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Interior point methods

v

Let f: R™ — R be twice continuously differentiable
Newton method: z; + x} — [f”(xk)]_lf’(xk)

How to solve general convex problem

min f(z)
st. fi(x) <0, Az =hb.

Assume finite p* attained; strict feasibility (= strong duality)

Interior Point Methods build on the Newton method to
ultimately tackle the above convex optimization problem

N
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min{f(z) |z € X'}

X C R"”, closed, convex set with nonempty interior
Equip X with an internal penalty or barrier function F

F'is smooth, strictly convex on int(X'); F'(x) — +oo for every
sequence {x} C int(X') that converges to a point € 0X

Barrier family of objective functions
Fy(x) :=tfo(z) + F(x),
where t > 0 is the penalty parameter.

Say X is bounded, then every F;(z) attains its minimum in
int(X); call this *(t) (unique since F'(x) is strictly convex)
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min{f(z) |z € X'}

X C R"”, closed, convex set with nonempty interior
Equip X with an internal penalty or barrier function F

F'is smooth, strictly convex on int(X'); F'(x) — +oo for every
sequence {x} C int(X') that converges to a point € 0X

Barrier family of objective functions

Fu() = tfole) + F(2),
where t > 0 is the penalty parameter.
Say X is bounded, then every F;(z) attains its minimum in
int(X); call this *(t) (unique since F'(x) is strictly convex)
Let central path be {z*(¢) | t > 0};
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Barrier functions

v

min{f(z) |z € X'}

X C R"”, closed, convex set with nonempty interior
Equip X with an internal penalty or barrier function F

F'is smooth, strictly convex on int(X'); F'(x) — +oo for every
sequence {x} C int(X') that converges to a point € 0X

Barrier family of objective functions

Fy() = tfo(x) + F(x),
where t > 0 is the penalty parameter.
Say X is bounded, then every F;(z) attains its minimum in
int(X); call this *(t) (unique since F'(x) is strictly convex)
Let central path be {z*(¢) | t > 0}; as t — oo, central path
converges to solution of original problem.
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Path-following pseudo code

Suppose we have t;, > 0 and some zj € int(X') such that z
is “close” to x*(tx)
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Suppose we have t;, > 0 and some zj € int(X') such that z
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Repeat the following updates until needed:
Replace penalty t; by a larger value ;41
Run some method to minimize F},  , “warm-starting” at zj
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New pair (tx41,2k+1) is close to the “path”
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Path-following pseudo code

Suppose we have t;, > 0 and some zj € int(X') such that z
is “close” to x*(tx)
Repeat the following updates until needed:
Replace penalty t; by a larger value ;41
Run some method to minimize F},  , “warm-starting” at zj
until a point xp41 “close” to x*(tg41) is found
New pair (tx41,2k+1) is close to the “path”

Fairly old idea, 60s or even earlier!

» Any unconstrained method to solve for xj;
» What is complexity of such a scheme?
» Numerical problems when t; becomes large; breakdown?

» Standard theory of unconstrained minimization predicts
slowdown as t; becomes larger ...
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Better barriers?

Renegar (1988) and Gonzaga (1989) introduced improved
path-following methods for linear programming

In particular, for linear-programming with feasible set
X:{x|a?x§bi,1§i§m},
they used the logarithmic barrier
F(z):=— ZZ log(b; — al'z).
And with this F'(x), they showed a Newton-method based
path-following can be made polynomial time.
Breakthrough result, though ad-hoc analysis of NM

@ Shortly thereafter, Nesterov realized what intrinsic
properties of the log-barrier made it work!
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‘ Consider f(x) and ¢(y) = f(Ay), where A is invertible ‘

Lemma Let {x}} be generated by Newton method for f:
T = ap — [[(@n)] 7 f (@) k>0,
Let {yx} be seq. generated by NM for ¢:

Ui =y — [0 ()] 7' (ue),

with Ayg = zg. Then, Ay, = xy, for all k£ > 0.

25



Newton method — affine invariance

‘ Consider f(x) and ¢(y) = f(Ay), where A is invertible ‘

Lemma Let {x}} be generated by Newton method for f:
T = ap — [[(@n)] 7 f (@) k>0,
Let {yx} be seq. generated by NM for ¢:

Y1 = Yk — [¢" ()] ' ¢ (k)

with Ayg = zg. Then, Ay, = xy, for all k£ > 0.

Newton method remains same—strong contrast to gradient method!
Stopping condition:

(U (@) f (r), f(an)) <€

independent of choice of basis A!
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Newton method — local convergence

Assumptions
e Lipschitz Hessian: ||V2f(z) — V2f(y)| < M|z — y||

e Local strong convexity: There exists a local minimum z* with
Vif(*) = pul, >0

e Locality: Starting point g “close enough” to z*

Theorem Suppose z( satisfies

2u

3M’

Then, ||z — z*|| < r, Vk and the NM converges quadratically

|lxo — ™| <r:=

M||zy, — 2*||?
p— Ml —2*)

k
— <
lois — 'l < o




Newton method — local convergence

What’s wrong / missing?

