Convex Optimization

(EE227A: UC Berkeley)

Lecture 27 (Derivative free optimization) 30 Apr, 2013

Suvrit Sra

 $\min_{x \in \mathbb{R}^n} f(x)$

 $\min_{x \in \mathbb{R}^n} f(x)$

Optimizing without derivatives

$$\min_{x \in \mathbb{R}^n} f(x)$$

Optimizing without derivatives

(CD):
$$x_j^{k+1} \leftarrow \operatorname{argmin}_{x_j} f(\dots, x_j, \dots)$$

$$\min_{x \in \mathbb{R}^n} f(x)$$

Optimizing without derivatives

(CD):
$$x_j^{k+1} \leftarrow \operatorname{argmin}_{x_j} f(\dots, x_j, \dots)$$

- ▶ Requires **subroutine** to solve for each coordinate, or
- ightharpoonup explicit access to f, or
- \blacktriangleright ability to restrict computation to jth coordinate

$$\min_{x \in \mathbb{R}^n} f(x)$$

Optimizing without derivatives

(CD):
$$x_j^{k+1} \leftarrow \operatorname{argmin}_{x_j} f(\dots, x_j, \dots)$$

- ▶ Requires **subroutine** to solve for each coordinate, or
- ightharpoonup explicit access to f, or
- ▶ ability to restrict computation to *j*th coordinate

Sometimes may not be possible / practical!

Why care?

► Legacy code, access to executables only, ...

- ► Legacy code, access to executables only, ...
- ► Burden of mathematical modelling

- ► Legacy code, access to executables only, ...
- ▶ Burden of mathematical modelling
- ▶ Programmer time vs computer time

- ► Legacy code, access to executables only, ...
- Burden of mathematical modelling
- ▶ Programmer time vs computer time
- ► Extra storage needed by *Fast Differentiation*

- ► Legacy code, access to executables only, ...
- Burden of mathematical modelling
- ► Programmer time vs computer time
- ► Extra storage needed by *Fast Differentiation*
- ▶ Dealing with nonsmooth, nonconvex functions

- ► Legacy code, access to executables only, ...
- ▶ Burden of mathematical modelling
- ▶ Programmer time vs computer time
- ► Extra storage needed by *Fast Differentiation*
- ▶ Dealing with nonsmooth, nonconvex functions
- ► Ease of use, laziness?

Why care?

- ► Legacy code, access to executables only, ...
- ▶ Burden of mathematical modelling
- ► Programmer time vs computer time
- ► Extra storage needed by *Fast Differentiation*
- ▶ Dealing with nonsmooth, nonconvex functions
- ► Ease of use, laziness?

Derivative free optimization (DFO)

WARNING!

If you can somehow obtain derivatives, use them. Turn to DFO if derivatives too expensive or impossible to get!

WARNING!

If you can somehow obtain derivatives, use them. Turn to DFO if derivatives too expensive or impossible to get!

Not discussing today

Automatic differentiation (http://www.autodiff.org)

WARNING!

If you can somehow obtain derivatives, use them. Turn to DFO if derivatives too expensive or impossible to get!

Not discussing today

- Automatic differentiation (http://www.autodiff.org)
- ♣ Fast Differentiation $cost(\nabla f) \le 4cost(f)$.

WARNING!

If you can somehow obtain derivatives, use them. Turn to DFO if derivatives too expensive or impossible to get!

Not discussing today

- Automatic differentiation (http://www.autodiff.org)
- ♣ Fast Differentiation $cost(\nabla f) \le 4cost(f)$.
- Various finite differencing techniques

WARNING!

If you can somehow obtain derivatives, use them. Turn to DFO if derivatives too expensive or impossible to get!

Not discussing today

- Automatic differentiation (http://www.autodiff.org)
- ♣ Fast Differentiation $cost(\nabla f) \le 4cost(f)$.
- Various finite differencing techniques
- Nonconvex DFO
- See recent book: "Introduction to Derivative-Free Optimization" by A. Conn, K. Scheinberg, and L. N. Vicente (MPS-SIAM, 2009).

 $\min f(x)$

 $\min f(x)$

Brute force method

• Start at $x_0 \in \mathbb{R}^n$

 $\min f(x)$

- Start at $x_0 \in \mathbb{R}^n$
- At iteration $k \ge 0$:
 - ightharpoonup Sample a point y from $\mathcal{N}(x_k, \Sigma_k)$

$$\min f(x)$$

- Start at $x_0 \in \mathbb{R}^n$
- At iteration k > 0:
 - \rightarrow Sample a point y from $\mathcal{N}(x_k, \Sigma_k)$
 - $f(y) < f(x_k)$, then $x_{k+1} \leftarrow y$

 $\min f(x)$

- Start at $x_0 \in \mathbb{R}^n$
- At iteration $k \ge 0$:
 - \rightarrow Sample a point y from $\mathcal{N}(x_k, \Sigma_k)$
 - $f(y) < f(x_k)$, then $x_{k+1} \leftarrow y$
 - \rightarrow otherwise $x_{k+1} \leftarrow x_k$

 $\min f(x)$

- Start at $x_0 \in \mathbb{R}^n$
- At iteration k > 0:
 - \rightarrow Sample a point y from $\mathcal{N}(x_k, \Sigma_k)$
 - $f(y) < f(x_k)$, then $x_{k+1} \leftarrow y$
 - \rightarrow otherwise $x_{k+1} \leftarrow x_k$
- repeat above procedure until tired

$$\min f(x)$$

Brute force method

- Start at $x_0 \in \mathbb{R}^n$
- At iteration k > 0:
 - \rightarrow Sample a point y from $\mathcal{N}(x_k, \Sigma_k)$
 - $f(y) < f(x_k)$, then $x_{k+1} \leftarrow y$
 - \rightarrow otherwise $x_{k+1} \leftarrow x_k$
- repeat above procedure until tired

Nothing but completely random search!

