Recognizing convex functions

& If f is continuous and midpoint convex, then it is convex.

& If f is differentiable, then f is convex if and only if dom f is
convex and f(z) > f(y) + (Vf(y), z —y) for all z,y € dom f.

& If f is twice differentiable, then f is convex if and only if dom f
is convex and V2 f(z) = 0 at every z € dom f.

& By showing f to be a pointwise max of convex functions

& By showing f : dom(f) — R is convex if and only if its
restriction to any line that intersects dom(f) is convex. That is,
for any z € dom(f) and any v, the function g(t) = f(z + tv) is
convex (on its domain {t | x + tv € dom(f)}).

& See exercises (Ch. 3) in Boyd & Vandenberghe for more ways
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Operations preserving
convexity
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Operations preserving convexity

Pointwise maximum: f(x) = sup,¢y f(y; )
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Conic combination: Let ay,...,a, > 0; let f1,..., f, be convex
functions. Then, f(z) := Y, aifi(x) is convex.

Remark: The set of all convex functions is a convex cone.
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Operations preserving convexity

Pointwise maximum: f(x) = sup,¢y f(y; )

Conic combination: Let ay,...,a, > 0; let f1,..., f, be convex
functions. Then, f(z) := Y, aifi(x) is convex.

Remark: The set of all convex functions is a convex cone.

Affine composition: f(z):= g(Az +b), where g is convex.
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Operations preserving convexity

Theorem Let f: I} - R and g: Iy — R, where range(f) C Io. If
f and g are convex, and g is increasing, then g o f is convex on [;
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Theorem Let f: I} - R and g: Iy — R, where range(f) C Io. If
f and g are convex, and g is increasing, then g o f is convex on [;

Proof. Let x,y € I, and let A € (0,1).

27

42



Operations preserving convexity

Theorem Let f: I} - R and g: Iy — R, where range(f) C Io. If
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Proof. Let x,y € I, and let A € (0,1).
fOz+(1=XNy) < M)+ (1 =Nf(y)
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Operations preserving convexity

Theorem Let f: I} - R and g: Iy — R, where range(f) C Io. If
f and g are convex, and g is increasing, then g o f is convex on [;

Proof. Let x,y € I, and let A € (0,1).
fOr+(1=XNy) < A(z)+(1 /\)f(y)
g(fOe+1=Ny) < g\ f(2)+ (1 =Nf(y)
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Operations preserving convexity

Theorem Let f: I} - R and g: Iy — R, where range(f) C Io. If
f and g are convex, and g is increasing, then g o f is convex on [;

Proof. Let x,y € I, and let \ € (0 1).
fOz+(1=Ny) < M)+ 1 -N)f(y)
g(fQAz + (1= A)y)) < ( flz)+ 1—A)f(y))
< Ag(f(@) + (1= Ng(f(w)-
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Operations preserving convexity

Theorem Let f: I} - R and g: Iy — R, where range(f) C Io. If
f and g are convex, and g is increasing, then g o f is convex on [;

Proof. Let x,y € I, and let \ € (0 1).
fOz+(1=Ny) < M)+ 1 -N)f(y)
g(fQz+ (1= Ny)) < ( fla)+(1- /\) ()
< Mg(f(@) + 1= Ng(f)-

Read Section 3.2.4 of BV for more |
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Examples
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Quadratic

Let f(z) = 2T Az + bz + ¢, where A =0, b € R", and c € R.
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Quadratic

Let f(z) = 2T Az + bz + ¢, where A =0, b € R", and c € R.
What is: V2f(z)?
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Quadratic

Let f(z) = 2T Az + bz + ¢, where A =0, b € R", and c € R.
What is: V2f(z)?
Vf(z) =2Ax +b, V2f(z) = A = 0, hence f is convex.
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Indicator

Let Iy be the indicator function for X defined as:

Ly (x) 0 ifzed,
) =
v oo otherwise.
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Indicator

Let Iy be the indicator function for X defined as:

Ly (x) 0 ifzed,
) =
v oo otherwise.

