
Convex Optimization
(EE227A: UC Berkeley)

Lecture 26
Interior point methods

25 Apr, 2013

◦

Suvrit Sra

Interior point methods

I Let f : Rn → R be twice continuously differentiable

I Newton method: xk+1 ← xk − [f ′′(xk)]
−1f ′(xk)

I How to solve general convex problem

min f(x)

s.t. fi(x) ≤ 0, Ax = b.

I Assume finite p∗ attained; strict feasibility (=⇒ strong duality)

I Interior Point Methods build on the Newton method to
ultimately tackle the above convex optimization problem

2 / 25

Interior point methods

I Let f : Rn → R be twice continuously differentiable

I Newton method: xk+1 ← xk − [f ′′(xk)]
−1f ′(xk)

I How to solve general convex problem

min f(x)

s.t. fi(x) ≤ 0, Ax = b.

I Assume finite p∗ attained; strict feasibility (=⇒ strong duality)

I Interior Point Methods build on the Newton method to
ultimately tackle the above convex optimization problem

2 / 25

Interior point methods

I Let f : Rn → R be twice continuously differentiable

I Newton method: xk+1 ← xk − [f ′′(xk)]
−1f ′(xk)

I How to solve general convex problem

min f(x)

s.t. fi(x) ≤ 0, Ax = b.

I Assume finite p∗ attained; strict feasibility (=⇒ strong duality)

I Interior Point Methods build on the Newton method to
ultimately tackle the above convex optimization problem

2 / 25

Interior point methods

I Let f : Rn → R be twice continuously differentiable

I Newton method: xk+1 ← xk − [f ′′(xk)]
−1f ′(xk)

I How to solve general convex problem

min f(x)

s.t. fi(x) ≤ 0, Ax = b.

I Assume finite p∗ attained; strict feasibility (=⇒ strong duality)

I Interior Point Methods build on the Newton method to
ultimately tackle the above convex optimization problem

2 / 25

Preliminaries

3 / 25

Barrier functions

min {f(x) | x ∈ X}

I X ⊂ Rn, closed, convex set with nonempty interior

I Equip X with an internal penalty or barrier function F

I F is smooth, strictly convex on int(X); F (xk)→ +∞ for every
sequence {xk} ⊂ int(X) that converges to a point x̄ ∈ ∂X

I Barrier family of objective functions

Ft(x) := tf0(x) + F (x),

where t > 0 is the penalty parameter.

I Say X is bounded, then every Ft(x) attains its minimum in
int(X); call this x∗(t) (unique since F (x) is strictly convex)

I Let central path be {x∗(t) | t ≥ 0}; as t→∞, central path
converges to solution of original problem.

4 / 25

Barrier functions

min {f(x) | x ∈ X}

I X ⊂ Rn, closed, convex set with nonempty interior

I Equip X with an internal penalty or barrier function F

I F is smooth, strictly convex on int(X); F (xk)→ +∞ for every
sequence {xk} ⊂ int(X) that converges to a point x̄ ∈ ∂X

I Barrier family of objective functions

Ft(x) := tf0(x) + F (x),

where t > 0 is the penalty parameter.

I Say X is bounded, then every Ft(x) attains its minimum in
int(X); call this x∗(t) (unique since F (x) is strictly convex)

I Let central path be {x∗(t) | t ≥ 0}; as t→∞, central path
converges to solution of original problem.

4 / 25

Barrier functions

min {f(x) | x ∈ X}

I X ⊂ Rn, closed, convex set with nonempty interior

I Equip X with an internal penalty or barrier function F

I F is smooth, strictly convex on int(X); F (xk)→ +∞ for every
sequence {xk} ⊂ int(X) that converges to a point x̄ ∈ ∂X

I Barrier family of objective functions

Ft(x) := tf0(x) + F (x),

where t > 0 is the penalty parameter.

I Say X is bounded, then every Ft(x) attains its minimum in
int(X); call this x∗(t) (unique since F (x) is strictly convex)

I Let central path be {x∗(t) | t ≥ 0}; as t→∞, central path
converges to solution of original problem.

4 / 25

Barrier functions

min {f(x) | x ∈ X}

I X ⊂ Rn, closed, convex set with nonempty interior

I Equip X with an internal penalty or barrier function F

I F is smooth, strictly convex on int(X);

F (xk)→ +∞ for every
sequence {xk} ⊂ int(X) that converges to a point x̄ ∈ ∂X

I Barrier family of objective functions

Ft(x) := tf0(x) + F (x),

where t > 0 is the penalty parameter.