Can be done more cleverly: see e.g. probabilistic optimization

 \bullet At iteration k pick $u \in \mathbb{S}^{n-1}$ at random

- ullet At iteration k pick $u \in \mathbb{S}^{n-1}$ at random
- Update the guess as

$$x_{k+1} = x_k - h_k \left[\frac{f(x_k + \mu_k u) - f(x_k)}{\mu_k} \right] u$$

Scheme might "work" as $\mu_k \to 0$; it becomes

- At iteration k pick $u \in \mathbb{S}^{n-1}$ at random
- Update the guess as

$$x_{k+1} = x_k - h_k \left[\frac{f(x_k + \mu_k u) - f(x_k)}{\mu_k} \right] u$$

Scheme might "work" as $\mu_k \to 0$; it becomes

$$x_{k+1} = x_k - h_k$$
 $\underbrace{f'(x_k; u)}_{\text{directional deriv}} u$,

(notice that if f is differentiable, then $f'(x; u) = \langle \nabla f(x), u \rangle$)

- At iteration k pick $u \in \mathbb{S}^{n-1}$ at random
- Update the guess as

$$x_{k+1} = x_k - h_k \left[\frac{f(x_k + \mu_k u) - f(x_k)}{\mu_k} \right] u$$

Scheme might "work" as $\mu_k \to 0$; it becomes

$$x_{k+1} = x_k - h_k$$
 $\underbrace{f'(x_k; u)}_{\text{directional deriv}} u$,

(notice that if f is differentiable, then $f'(x;u)=\langle \nabla f(x),\,u\rangle)$

▶ Directional derivatives much simpler than gradient

- At iteration k pick $u \in \mathbb{S}^{n-1}$ at random
- Update the guess as

$$x_{k+1} = x_k - h_k \left[\frac{f(x_k + \mu_k u) - f(x_k)}{\mu_k} \right] u$$

Scheme might "work" as $\mu_k \to 0$; it becomes

$$x_{k+1} = x_k - h_k$$
 $\underbrace{f'(x_k; u)}_{\text{directional deriv}} u$,

(notice that if f is differentiable, then $f'(x; u) = \langle \nabla f(x), u \rangle$)

- ▶ Directional derivatives much simpler than gradient
- ► Can be reasonably approximated by finite differences

- At iteration k pick $u \in \mathbb{S}^{n-1}$ at random
- Update the guess as

$$x_{k+1} = x_k - h_k \left[\frac{f(x_k + \mu_k u) - f(x_k)}{\mu_k} \right] u$$

Scheme might "work" as $\mu_k \to 0$; it becomes

$$x_{k+1} = x_k - h_k \underbrace{f'(x_k; u)}_{\text{directional deriv}} u,$$

(notice that if f is differentiable, then $f'(x; u) = \langle \nabla f(x), u \rangle$)

- ▶ Directional derivatives much simpler than gradient
- ► Can be reasonably approximated by finite differences
- Even for nonconvex functions

Def. (Smoothing). Let $\mu>0$, and $u\sim P$ with density p, then $f_{\mu}(x):=\int f(x+\mu u)p(u)du.$

Def. (Smoothing). Let $\mu > 0$, and $u \sim P$ with density p, then

$$f_{\mu}(x) := \int f(x + \mu u)p(u)du.$$

Main ideas today:

 \spadesuit For deterministic f(x),

$$x_{k+1} = x_k - h_k f'(x_k; u)u,$$

at worst O(n) slower than usual subgradient method

Def. (Smoothing). Let $\mu > 0$, and $u \sim P$ with density p, then

$$f_{\mu}(x) := \int f(x + \mu u)p(u)du.$$

Main ideas today:

 \spadesuit For deterministic f(x),

$$x_{k+1} = x_k - h_k f'(x_k; u)u,$$

at worst O(n) slower than usual subgradient method

♠ Finite-differencing version

$$x_{k+1} = x_k - h_k \left[\frac{f(x_k + \mu_k u) - f(x_k)}{\mu_k} \right] u,$$

at worst $O(n^2)$ slower.

Def. (Smoothing). Let $\mu>0$, and $u\sim P$ with density p, then $f_{\mu}(x):=\int f(x+\mu u)p(u)du.$

Main ideas today:

 \spadesuit For deterministic f(x),

$$x_{k+1} = x_k - h_k f'(x_k; u)u,$$

at worst O(n) slower than usual subgradient method

♠ Finite-differencing version

$$x_{k+1} = x_k - h_k \left[\frac{f(x_k + \mu_k u) - f(x_k)}{\mu_k} \right] u,$$

at worst $O(n^2)$ slower.

 \spadesuit For stochastic optimization, i.e., $f(x) = E_z[F(x,z)]$, both iterations above extend naturally.

DFO – setup

We'll work in some Euclidean space E; let its dual be E^*

(If E is column-vectors in \mathbb{R}^n , then E^* are row vectors in \mathbb{R}^n)

Let $B=B^*\succ 0$ be a linear operator from $E^*\to E$

DFO – setup

We'll work in some Euclidean space E; let its dual be E^*

(If E is column-vectors in \mathbb{R}^n , then E^* are row vectors in \mathbb{R}^n)

Let $B=B^*\succ 0$ be a linear operator from $E^*\to E$

We'll use the following pair of norms (dual to each other)

$$||x|| = \langle Bx, x \rangle^{1/2}, \quad x \in E,$$

 $||g||_* = \langle g, B^{-1}g \rangle^{1/2}, \quad g \in E^*.$

DFO - setup

We'll work in some Euclidean space E; let its dual be E^*

lacktriangledown (If E is column-vectors in \mathbb{R}^n , then E^* are row vectors in \mathbb{R}^n)

Let $B=B^*\succ 0$ be a linear operator from $E^*\to E$

We'll use the following pair of norms (dual to each other)

$$||x|| = \langle Bx, x \rangle^{1/2}, \quad x \in E,$$

 $||g||_* = \langle g, B^{-1}g \rangle^{1/2}, \quad g \in E^*.$

Function classes

DFO – setup

We'll work in some Euclidean space E; let its dual be E^*

(If E is column-vectors in \mathbb{R}^n , then E^* are row vectors in \mathbb{R}^n)

Let $B=B^*\succ 0$ be a linear operator from $E^*\to E$

We'll use the following pair of norms (dual to each other)

$$||x|| = \langle Bx, x \rangle^{1/2}, \quad x \in E,$$

 $||g||_* = \langle g, B^{-1}g \rangle^{1/2}, \quad g \in E^*.$

Function classes

- $f \in C^0_{L_0}(E) \colon |f(x) f(y)| \le L_0(f) ||x y||, \ x, y \in E$
- ▶ $f \in C^1_{L_1}(E)$: $\|\nabla f(x) \nabla f(y)\|_* \le L_1(f)\|x y\|$, $x, y \in E$ Equivalently:

$$|f(y) - f(y) - \langle \nabla f(x), y - x \rangle| \le \frac{1}{2} L_1(f) ||x - y||^2$$

Assumption: Let $f: E \to \mathbb{R}$. Assume at each $x \in E$, directional derivative of f exists in every direction.

Assumption: Let $f: E \to \mathbb{R}$. Assume at each $x \in E$, directional derivative of f exists in every direction.

Def. (Gaussian approximation.) Let $\mu \geq 0$, we define

$$f_{\mu}(x) := \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2}||u||^{2}} du.$$

Assumption: Let $f: E \to \mathbb{R}$. Assume at each $x \in E$, directional derivative of f exists in every direction.