Note: Iy (x) is convex if and only if X' is convex.
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Distance to a set

Example Let )V be a convex set. Let x € R™ be some point. The
distance of x to the set ) is defined as

dist(z, ) := inf ||z —y]|.
yey

Because ||z — y|| is jointly convex in (x,y), the function dist(z,))
is a convex function of z.

31



Norms

Let f: R™ — R be a function that satisfies
f(xz) >0, and f(z) =0 if and only if z = 0 (definiteness)
f(Az) = |A|f(x) for any A € R (positive homogeneity)
f(z+y) < f(z) + f(y) (subadditivity)

Such a function is called a norm. We usually denote norms by ||z||.
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Norms

Let f: R™ — R be a function that satisfies
f(xz) >0, and f(z) =0 if and only if z = 0 (definiteness)
f(Az) = |A|f(x) for any A € R (positive homogeneity)
f(z+y) < f(z) + f(y) (subadditivity)

Such a function is called a norm. We usually denote norms by ||z||.

’Theorem Norms are convex.

Proof. Immediate from subadditivity and positive homogeneity.
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Vector norms

Example (/3-norm): Let x € R™. The Euclidean or {3-norm is

Izl = (5 22)"*
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Vector norms

Example (/3-norm): Let x € R™. The Euclidean or f2-norm is

Izl = (5 22)"*

Example (£,-norm): Let p > 1. [lall, = (2, [z:]) """

Exercise: Verify that ||z||, is indeed a norm.
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Vector norms

Example (/3-norm): Let x € R™. The Euclidean or f2-norm is

Izl = (5 22)"*

Example (¢,-norm): Let p > 1. [z[|, = (3=, |2i|?)

Exercise: Verify that ||z||, is indeed a norm.

[Example (Loo-norm): [|z]o = maxi<i<p |7i] |
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Vector norms

Example (/3-norm): Let x € R™. The Euclidean or f2-norm is

Izl = (5 22)"*

Example (¢,-norm): Let p > 1. [z[|, = (3=, |2i|?) 1/ ‘

Exercise: Verify that ||z||, is indeed a norm.

[Example (Loo-norm): [|z]o = maxi<i<p |7i] |

Example (Frobenius-norm): Let A € R™*™. The Frobenius norm

of Ais ||Allr := /3 laij|% that is, | Allr = /Tr(A7A).
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Mixed norms

Def. Let z € RM 211G he 3 vector partitioned into subvectors
Z; e R%, 1 <Jj< G. Let D= (p07p17p2a" '7pG)v where bj > 1
Consider the vector & := (||z1]|p,, -, ||zcllpg). Then, we define
the mixed-norm of x as

[]lp := 1I€]lpo-
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Mixed norms

Def. Let z € RM 211G he 3 vector partitioned into subvectors
Z; e RY, 1< j<G. Let D= (p0>p17p2a" . 7pG)v where bj > 1
Consider the vector & := (||z1]|p,, -, ||zcllpg). Then, we define
the mixed-norm of x as

[]lp := 1I€]lpo-

Example /1 ;-norm: Let = be as above.

G
lollg =3 lheilly

This norm is popular in machine learning, statistics.
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Matrix Norms

Induced norm

Let A € R™*" and let ||-|| be any vector norm. We define an
induced matrix norm as

A
4] = sup 1271
Izl 1zl
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Matrix Norms

Induced norm

Let A € R™*" and let ||-|| be any vector norm. We define an
induced matrix norm as

A
4] = sup 1271
Izl 1zl

Verify that above definition yields a norm.
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Matrix Norms

Induced norm

Let A € R™*" and let ||-|| be any vector norm. We define an
induced matrix norm as
Az
Al = sup 1221
Izl 1zl

’Verify that above definition yields a norm.

» Clearly, ||A|| =0 iff A =0 (definiteness)

> Al = Ja] ]| (homogeneity)
A+B A B
( ”-:cl)ﬂﬂH < sup Il 96||+|||| z|| < ||A|| + ||B].