9/25



Newton method — local convergence

What’s wrong / missing?

» Convergence analysis depends on y, and M

/25



Newton method — local convergence

What’s wrong / missing?

» Convergence analysis depends on y, and M
» These quantities are not basis independent!

/25



Newton method — local convergence

What’s wrong / missing?

» Convergence analysis depends on y, and M
» These quantities are not basis independent!

» Mismatch between geometry of method and its
convergence analysis
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What’s missing

I¥” Key condition used was || f"(z) — f"(y)|| < M||z — y||
®¥" Third derivative in direction u € R" is

()] — Ly £ 00 = (@)

a—0 «

’¥" Lipschitz Hessian equivalent (prove!) to
17 (@) [l < Mu]
5" Thus, at x € dom f, and any u,v € R™ we have

(" (@) v, v) < Mul|lv]?
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What’s missing

" Using © + Ay, v + Au, v' + Av, ¢(y) = f(Ay)

(" (@)[ulv, v) = (" (2)[u]', V')

11/25



What’s missing

" Using © + Ay, v + Au, v' + Av, ¢(y) = f(Ay)
(f"(@)[u)v, v) = (¢" () [W]V', V')

1Z" Thus, in the inequality {(f"(z)[u]v, v) < M|ul| ||v||?, lhs is
affine invariant, but rhs is not

11/25



What’s missing

" Using © + Ay, v + Au, v' + Av, ¢(y) = f(Ay)
(f"(@)[u)v, v) = (¢" () [W]V', V')

1Z" Thus, in the inequality {(f"(z)[u]v, v) < M|ul| ||v||?, lhs is
affine invariant, but rhs is not

BE" What can be a quick fix? Observation, use local norms on rhs

gy = (F"(@)us w)'/? = (T f ()

11/25



What’s missing

" Using © + Ay, v + Au, v' + Av, ¢(y) = f(Ay)
(f"(@)[u)v, v) = (¢" () [W]V', V')

1Z" Thus, in the inequality {(f"(z)[u]v, v) < M|ul| ||v||?, lhs is
affine invariant, but rhs is not

BE" What can be a quick fix? Observation, use local norms on rhs
[ull priay == (" (@)u, u)'/? = A fuT f7(x)u
Then, we immediately have

IA™ ull prazy = llell gy

11/25



What’s missing

" Using © + Ay, v + Au, v' + Av, ¢(y) = f(Ay)
(f"(@)[u)v, v) = (¢" () [W]V', V')

1Z" Thus, in the inequality {(f"(z)[u]v, v) < M|ul| ||v||?, lhs is
affine invariant, but rhs is not

BE" What can be a quick fix? Observation, use local norms on rhs
gy = (F"(@)us w)'/? = (T f ()
Then, we immediately have
IA™ ull prazy = llell gy

2" This brings us to the idea of self-concordance
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Self-concordant functions

e Let f € C3(dom f) be a closed, convex with open domain
e Fix x € dom f and a direction vector u € R"
e Denote restriction to line ¢(z;t) := f(x + tu)

Derivatives
Df(z)lu] = ¢'(z;t) = (f'(2), u)
D? f(x)[u,u] = ¢"(z;t) = (f"(2)u, u) = |[ullFn,)
D f(@)[u,u,u) = ¢" (x;t)= (D’ f (2)[u]u, u)

!/
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Self-concordant functions

e Let f € C3(dom f) be a closed, convex with open domain
e Fix x € dom f and a direction vector u € R"
e Denote restriction to line ¢(z;t) := f(z + tu)

Derivatives
Df(z)lu] = ¢'(z;t) = (f'(2), u)
D? f(x)[u,u] = ¢"(z;t) = (f"(2)u, u) = |[ullFn,)
D f(@)[u,u,u) = ¢" (x;t)= (D’ f (2)[u]u, u)

Note: Third derivative: symmetric trilinear operator, so it
operates on [u1, ug, us] to yield a trilinear symmetric form.

P
DPf(x)[u1,...,up] = 5 fle+tiur+- - -+tpuy)

L0t

P lty==t,=0

12/25



Self-concordant functions and barriers

Def. (Self-concordant). Let X’ be a closed convex set. A function
f:int(X) — R called self-concordant (SC) on X if

1T f e C3(X) with f(xy,) = +oo if 2, — T € 0X
IS" f satisfies the SC inequality
D3 f(2)[u, u,ul| < 2 (D2f(2)u,u])?, Vo € int(X),uc R
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Self-concordant functions and barriers

Def. (Self-concordant). Let X’ be a closed convex set. A function
f:int(X) — R called self-concordant (SC) on X if

1T f e C3(X) with f(xy,) = +oo if 2, — T € 0X
IS" f satisfies the SC inequality
D3 f(2)[u, u,ul| < 2 (D2f(2)u,u])?, Vo € int(X),uc R

Def. Given a real ¥ > 1, F is called a ¥-self-concordant barrier
(SCB) for X' if Fis SC and

|DF (x)[u]| < 9"/? (D2f(x)[u,u])1/2, Vo € int(X),u € R".