Def. (Gaussian approximation.) Let $\mu \geq 0$, we define

$$f_{\mu}(x) := \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2}||u||^{2}} du.$$

Notes:

ightharpoonup Remember, we are using: $||u||^2 = \langle Bu, u \rangle$

 $ightharpoonup \kappa$ is the normalization constant $\kappa := \int_E e^{-\frac{1}{2}\|u\|^2} du$

Assumption: Let $f: E \to \mathbb{R}$. Assume at each $x \in E$, directional derivative of f exists in every direction.

Def. (Gaussian approximation.) Let $\mu \geq 0$, we define

$$f_{\mu}(x) := \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2}||u||^{2}} du.$$

Notes:

Remember, we are using: $||u||^2 = \langle Bu, u \rangle$

 \blacktriangleright κ is the normalization constant $\kappa := \int_E e^{-\frac{1}{2}\|u\|^2} du$

Key point: Smoothed function f_{μ} nicer than f(x)

If f is convex, then f_{μ} is also convex (nonneg weighted sum) $f(x) \leq f_{\mu}(x).$

If f is convex, then f_{μ} is also convex (nonneg weighted sum)

For $f(x) \leq f_{\mu}(x)$. Proof: Let $g \in \partial f(x)$, then

If f is convex, then f_{μ} is also convex (nonneg weighted sum)

For
$$f(x) \leq f_{\mu}(x)$$
. Proof: Let $g \in \partial f(x)$, then
$$f_{\mu}(x) = \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2}\|u\|^{2}} du$$

If f is convex, then f_{μ} is also convex (nonneg weighted sum)

$$f(x) \leq f_{\mu}(x). \ \, \begin{array}{ll} \textit{Proof:} \ \, \text{Let} \, \, g \in \partial f(x), \, \text{then} \\ \\ f_{\mu}(x) & = \quad \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2} \|u\|^{2}} du \\ \\ & \geq \quad \frac{1}{\kappa} \int_{E} \left[f(x) + \mu \langle g, \, u \rangle \right] e^{-\frac{1}{2} \|u\|^{2}} du \end{array}$$

If f is convex, then f_{μ} is also convex (nonneg weighted sum)

For
$$f(x) \leq f_{\mu}(x)$$
. Proof: Let $g \in \partial f(x)$, then
$$f_{\mu}(x) = \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2}\|u\|^{2}} du$$

$$\mu(x) = \frac{1}{\kappa} \int_E f(x + \mu u) e^{-\frac{1}{2} \|u\|^2} du$$

$$\geq \frac{1}{\kappa} \int_E \left[f(x) + \mu \langle g, u \rangle \right] e^{-\frac{1}{2} \|u\|^2} du$$

$$= f(x),$$

last line follows as $\frac{1}{\kappa} \int_E u e^{-\frac{1}{2}||u||^2} du = 0$ (mean-zero Gaussian)

If f is convex, then f_{μ} is also convex (nonneg weighted sum)

$$f(x) \leq f_{\mu}(x)$$
. Proof: Let $g \in \partial f(x)$, then

$$f_{\mu}(x) = \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2} ||u||^{2}} du$$

$$\geq \frac{1}{\kappa} \int_{E} [f(x) + \mu \langle g, u \rangle] e^{-\frac{1}{2} ||u||^{2}} du$$

$$= f(x),$$

last line follows as $\frac{1}{\kappa} \int_E u e^{-\frac{1}{2}||u||^2} du = 0$ (mean-zero Gaussian)

If
$$f \in C^0_{L_0}$$
, then $f_\mu \in C^0_{L_0}$ with $L_0(f_\mu) \le L_0(f)$.

If f is convex, then f_{μ} is also convex (nonneg weighted sum)

$$f(x) \leq f_{\mu}(x)$$
. Proof: Let $g \in \partial f(x)$, then

$$f_{\mu}(x) = \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2}||u||^{2}} du$$

$$\geq \frac{1}{\kappa} \int_{E} [f(x) + \mu \langle g, u \rangle] e^{-\frac{1}{2}||u||^{2}} du$$

$$= f(x),$$

last line follows as $\frac{1}{\kappa} \int_E u e^{-\frac{1}{2}||u||^2} du = 0$ (mean-zero Gaussian)

If
$$f \in C^0_{L_0}$$
, then $f_\mu \in C^0_{L_0}$ with $L_0(f_\mu) \leq L_0(f)$. Proof:

$$|f_{\mu}(x) - f_{\mu}(y)| \le \frac{1}{\kappa} \int_{E} |f(x + \mu u) - f(y + \mu u)| e^{-\frac{1}{2}||u||^{2}} du$$

If f is convex, then f_{μ} is also convex (nonneg weighted sum)

$$f(x) \leq f_{\mu}(x)$$
. Proof: Let $g \in \partial f(x)$, then

$$f_{\mu}(x) = \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2} ||u||^{2}} du$$

$$\geq \frac{1}{\kappa} \int_{E} [f(x) + \mu \langle g, u \rangle] e^{-\frac{1}{2} ||u||^{2}} du$$

$$= f(x),$$

last line follows as $\frac{1}{\kappa} \int_E u e^{-\frac{1}{2} \|u\|^2} du = 0$ (mean-zero Gaussian)

If
$$f \in C^0_{L_0}$$
, then $f_\mu \in C^0_{L_0}$ with $L_0(f_\mu) \leq L_0(f)$. Proof:

$$|f_{\mu}(x) - f_{\mu}(y)| \leq \frac{1}{\kappa} \int_{E} |f(x + \mu u) - f(y + \mu u)| e^{-\frac{1}{2}||u||^{2}} du$$

$$\leq L_{0}(f) ||x - y|| \frac{1}{\kappa} \int_{E} e^{-\frac{1}{2}||u||^{2}} du$$

If f is convex, then f_{μ} is also convex (nonneg weighted sum)

$$f(x) \leq f_{\mu}(x)$$
. Proof: Let $g \in \partial f(x)$, then

$$f_{\mu}(x) = \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2} ||u||^{2}} du$$

$$\geq \frac{1}{\kappa} \int_{E} [f(x) + \mu \langle g, u \rangle] e^{-\frac{1}{2} ||u||^{2}} du$$

$$= f(x),$$

last line follows as $\frac{1}{\kappa} \int_E u e^{-\frac{1}{2}\|u\|^2} du = 0$ (mean-zero Gaussian)

If
$$f \in C^0_{L_0}$$
, then $f_\mu \in C^0_{L_0}$ with $L_0(f_\mu) \leq L_0(f)$. Proof:

$$|f_{\mu}(x) - f_{\mu}(y)| \leq \frac{1}{\kappa} \int_{E} |f(x + \mu u) - f(y + \mu u)| e^{-\frac{1}{2}||u||^{2}} du$$

$$\leq L_{0}(f) ||x - y|| \frac{1}{\kappa} \int_{E} e^{-\frac{1}{2}||u||^{2}} du$$

$$= L_{0}(f) ||x - y||.$$

If f is convex, then f_{μ} is also convex (nonneg weighted sum)