[l

> |4+ B = sup !
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Operator norm

Example Let A be any matrix. Then, the operator norm of A is

A
Al = sup 1A%]
lefla0 (1712

|A|l2 = omax(A), where oy, is the largest singular value of A.
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A
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lefla0 (1712

|A|l2 = omax(A), where oy, is the largest singular value of A.

e Warning! Generally, largest eigenvalue of a matrix is not a norm!
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Example Let A be any matrix. Then, the operator norm of A is

A
Al = sup 1A%]
lefla0 (1712

|A|l2 = omax(A), where oy, is the largest singular value of A.

e Warning! Generally, largest eigenvalue of a matrix is not a norm!
e ||A|l1 and ||A]|cc—max-abs-column and max-abs-row sums.
e ||Al|, generally NP-Hard to compute for p & {1,2, 00}
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Operator norm

Example Let A be any matrix. Then, the operator norm of A is

A
Al = sup 1A%]
lefla0 (1712

|A|l2 = omax(A), where oy, is the largest singular value of A.

Warning! Generally, largest eigenvalue of a matrix is not a norm!
|A||l1 and || A]|cc—max-abs-column and max-abs-row sums.

| All, generally NP-Hard to compute for p & {1, 2,00}

Schatten p-norm: /,-norm of vector of singular value.
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Operator norm

Example Let A be any matrix. Then, the operator norm of A is

A
Al = sup 1A%]
lefla0 (1712

|A|l2 = omax(A), where oy, is the largest singular value of A.

Warning! Generally, largest eigenvalue of a matrix is not a norm!
|A||l1 and || A]|cc—max-abs-column and max-abs-row sums.

| All, generally NP-Hard to compute for p & {1, 2,00}

Schatten p-norm: /,-norm of vector of singular value.

Exercise: Let 01 > 09 > -+ > 0, > 0 be singular values of a
matrix A € R™*™. Prove that

k
lAllgy =3 oi(A),

isanorm; 1<k<n.
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Dual norms

Def. Let ||-|| be a norm on R™. Its dual norm is

Jull. := sup {u"x | ] < 1}.
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Dual norms

Def. Let ||-|| be a norm on R™. Its dual norm is

Jull. := sup {u"x | ] < 1}.

Exercise: Verify that ||u/|. is a norm.

Exercise: Let 1/p+1/q =1, where p,q > 1. Show that |||, is
dual to [|-||,. In particular, the ¢2-norm is self-dual.
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Fenchel Conjugate



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z) == sup 'z — f(x).

z€dom f
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(2):= sup  alz— f(x).
z€dom f

Note: f* is pointwise (over z) sup of linear functions of z. Hence,
it is always convex (regardless of f).

’Example 400 and —oo conjugate to each other.
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z) == sup 'z — f(x).
z€dom f

Note: f* is pointwise (over z) sup of linear functions of z. Hence,
it is always convex (regardless of f).

’Example 400 and —oo conjugate to each other.

Example Let f(x) = ||z|. We have f*(z) = I, <i(2). Thatis,
conjugate of norm is the indicator function of dual norm ball.

[*(z) =sup, 2Ta — ||z|. If ||z]l« > 1, then by definition of the dual
norm, there is u s.t. |lul| <1 and vz > 1.
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z):= sup 'z — f(x).
z€dom f

Note: f* is pointwise (over z) sup of linear functions of z. Hence,
it is always convex (regardless of f).

’Example 400 and —oo conjugate to each other.

Example Let f(x) = ||z|. We have f*(z) = I, <i(2). Thatis,
conjugate of norm is the indicator function of dual norm ball.

[*(z) =sup, 2Ta — ||z|. If ||z]l« > 1, then by definition of the dual
norm, there is u s.t. |jul| <1 and u”z > 1. Now select z = au and let
o — Q.
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z) == sup 'z — f(x).
z€dom f

Note: f* is pointwise (over z) sup of linear functions of z. Hence,
it is always convex (regardless of f).