» Exponents 3/2 and 1/2 crucial—ensure both sides have
same degree of homogeneity in u (for affine invariance)

» Factor 2 can be scaled by scaling f; chosen for convenience;
equiv. to D?f Lipschitz with constant 2 in norm ||-|| (s
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» SC functions well-suited to Newton minimization.

’Example f(x)=—logz : Ry — Ris a 1-SCB for Ry

Proof: f"(z) =272, f"(z) = —2x~3; directly verifies.

» Linear functions are SC; f"'(x) =0
» Convex quadratic functions; f"'(z) =0
» Log-barrier for ¢(z) = a + (b, z) — 327 Az; f(z) = —log ¢()

Show: | D3 f(z)[u, u,u]| = |2w} + 3wiws|, where wy = D f(x)[u],

wo = ﬁuTAu; also show that D?f(z)[u,u] = w? + wy.
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Self-concordant barriers

» SC functions well-suited to Newton minimization.

’Example f(z)=—logz :Ryy — Risa 1-SCB for R4

Proof: f"(z) =272, f"(z) = —2x~3; directly verifies.

» Linear functions are SC; f"'(z) =0

» Convex quadratic functions; f”(z) =0

» Log-barrier for ¢(z) = a+ (b, z) — 32T Ax; f(z) = log o(x)
Show: | D3 f(z)[u, u,u]| = |2w} + 3wiws|, where wy = D f(x)[u],

wo = %UTAU; also show that D?f(z)[u,u] = w? + wy.

Lemma A function f is SCiff for any x € int(X), and uy, ug, uz € R”

|D* f (2)[ur, uz, us]| < 2l gyl gyl gy

Proof: Essentially generalized Cauchy-Schwarz (some work).

14 /25



SC Optimization



Key quantities

» Let f(z) be SC, and that f”(z) = 0 within dom f
» Simplified notation for the local norms at x

lulle = (f"(x)u, u)'/?
ol = ([f"(x)] " o, v)!/?
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Key quantities

» Let f(z) be SC, and that f”(z) = 0 within dom f
» Simplified notation for the local norms at x

lulle = (f"(x)u, u)'/?
ol = ([f"(x)] " o, v)!/?

» Let us use these to state three crucial observations

16
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¥ At any point « € dom f = int(X), there is an ellipsoid

W(z):={y € R" | [ly — [l <1} C dom f.
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Three key facts

¥ At any point « € dom f = int(X), there is an ellipsoid
W(z):={y € R" | [ly — [l <1} C dom f.
I¥” Within this ellipsoid (aka Dinkin ellipsoid), f is almost quadratic
ri=lulls <1 =

(=@ 2 ) < s

IZ~ Moreover, it also holds that

f@)+{f (@), u)+p(=r) < flz+u) < fl)+(f'(z), u)+p(r),
where p(r) := —log(l —7) — s = s2/2 + s3/3 + - -
Proof: See Chap. 4 of Nesterov (2004).
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Setting up Newton’s method

Newton decrement

Ap(@) = ([f"@)] 7 f (@), f @)
Observe: A¢(z) = || f'(x)||% (local, dual-norm of gradient).
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Newton decrement

Ap(@) = ([f" @) f (@), f()) 2

Observe: A¢(z) = || f'(x)||% (local, dual-norm of gradient).

Ap(w) = max {Df(x)[u] | D*f(x)[u,u] <1}

» As(x) if a finite continuous function of z € dom f

> It vanishes at the (unique, if any) minimizer 2 of f on dom f
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Setting up Newton’s method

Newton decrement
Ap(@) = (" @) f (@), f (@)
Observe: A¢(z) = || f'(x)||% (local, dual-norm of gradient).
Ap(2) = max { D (@)[u] | D*f(x)lu.u] < 1}

» As(x) if a finite continuous function of z € dom f

> It vanishes at the (unique, if any) minimizer 2 of f on dom f

Theorem If Af(xz) < 1 for some x € dom f. Then, min f(x) s.t
x € dom f, has a unique optimal solution.