For
$$f(x) \leq f_{\mu}(x)$$
. Proof: Let $g \in \partial f(x)$, then

$$f_{\mu}(x) = \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2} ||u||^{2}} du$$

$$\geq \frac{1}{\kappa} \int_{E} [f(x) + \mu \langle g, u \rangle] e^{-\frac{1}{2} ||u||^{2}} du$$

$$= f(x),$$

last line follows as $\frac{1}{\kappa} \int_E u e^{-\frac{1}{2} \|u\|^2} du = 0$ (mean-zero Gaussian)

If
$$f\in C^0_{L_0}$$
, then $f_\mu\in C^0_{L_0}$ with $L_0(f_\mu)\leq L_0(f)$. Proof:

$$|f_{\mu}(x) - f_{\mu}(y)| \leq \frac{1}{\kappa} \int_{E} |f(x + \mu u) - f(y + \mu u)|e^{-\frac{1}{2}||u||^{2}} du$$

$$\leq L_{0}(f)||x - y|| \frac{1}{\kappa} \int_{E} e^{-\frac{1}{2}||u||^{2}} du$$

$$= L_{0}(f)||x - y||.$$

Similarly, prove that

$$\|\nabla f_{\mu}(x) - \nabla f_{\mu}(y)\|_{*} \le L_{1}(f)\|x - y\|, \quad x, y \in E.$$

We saw: $f(x) \leq f_{\mu}(x)$. What about $f_{\mu}(x) \leq f(x) + ?$

We saw: $f(x) \leq f_{\mu}(x)$. What about $f_{\mu}(x) \leq f(x) + ?$

Seek bounds on

$$\theta(p) := \frac{1}{\kappa} \int_E ||u||^p e^{-\frac{1}{2}||u||^2} du.$$

We saw: $f(x) \leq f_{\mu}(x)$. What about $f_{\mu}(x) \leq f(x) + ?$

Seek bounds on

$$\theta(p) := \frac{1}{\kappa} \int_E ||u||^p e^{-\frac{1}{2}||u||^2} du.$$

Lemma Let $p \ge 0$. The function $\log \theta(p)$ is convex.

Proof: Simple exercise.

We saw: $f(x) \leq f_{\mu}(x)$. What about $f_{\mu}(x) \leq f(x) + ?$

Seek bounds on

$$\theta(p) := \frac{1}{\kappa} \int_E \|u\|^p e^{-\frac{1}{2}\|u\|^2} du.$$

Lemma Let $p \ge 0$. The function $\log \theta(p)$ is convex.

Proof: Simple exercise.

Two easy cases: p = 0 and p = 2

$$p = 0, \theta(0) = \frac{1}{\kappa} \int_{E} e^{-\frac{1}{2}||u||^{2}} du = 1$$

$$p = 2, \theta(2) = \frac{1}{\kappa} \int_{E} ||u||^{2} e^{-\frac{1}{2}||u||^{2}} du = n.$$

Proof: $\log \int e^{-\frac{1}{2}\|u\|^2}du = \log \int e^{-\frac{1}{2}\langle Bu,u\rangle}du = \frac{1}{2}(n\log(2\pi) - \log\det(B)).$ Differentiate both sides wrt B to obtain, $\frac{1}{\kappa}\int_E uu^*e^{-\frac{1}{2}\|u\|^2}du = B^{-1}.$ Now multiply by B and take trace.

Lemma For $p \in [0, 2]$, we have

$$\theta(p) \le n^{p/2}.$$

For $p \ge 2$ we have two-sided bounds

$$n^{p/2} \le \theta(p) \le (p+n)^{p/2}.$$

Lemma For $p \in [0, 2]$, we have

$$\theta(p) \le n^{p/2}.$$

For $p \ge 2$ we have two-sided bounds

$$n^{p/2} \le \theta(p) \le (p+n)^{p/2}.$$

Proof:

▶ Say, $p \in [0,2]$. Since $\log \theta(p)$ is convex, write $p = (1-\alpha) \cdot 0 + \alpha \cdot 2$

Lemma For $p \in [0, 2]$, we have

$$\theta(p) \le n^{p/2}.$$

For p > 2 we have two-sided bounds

$$n^{p/2} \le \theta(p) \le (p+n)^{p/2}.$$

Proof:

- ▶ Say, $p \in [0,2]$. Since $\log \theta(p)$ is convex, write $p = (1-\alpha) \cdot 0 + \alpha \cdot 2$
- ▶ Thus, $\log \theta(p) \le (1 \alpha) \log \theta(0) + \alpha \log \theta(2)$

Lemma For $p \in [0, 2]$, we have

$$\theta(p) \le n^{p/2}.$$

For p > 2 we have two-sided bounds

$$n^{p/2} \le \theta(p) \le (p+n)^{p/2}.$$

Proof:

- ▶ Say, $p \in [0,2]$. Since $\log \theta(p)$ is convex, write $p = (1-\alpha) \cdot 0 + \alpha \cdot 2$
- ▶ Thus, $\log \theta(p) \le (1 \alpha) \log \theta(0) + \alpha \log \theta(2)$
- ▶ So we get: $\log \theta(p) \le \frac{p}{2} \log n$

Lemma For $p \in [0, 2]$, we have

$$\theta(p) \le n^{p/2}.$$

For p > 2 we have two-sided bounds

$$n^{p/2} \le \theta(p) \le (p+n)^{p/2}.$$

Proof:

- ▶ Say, $p \in [0,2]$. Since $\log \theta(p)$ is convex, write $p = (1-\alpha) \cdot 0 + \alpha \cdot 2$
- ► Thus, $\log \theta(p) \le (1 \alpha) \log \theta(0) + \alpha \log \theta(2)$
- ▶ So we get: $\log \theta(p) \le \frac{p}{2} \log n$
- ▶ The other case, $p \ge 2$ requires some more work.