’Example 400 and —oo conjugate to each other.

Example Let f(x) = ||z|. We have f*(z) = I, <i(2). Thatis,
conjugate of norm is the indicator function of dual norm ball.

[*(z) =sup, 2Ta — ||z|. If ||z]l« > 1, then by definition of the dual
norm, there is u s.t. |jul| <1 and u”z > 1. Now select z = au and let
T oy — |Jul]) — oo.

a — 00. Then, z'z — ||z|| = a(z
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z) == sup 'z — f(x).
z€dom f

Note: f* is pointwise (over z) sup of linear functions of z. Hence,
it is always convex (regardless of f).

’Example 400 and —oo conjugate to each other.

Example Let f(x) = ||z|. We have f*(z) = I, <i(2). Thatis,
conjugate of norm is the indicator function of dual norm ball.

[*(z) =sup, 2Ta — ||z|. If ||z]l« > 1, then by definition of the dual
norm, there is u s.t. |jul| <1 and u”z > 1. Now select z = au and let
a — oo. Then, 2Tz — ||z|| = a(zTu — ||ul|) = co. If ||z|l« < 1, then
2Tz < ||x||||z||«, which implies the sup must be zero.
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Fenchel conjugate

Example f(z) = ax + b; then,
f*(z) = supzz— (ax+Db)
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Fenchel conjugate

Example f(z) = ax + b; then,
f(z)

sup zz — (ax + b)
x

Thus, dom f* = {a}, and f*(a) = —b.

oo, if(z—a)#0.
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Fenchel conjugate

Example f(z) = ax + b; then,
f(z)

sup zz — (ax + b)
x

oo, if(z—a)#0.
Thus, dom f* = {a}, and f*(a) = —b.

Example Let a > 0, and set f(z) = —Va? — 22 if |z| < a, and +0
otherwise. Then, f*(z) = aV1 + 22.
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Example Let a > 0, and set f(z) = —Va? — 22 if |z| < a, and +0
otherwise. Then, f*(z) = aV1 + 22.

Example f(z) = %xTAx, where A = 0. Then, f*(z) = %ZTAflz.
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Fenchel conjugate

Example f(z) = ax + b; then,
f*(z) = supzz— (ax+Db)
= oo, if(z—a)#0.
Thus, dom f* = {a}, and f*(a) = —b.

Example Let a > 0, and set f(z) = —Va? — 22 if |z| < a, and +0
otherwise. Then, f*(z) = aV1 + 22.
Example f(z) = 1

= §xTAx, where A = 0. Then, f*(z) = %ZTAflz.

Example f(z) = max(0,1—x). Now f*(z) = sup, 2z —max(0,1—

x). Note that dom f* is [—1, 0] (else sup is unbounded); within this
domain, f*(z) = z.

40 /42



Misc Convexity
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Other forms of convexity

& Log-convex: log f is convex; log-cvx = cvx;
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Other forms of convexity

& Log-convex: log f is convex; log-cvx = cvx;
& Log-concavity: log f concave; not closed under addition!
& Exponentially convex: [f(z; + x;)] = 0, for z1,...,z,
& Operator convex: f(AX + (1 -N)Y) < Af(X)+(1—
& Quasiconvex: f(Az+ (1 —\y)) <max{f(z), f(y)}
& Pseudoconvex: (Vf(y),z—y) >0 = f(z)> f(y)
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Other forms of convexity

& Log-convex: log f is convex; log-cvx = cvx;

& Log-concavity: log f concave; not closed under addition!

& Exponentially convex: [f(z; + x;)] = 0, for z1,...,z,

& Operator convex: f(AX + (1 —-N)Y) < Af(X)+(1—=XN)f(Y)
& Quasiconvex: f(Az+ (1 — Ay)) <max{f(x), f(y)}

& Pseudoconvex: (Vf(y),z—y) >0 = f(z)> f(y)

& Discrete convexity: f :7Z" — 7Z; “convexity + matroid theory.”
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