18 /25



Damped Newton method

Select xg € dom f
For k> 0: xp11 =) — m[f”(l'k)]_lf/(xk)
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Damped Newton method

Select xg € dom f
For k> 0: xp11 = ap — m[f”(ﬂﬁk)]_lf/(ﬂfk)

Theorem For any k > 0, the iterates of the damped NM satisfy
f(@rt1) < flog) — p(=Ag(zp))

Proof: Denote A = Af(xy). Also, set w(t) := p(—t). Then,

lxgt1 — zkllz = 1%\ = w/(A\). Thus, using one of the key facts

flar) < flae) + (f'(2r), Teer — 2n) + @0 (2641 — 21ll2)
= flar) —

2
A +w*(W'(N))

1+ A
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Damped Newton method

Select xg € dom f
For k> 0: xp11 = ap — m[f”(ﬂﬁk)]_lf/(ﬂfk)

Theorem For any k > 0, the iterates of the damped NM satisfy

f(wrg1) < flae) — p(=Ag(2r))

Proof: Denote A = Af(xy). Also, set w(t) := p(—t). Then,

lxgt1 — zkllz = 1%\ = w/(A\). Thus, using one of the key facts
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Damped Newton method

Select xg € dom f
For k> 0: xp11 = ap — m[f"(ﬂﬂk)]_lf'(ﬂfk)

Theorem For any k > 0, the iterates of the damped NM satisfy

f(wrg1) < flae) — p(=Ag(2r))

Proof: Denote A = Af(xy). Also, set w(t) := p(—t). Then,

lxgt1 — zkllz = 1%\ = w/(A\). Thus, using one of the key facts

flaem) < flaw) + (F(xn), 2par — 2n) + w0 (|2r41 — 2ell2)

2
T (W (V)

= (xk) W'(A) +w"(W'(N) = f(zr) —w(N).

At each step, f(x) decreases by at least w(\)

19/25



Damped Newton method

o Globally convegent; iteration complexity can be derived.

e Local quadratic convergence: Af(zx11) < 2Xf(zy)? for
small enough A¢(zy)

e Though, better to start with DN, and switch to pure
Newton after NV iterations, where

1
w(B)f (wo) = f(&p)]”

and Af(xy) > B, where 8 € (0,0.3819...)

N <
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Minimization using SC Barriers

» class of ¥-SCB smaller than general SC.
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Minimization using SC Barriers

» class of ¥-SCB smaller than general SC.

Standard convex problem

min ¢’z zeAX,

where X is a compact set for which dom F' = X.
» Recall path-following scheme

2*(t) = argmin  tclx + F(x), t>0.
r€dom F

» Any point of the central path (set {z*(t)}) satisfies

te+ F'(z*(t)) = 0.
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Minimization using SC Barriers

» class of ¥-SCB smaller than general SC.

Standard convex problem

min ¢’z zeAX,

where X is a compact set for which dom F' = X.
» Recall path-following scheme

2*(t) = argmin  tclx + F(x), t>0.
r€dom F

» Any point of the central path (set {z*(t)}) satisfies
te+ F'(z*(t)) = 0.

» Aim is to iteratively find points close to central path
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Minimization using SCBs

Approximate solution:
AR () = [F{ (@)} = l[te + F'(2)]} < 8,

where (3 is the centering parameter (approx. solution quality).
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Minimization using SCBs

Approximate solution:
AR () = [F{ (@)} = l[te + F'(2)]} < 8,

where (3 is the centering parameter (approx. solution quality).

Theorem For any ¢ > 0, we have

~*l <

clar(t) —cla* <
If a point x is an approximate solution (close to z*(¢)), then

e —cx <t<19+ (/it;()>
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Path-following algorithm

Set tg = 0. Choose accuracy € > 0 and xg € dom F' such that

1F' (@o)llz, < B
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Path-following algorithm

Set tg = 0. Choose accuracy € > 0 and xg € dom F' such that

[ F"(z0)ll3, < B
At k-th iteration, set

2l N VB 5
lell%, 1-vB
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Set tg = 0. Choose accuracy € > 0 and xg € dom F' such that

[ F"(z0)ll3, < B
At k-th iteration, set

2l N VB 5
lell%, 1-vB
Thy1 = o — [F"(@)] " (tpgrc + F' (i)

U1 =1k +

Stop the process if

€ty >0+ ———F—
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Path-following algorithm

Set tg = 0. Choose accuracy € > 0 and xg € dom F' such that

[ F"(z0)ll3, < B
At k-th iteration, set

2l N VB 5
lell%, 1-vB
Thy1 = o — [F"(@)] " (tpgrc + F' (i)

U1 =1k +

Stop the process if

6tk2§+M

1-p

Theorem Above scheme yields ¢”zxy — ¢l z* < € after no more than

N steps, where

€

N<O <\/510g19||cx*).
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More

We've barely scratched the surface!
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More

We've barely scratched the surface!

» Much more to interior point methods.
» See references for fuller picture.
Also read: Ch. 9,10,11 of BV for high-level overview.
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