Theorem A. If $f \in C_{L_0}^0$ then

$$|f_{\mu}(x) - f(x)| \le \mu L_0(f)\sqrt{n}, \quad x \in E$$

Theorem A. If $f \in C_{L_0}^0$ then

$$|f_{\mu}(x) - f(x)| \le \mu L_0(f)\sqrt{n}, \quad x \in E$$

Proof: We have $f_{\mu}(x)-f(x)=rac{1}{\kappa}\int_{E}[f(x+\mu u)-f(x)]e^{-rac{1}{2}\|u\|^{2}}du$

Theorem A. If $f \in C_{L_0}^0$ then

$$|f_{\mu}(x) - f(x)| \le \mu L_0(f)\sqrt{n}, \quad x \in E$$

Proof: We have $f_{\mu}(x) - f(x) = \frac{1}{\kappa} \int_{E} [f(x + \mu u) - f(x)] e^{-\frac{1}{2}||u||^{2}} du$

$$|f_{\mu}(x) - f(x)| \le \frac{1}{\kappa} \int_{E} [f(x + \mu u) - f(x)] e^{-\frac{1}{2}||u||^{2}} du$$

Theorem A. If $f \in C_{L_0}^0$ then

$$|f_{\mu}(x) - f(x)| \le \mu L_0(f)\sqrt{n}, \quad x \in E$$

Proof: We have $f_{\mu}(x) - f(x) = \frac{1}{\kappa} \int_{E} [f(x + \mu u) - f(x)] e^{-\frac{1}{2}||u||^{2}} du$

$$|f_{\mu}(x) - f(x)| \leq \frac{1}{\kappa} \int_{E} [f(x + \mu u) - f(x)] e^{-\frac{1}{2}||u||^{2}} du$$

$$\leq \frac{\mu L_{0}(f)}{\kappa} \int_{E} ||u|| e^{-\frac{1}{2}||u||^{2}} du$$

Theorem A. If $f \in C_{L_0}^0$ then

$$|f_{\mu}(x) - f(x)| \le \mu L_0(f)\sqrt{n}, \quad x \in E$$

Proof: We have $f_{\mu}(x) - f(x) = \frac{1}{\kappa} \int_{E} [f(x + \mu u) - f(x)] e^{-\frac{1}{2}||u||^{2}} du$

$$|f_{\mu}(x) - f(x)| \leq \frac{1}{\kappa} \int_{E} [f(x + \mu u) - f(x)] e^{-\frac{1}{2}||u||^{2}} du$$

$$\leq \frac{\mu L_{0}(f)}{\kappa} \int_{E} ||u|| e^{-\frac{1}{2}||u||^{2}} du$$

$$\leq \mu L_{0}(f) \sqrt{n}.$$

Theorem B. If $f \in C^1_{L_1}$ then

$$|f_{\mu}(x) - f(x)| \le \frac{\mu^2}{2} L_1(f)n, \quad x \in E.$$

Theorem B. If $f \in C^1_{L_1}$ then

$$|f_{\mu}(x) - f(x)| \le \frac{\mu^2}{2} L_1(f) n, \quad x \in E.$$

Proof: If $f \in C^1_{L_1}$, then

$$f_{\mu}(x) - f(x) = \frac{1}{\kappa} \int_{E} [f(x + \mu u) - f(x) - \mu \langle \nabla f(x), u \rangle] e^{-\frac{1}{2} ||u||^{2}} du$$

Theorem B. If $f \in C^1_{L_1}$ then

$$|f_{\mu}(x) - f(x)| \le \frac{\mu^2}{2} L_1(f) n, \quad x \in E.$$

Proof: If $f \in C^1_{L_1}$, then

$$f_{\mu}(x) - f(x) = \frac{1}{\kappa} \int_{E} [f(x + \mu u) - f(x) - \mu \langle \nabla f(x), u \rangle] e^{-\frac{1}{2} ||u||^{2}} du$$

$$|f_{\mu}(x) - f(x)| \leq \frac{\mu^{2} L_{1}(f)}{2\kappa} \int_{E} ||u||^{2} e^{-\frac{1}{2} ||u||^{2}} du$$

Lipschitz properties of f_{μ}

Theorem B. If $f \in C^1_{L_1}$ then

$$|f_{\mu}(x) - f(x)| \le \frac{\mu^2}{2} L_1(f) n, \quad x \in E.$$

Proof: If $f \in C^1_{L_1}$, then

$$f_{\mu}(x) - f(x) = \frac{1}{\kappa} \int_{E} [f(x + \mu u) - f(x) - \mu \langle \nabla f(x), u \rangle] e^{-\frac{1}{2} ||u||^{2}} du$$

$$|f_{\mu}(x) - f(x)| \leq \frac{\mu^{2} L_{1}(f)}{2\kappa} \int_{E} ||u||^{2} e^{-\frac{1}{2} ||u||^{2}} du$$

$$= \frac{\mu^{2} L_{1}(f)}{2} n.$$

Lemma If $f \in C^0_{L_0}$, then $f_{\mu} \in C^1_{L_1}$.

Lemma If
$$f \in C^0_{L_0}$$
, then $f_{\mu} \in C^1_{L_1}$.

► This lemma justifies the name "smoothing"

Lemma If
$$f \in C^0_{L_0}$$
, then $f_{\mu} \in C^1_{L_1}$.

► This lemma justifies the name "smoothing"

Proof: We show that $f_{\mu} \in C^1_{L_1}$ with

$$L_1(f_\mu) = \frac{2\sqrt{n}}{\mu} L_0(f).$$

Lemma If
$$f \in C^0_{L_0}$$
, then $f_{\mu} \in C^1_{L_1}$.

▶ This lemma justifies the name "smoothing"

Proof: We show that $f_{\mu} \in C^1_{L_1}$ with

$$L_1(f_\mu) = \frac{2\sqrt{n}}{\mu} L_0(f).$$

Lemma If
$$f \in C^0_{L_0}$$
, then $f_{\mu} \in C^1_{L_1}$.

► This lemma justifies the name "smoothing"

Proof: We show that $f_{\mu} \in C^1_{L_1}$ with

$$L_1(f_\mu) = \frac{2\sqrt{n}}{\mu} L_0(f).$$

$$f_{\mu}(x) = \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2}||u||^{2}} du,$$

Lemma If
$$f \in C^0_{L_0}$$
, then $f_{\mu} \in C^1_{L_1}$.

► This lemma justifies the name "smoothing"

Proof: We show that $f_{\mu} \in C_{L_1}^1$ with

$$L_1(f_\mu) = \frac{2\sqrt{n}}{\mu} L_0(f).$$

$$f_{\mu}(x) = \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2} \|u\|^{2}} du,$$

$$f_{\mu}(x) = \frac{1}{\kappa \mu^{n}} \int_{E} f(y) e^{-\frac{1}{2\mu^{2}} \|y - x\|^{2}} dy, \quad (y = x + (\mu I)u)$$

Lemma If
$$f \in C^0_{L_0}$$
, then $f_{\mu} \in C^1_{L_1}$.

► This lemma justifies the name "smoothing"

Proof: We show that $f_{\mu} \in C_{L_{*}}^{1}$ with

$$L_1(f_\mu) = \frac{2\sqrt{n}}{\mu} L_0(f).$$

$$f_{\mu}(x) = \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2} ||u||^{2}} du,$$

$$f_{\mu}(x) = \frac{1}{\kappa \mu^{n}} \int_{E} f(y) e^{-\frac{1}{2\mu^{2}} ||y - x||^{2}} dy, \quad (y = x + (\mu I)u)$$

$$\nabla f_{\mu}(x) = \frac{1}{\mu^{n} \kappa} \int_{E} f(y) e^{-\frac{1}{2\mu^{2}} ||y - x||^{2}} \frac{1}{\mu^{2}} B(y - x) dy$$

Lemma If $f \in C^0_{L_0}$, then $f_{\mu} \in C^1_{L_1}$.

▶ This lemma justifies the name "smoothing"

Proof: We show that $f_{\mu} \in C_{L_{*}}^{1}$ with

$$L_1(f_\mu) = \frac{2\sqrt{n}}{\mu} L_0(f).$$

$$f_{\mu}(x) = \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2} \|u\|^{2}} du,$$

$$f_{\mu}(x) = \frac{1}{\kappa \mu^{n}} \int_{E} f(y) e^{-\frac{1}{2\mu^{2}} \|y - x\|^{2}} dy, \quad (y = x + (\mu I)u)$$

$$\nabla f_{\mu}(x) = \frac{1}{\mu^{n} \kappa} \int_{E} f(y) e^{-\frac{1}{2\mu^{2}} \|y - x\|^{2}} \frac{1}{\mu^{2}} B(y - x) dy$$

$$= \frac{1}{u \kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2} \|u\|^{2}} Bu du$$

Lemma If $f \in C^0_{L_0}$, then $f_{\mu} \in C^1_{L_1}$.

► This lemma justifies the name "smoothing"

Proof: We show that $f_{\mu} \in C_{L_{*}}^{1}$ with

$$L_1(f_\mu) = \frac{2\sqrt{n}}{\mu} L_0(f).$$

$$f_{\mu}(x) = \frac{1}{\kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2} \|u\|^{2}} du,$$

$$f_{\mu}(x) = \frac{1}{\kappa \mu^{n}} \int_{E} f(y) e^{-\frac{1}{2\mu^{2}} \|y - x\|^{2}} dy, \quad (y = x + (\mu I)u)$$

$$\nabla f_{\mu}(x) = \frac{1}{\mu^{n} \kappa} \int_{E} f(y) e^{-\frac{1}{2\mu^{2}} \|y - x\|^{2}} \frac{1}{\mu^{2}} B(y - x) dy$$

$$= \frac{1}{\mu \kappa} \int_{E} f(x + \mu u) e^{-\frac{1}{2} \|u\|^{2}} Bu du$$

$$= \frac{1}{\kappa} \int_{E} \frac{f(x + \mu u) - f(x)}{\mu} e^{-\frac{1}{2} \|u\|^{2}} Bu du.$$

We show that $f_{\mu} \in C^1_{L_1}$ with

$$L_1(f_\mu) = \frac{2\sqrt{n}}{\mu} L_0(f).$$

We show that $f_{\mu} \in C^1_{L_1}$ with

$$L_1(f_\mu) = \frac{2\sqrt{n}}{\mu} L_0(f).$$

Now, let's get $L_1(f_\mu)$ (write $dP(u) = e^{-\frac{1}{2}\|u\|^2}Bu\,du$):

We show that $f_{\mu} \in C^1_{L_1}$ with

$$L_1(f_{\mu}) = \frac{2\sqrt{n}}{\mu} L_0(f).$$

Now, let's get $L_1(f_\mu)$ (write $dP(u) = e^{-\frac{1}{2}\|u\|^2}Bu\,du$):

$$\|\nabla f_{\mu}(x) - \nabla f_{\mu}(y)\|_{*} = \frac{1}{\kappa} \int_{E} \left[\frac{f(x+\mu u) - f(x) + f(y) - f(y+\mu u)}{\mu} \right] dP(u)$$

We show that $f_{\mu} \in C^1_{L_1}$ with

$$L_1(f_\mu) = \frac{2\sqrt{n}}{\mu} L_0(f).$$

Now, let's get $L_1(f_\mu)$ (write $dP(u) = e^{-\frac{1}{2}\|u\|^2} Bu \, du$):

$$\|\nabla f_{\mu}(x) - \nabla f_{\mu}(y)\|_{*} = \frac{1}{\kappa} \int_{E} \left[\frac{f(x+\mu u) - f(x) + f(y) - f(y+\mu u)}{\mu} \right] dP(u)$$

$$\leq \frac{1}{\mu \kappa} \int_{E} |f(x+\mu u) - f(x) + f(y) - f(y+\mu u)| \|Bu\|_{2} e^{-\frac{1}{2}\|u\|^{2}} du$$

We show that $f_{\mu} \in C^1_{L_1}$ with

$$L_1(f_\mu) = \frac{2\sqrt{n}}{\mu} L_0(f).$$

Now, let's get $L_1(f_\mu)$ (write $dP(u) = e^{-\frac{1}{2}\|u\|^2} Bu \, du$):

$$\|\nabla f_{\mu}(x) - \nabla f_{\mu}(y)\|_{*} = \frac{1}{\kappa} \int_{E} \left[\frac{f(x+\mu u) - f(x) + f(y) - f(y+\mu u)}{\mu}\right] dP(u)$$

$$\leq \frac{1}{\mu\kappa} \int_E |f(x+\mu u) - f(x) + f(y) - f(y+\mu u)| ||Bu||_2 e^{-\frac{1}{2}||u||^2} du$$

$$\leq \frac{2L_0(f)}{\kappa u} \int_E \|u\| e^{-\frac{1}{2}\|u\|^2} du$$

$$\leq \frac{2L_0(f)}{\mu}\sqrt{n}.$$

Let $u \sim \mathcal{N}(0, B^{-1})$. For $\mu \geq 0$, we define gradient-free oracles

Sample
$$u \in E$$
 and return $g_{\mu}(x) = \left[\frac{f(x+\mu u) - f(x)}{\mu}\right] B u$

Let $u \sim \mathcal{N}(0, B^{-1})$. For $\mu \geq 0$, we define gradient-free oracles

Sample
$$u \in E$$
 and return $g_{\mu}(x) = \left[\frac{f(x + \mu u) - f(x)}{\mu}\right] B u$

$$\hat{g}_{\mu}(x) = \left[\frac{f(x+\mu u) - f(x-\mu u)}{2\mu}\right] Bu$$

Let $u \sim \mathcal{N}(0, B^{-1})$. For $\mu \geq 0$, we define gradient-free oracles

Sample
$$u \in E$$
 and return $g_{\mu}(x) = \left[\frac{f(x + \mu u) - f(x)}{\mu}\right] Bu$

$$\widehat{g}_{\mu}(x) = \left[\frac{f(x+\mu u) - f(x-\mu u)}{2\mu}\right] Bu$$

More generally: $g_0(x) = f'(x, u) \cdot Bu$

Note:

$$f'(x,u) = \lim_{\mu \downarrow 0} \frac{f(x+\mu u) - f(x)}{\mu}$$

Let $u \sim \mathcal{N}(0, B^{-1})$. For $\mu \geq 0$, we define gradient-free oracles

Sample
$$u\in E$$
 and return $g_{\mu}(x)=\left[\frac{f(x+\mu u)-f(x)}{\mu}\right]Bu$
$$\hat{g}_{\mu}(x)=\left[\frac{f(x+\mu u)-f(x-\mu u)}{2\mu}\right]Bu$$

More generally: $g_0(x) = f'(x, u) \cdot Bu$

Note:

$$f'(x,u) = \lim_{\mu \downarrow 0} \frac{f(x+\mu u) - f(x)}{\mu}$$

$$\nabla f_0(x) = \frac{1}{\kappa} \int_E f'(x,u) e^{-\frac{1}{2}||u||^2} Bu \, du.$$

Let $u \sim \mathcal{N}(0, B^{-1})$. For $\mu \geq 0$, we define gradient-free oracles

Sample
$$u \in E$$
 and return $g_{\mu}(x) = \left[\frac{f(x+\mu u) - f(x)}{\mu}\right] Bu$
$$\hat{g}_{\mu}(x) = \left[\frac{f(x+\mu u) - f(x-\mu u)}{2\mu}\right] Bu$$

More generally: $g_0(x) = f'(x, u) \cdot Bu$

Note:

$$f'(x,u) = \lim_{\mu \downarrow 0} \frac{f(x+\mu u) - f(x)}{\mu}$$

$$\nabla f_0(x) = \frac{1}{\kappa} \int_E f'(x,u) e^{-\frac{1}{2}||u||^2} Bu \, du.$$

Exercise: If f is differentiable at x, show that $\nabla f_0(x) = \nabla f(x)$

 $\min_{x \in \mathcal{X}} f(x)$

$$\min_{x \in \mathcal{X}} f(x)$$

Method: \mathcal{R}_{μ}

• Choose $x_0 \in \mathcal{X}$ (If $\mu = 0$, x_0 must be unconstrained min!)

$$\min_{x \in \mathcal{X}} f(x)$$

Method: \mathcal{R}_{μ}

- Choose $x_0 \in \mathcal{X}$ (If $\mu = 0$, x_0 must be unconstrained min!)
- At iteration $k \ge 0$:
 - ightharpoonup Generate $u_k \in E$ and compute $g_{\mu}(x_k)$

$$\min_{x \in \mathcal{X}} f(x)$$

Method: \mathcal{R}_{μ}

- Choose $x_0 \in \mathcal{X}$ (If $\mu = 0$, x_0 must be unconstrained min!)
- At iteration $k \ge 0$:
 - \rightarrow Generate $u_k \in E$ and compute $g_{\mu}(x_k)$
 - $\Rightarrow \text{ Update } x_{k+1} = P_{\mathcal{X}}(x_k h_k B^{-1} g_{\mu}(x_k))$

▶ Method generates a random sequence $\{x_k\}$.

- ▶ Method generates a random sequence $\{x_k\}$.
- lacktriangle Denote collection of random variables up to iteration k as

$$\mathcal{U}_k := (u_0, u_1, \dots, u_k),$$

where u_k are i.i.d.

- ▶ Method generates a random sequence $\{x_k\}$.
- \blacktriangleright Denote collection of random variables up to iteration k as

$$\mathcal{U}_k := (u_0, u_1, \dots, u_k),$$

where u_k are i.i.d.

▶ Let $\phi_0 := f(x_0)$ and $\phi_k := E_{\mathcal{U}_{k-1}}[f(x_k)]$, for $k \ge 1$

- ▶ Method generates a random sequence $\{x_k\}$.
- \blacktriangleright Denote collection of random variables up to iteration k as

$$\mathcal{U}_k := (u_0, u_1, \dots, u_k),$$

where u_k are i.i.d.

▶ Let $\phi_0 := f(x_0)$ and $\phi_k := E_{\mathcal{U}_{k-1}}[f(x_k)]$, for $k \ge 1$

Theorem Let $\{x_k\}$ be generated by \mathcal{R}_0 . Then, for $T \geq 0$

$$\sum_{k=0}^{T} h_k(\phi_k - f^*) \le \frac{1}{2} ||x_0 - x^*||^2 + \frac{(n+4)L_0^2(f)}{2} \sum_{k=0}^{T} h_k^2.$$

Now a subgradient type stepsize selection

Define $S_T := \sum_{k=0}^T h_k$.

Set $\hat{x}_T := \operatorname{argmin}_{0 < k < T} f(x_k)$

$$\square$$
 Define $S_T := \sum_{k=0}^T h_k$.

Set
$$\hat{x}_T := \operatorname{argmin}_{0 < k < T} f(x_k)$$

Theorem With above choice, and assuming $||x_0 - x^*|| \le R$, we have

$$E_{\mathcal{U}_{T-1}}[f(\hat{x}_T)] - f^* \le L_0(f)R(n+4)^{1/2}\frac{1}{\sqrt{T+1}}$$

Define
$$S_T := \sum_{k=0}^T h_k$$
.

Set
$$\hat{x}_T := \operatorname{argmin}_{0 \le k \le T} f(x_k)$$

Theorem With above choice, and assuming $||x_0 - x^*|| \le R$, we have

$$E_{\mathcal{U}_{T-1}}[f(\hat{x}_T)] - f^* \le L_0(f)R(n+4)^{1/2}\frac{1}{\sqrt{T+1}}$$

Proof: Let us show this $O(1/\sqrt{T})$ result.

 \square Define $S_T := \sum_{k=0}^T h_k$.

Set $\hat{x}_T := \operatorname{argmin}_{0 < k < T} f(x_k)$

Theorem With above choice, and assuming $||x_0 - x^*|| \le R$, we have

$$E_{\mathcal{U}_{T-1}}[f(\hat{x}_T)] - f^* \le L_0(f)R(n+4)^{1/2}\frac{1}{\sqrt{T+1}}$$

Proof: Let us show this $O(1/\sqrt{T})$ result.

$$f(\hat{x}_T) - f^* \le \frac{1}{S_T} \sum_{k=0}^T h_k (f(x_k) - f^*)$$

Define $S_T := \sum_{k=0}^T h_k$.

Set $\hat{x}_T := \operatorname{argmin}_{0 \le k \le T} f(x_k)$

Theorem With above choice, and assuming $||x_0 - x^*|| \le R$, we have

$$E_{\mathcal{U}_{T-1}}[f(\hat{x}_T)] - f^* \le L_0(f)R(n+4)^{1/2}\frac{1}{\sqrt{T+1}}$$

Proof: Let us show this $O(1/\sqrt{T})$ result.

$$f(\hat{x}_T) - f^* \leq \frac{1}{S_T} \sum_{k=0}^T h_k(f(x_k) - f^*)$$

$$E_{\mathcal{U}_{T-1}}[f(\hat{x}_T)] - f^* \leq E_{\mathcal{U}_{T-1}} \left[\frac{1}{S_T} \sum_{k=0}^T h_k(f(x_k) - f^*) \right]$$

$$\leq \frac{1}{S_T} \left[\frac{1}{2} ||x_0 - x^*||^2 + \frac{n+4}{2} L_0^2(f) \sum_{k=0}^T h_k^2 \right]$$

Now, minimize over h_k (assuming fixed T)

Fixed step-size

$$h_k = \frac{R}{\sqrt{n+4}L_0(f)\sqrt{T+1}}, \quad k = 0, \dots, T.$$

Which yields the desired bound.

Fixed step-size

$$h_k = \frac{R}{\sqrt{n+4}L_0(f)\sqrt{T+1}}, \quad k = 0, \dots, T.$$

Which yields the desired bound.

Corollary.
$$\mathcal{R}_0$$
 yields $E_{\mathcal{U}_{T-1}}[f(\hat{x}_T)] - f^* \leq \epsilon$ in

$$\frac{(n+4)L_0^2(f)R^2}{\epsilon^2} = O(1/\epsilon^2),$$

iterations.

▶ Theorem relies on being able to bound $E_u[\|g_0(x)\|_*^2]$. For convex f, this can be shown to be bounded by $(n+4)[\|\nabla f_0(x)\|_*^2 + nD^2(x)]$, where diameter $D(x) := \text{diam}\partial f(x)$

For $\mu>0$, we run method \mathcal{R}_{μ} for which we have

For $\mu > 0$, we run method \mathcal{R}_{μ} for which we have

Theorem Select μ and h_k as follows

$$\mu = \frac{\epsilon}{2L_0(f)\sqrt{n}}, \quad h_k = \frac{R}{(n+4)L_0(f)\sqrt{T+1}}, \quad k = 0, \dots, T.$$

Then, we have $E_{\mathcal{U}_{T-1}}[f(\hat{x}_T)] - f^* \leq \epsilon$, with

$$T = \frac{4(n+4)^2 L_0^2(f) R^2}{\epsilon^2}.$$

 $^{\square}$ Note: Dependency on dimension n is now quadratic.

$$f(x) = E_{\xi}[F(x,\xi)] = \int_{\Xi} F(x,\xi) dP(\xi)$$

Assume $f \in C^0_{L_0}$ is convex (weaker than all: $F(x,\xi)$ being convex)

$$f(x) = E_{\xi}[F(x,\xi)] = \int_{\Xi} F(x,\xi) dP(\xi)$$

- Assume $f \in C^0_{L_0}$ is convex (weaker than all: $F(x,\xi)$ being convex)
- ▶ Replace our DF oracles by *DF-stochastic oracles*:

$$f(x) = E_{\xi}[F(x,\xi)] = \int_{\Xi} F(x,\xi) dP(\xi)$$

- Assume $f \in C^0_{L_0}$ is convex (weaker than all: $F(x,\xi)$ being convex)
- ▶ Replace our DF oracles by *DF-stochastic oracles*:

$$\begin{array}{c} \text{Sample } u \in E, \, \xi \in \Xi, \, \text{return} \\ s_{\mu}(x) = \left[\frac{F(x + \mu u, \xi) - F(x, \xi)}{\mu}\right] Bu \end{array}$$

$$f(x) = E_{\xi}[F(x,\xi)] = \int_{\Xi} F(x,\xi) dP(\xi)$$

- Assume $f \in C^0_{L_0}$ is convex (weaker than all: $F(x,\xi)$ being convex)
- ▶ Replace our DF oracles by *DF-stochastic oracles*:

Sample
$$u \in E$$
, $\xi \in \Xi$, return
$$s_{\mu}(x) = \left[\frac{F(x + \mu u, \xi) - F(x, \xi)}{\mu}\right] B u$$
 Sample $u \in E$, $\xi \in \Xi$, return
$$\hat{s}_{\mu}(x) = \left[\frac{F(x + \mu u, \xi) - F(x - \mu u, \xi)}{2\mu}\right] B u$$

$$f(x) = E_{\xi}[F(x,\xi)] = \int_{\Xi} F(x,\xi) dP(\xi)$$

- Assume $f \in C^0_{L_0}$ is convex (weaker than all: $F(x,\xi)$ being convex)
- ▶ Replace our DF oracles by *DF-stochastic oracles*:

Sample
$$u \in E$$
, $\xi \in \Xi$, return
$$s_{\mu}(x) = \left[\frac{F(x + \mu u, \xi) - F(x, \xi)}{\mu}\right] Bu$$

Sample
$$u \in E$$
, $\xi \in \Xi$, return
$$\hat{s}_{\mu}(x) = \left\lceil \frac{F(x + \mu u, \xi) - F(x - \mu u, \xi)}{2\mu} \right\rceil Bu$$

Sample
$$u \in E$$
, $\xi \in \Xi$, return $s_0(x) = F_x'(x, \xi; u) \cdot Bu$

$$f(x) = E_{\xi}[F(x,\xi)] = \int_{\Xi} F(x,\xi) dP(\xi)$$

- Assume $f \in C^0_{L_0}$ is convex (weaker than all: $F(x,\xi)$ being convex)
- ▶ Replace our DF oracles by *DF-stochastic oracles*:

Sample
$$u \in E$$
, $\xi \in \Xi$, return
$$s_{\mu}(x) = \left[\frac{F(x + \mu u, \xi) - F(x, \xi)}{\mu}\right] Bu$$

Sample
$$u \in E$$
, $\xi \in \Xi$, return
$$\hat{s}_{\mu}(x) = \left\lceil \frac{F(x + \mu u, \xi) - F(x - \mu u, \xi)}{2\mu} \right\rceil Bu$$

Sample
$$u \in E$$
, $\xi \in \Xi$, return $s_0(x) = F'_x(x, \xi; u) \cdot Bu$

Here also one gets $O(n^2/\epsilon^2)$ for $\mu > 0$

References

- D. P. Bertsekas. Stochastic Optimization Problems with Nondifferentiable Cost Functionals, (1973)
- Yu. Nesterov. Random gradient-free minimization of convex functions. (2011). (all proofs are from this reference).