I Say X is bounded, then every Ft(x) attains its minimum in
int(X); call this x∗(t) (unique since F (x) is strictly convex)

I Let central path be {x∗(t) | t ≥ 0}; as t→∞, central path
converges to solution of original problem.

4 / 25

Barrier functions

min {f(x) | x ∈ X}

I X ⊂ Rn, closed, convex set with nonempty interior

I Equip X with an internal penalty or barrier function F

I F is smooth, strictly convex on int(X); F (xk)→ +∞ for every
sequence {xk} ⊂ int(X) that converges to a point x̄ ∈ ∂X

I Barrier family of objective functions

Ft(x) := tf0(x) + F (x),

where t > 0 is the penalty parameter.

I Say X is bounded, then every Ft(x) attains its minimum in
int(X); call this x∗(t) (unique since F (x) is strictly convex)

I Let central path be {x∗(t) | t ≥ 0}; as t→∞, central path
converges to solution of original problem.

4 / 25

Barrier functions

min {f(x) | x ∈ X}

I X ⊂ Rn, closed, convex set with nonempty interior

I Equip X with an internal penalty or barrier function F

I F is smooth, strictly convex on int(X); F (xk)→ +∞ for every
sequence {xk} ⊂ int(X) that converges to a point x̄ ∈ ∂X

I Barrier family of objective functions

Ft(x) := tf0(x) + F (x),

where t > 0 is the penalty parameter.

I Say X is bounded, then every Ft(x) attains its minimum in
int(X); call this x∗(t) (unique since F (x) is strictly convex)

I Let central path be {x∗(t) | t ≥ 0}; as t→∞, central path
converges to solution of original problem.

4 / 25

Barrier functions

min {f(x) | x ∈ X}

I X ⊂ Rn, closed, convex set with nonempty interior

I Equip X with an internal penalty or barrier function F

I F is smooth, strictly convex on int(X); F (xk)→ +∞ for every
sequence {xk} ⊂ int(X) that converges to a point x̄ ∈ ∂X

I Barrier family of objective functions

Ft(x) := tf0(x) + F (x),

where t > 0 is the penalty parameter.

I Say X is bounded, then every Ft(x) attains its minimum in
int(X); call this x∗(t) (unique since F (x) is strictly convex)

I Let central path be {x∗(t) | t ≥ 0}; as t→∞, central path
converges to solution of original problem.

4 / 25

Barrier functions

min {f(x) | x ∈ X}

I X ⊂ Rn, closed, convex set with nonempty interior

I Equip X with an internal penalty or barrier function F

I F is smooth, strictly convex on int(X); F (xk)→ +∞ for every
sequence {xk} ⊂ int(X) that converges to a point x̄ ∈ ∂X

I Barrier family of objective functions

Ft(x) := tf0(x) + F (x),

where t > 0 is the penalty parameter.

I Say X is bounded, then every Ft(x) attains its minimum in
int(X); call this x∗(t) (unique since F (x) is strictly convex)

I Let central path be {x∗(t) | t ≥ 0};

as t→∞, central path
converges to solution of original problem.

4 / 25

Barrier functions

min {f(x) | x ∈ X}

I X ⊂ Rn, closed, convex set with nonempty interior

I Equip X with an internal penalty or barrier function F

I F is smooth, strictly convex on int(X); F (xk)→ +∞ for every
sequence {xk} ⊂ int(X) that converges to a point x̄ ∈ ∂X

I Barrier family of objective functions

Ft(x) := tf0(x) + F (x),

where t > 0 is the penalty parameter.

I Say X is bounded, then every Ft(x) attains its minimum in
int(X); call this x∗(t) (unique since F (x) is strictly convex)

I Let central path be {x∗(t) | t ≥ 0}; as t→∞, central path
converges to solution of original problem.

4 / 25

Path-following pseudo code

1 Suppose we have tk > 0 and some xk ∈ int(X) such that xk
is “close” to x∗(tk)

2 Repeat the following updates until needed:

1 Replace penalty tk by a larger value tk+1

2 Run some method to minimize Ftk+1
“warm-starting” at xk

until a point xk+1 “close” to x∗(tk+1) is found
3 New pair (tk+1, xk+1) is close to the “path”

Fairly old idea, 60s or even earlier!

I Any unconstrained method to solve for xk+1

I What is complexity of such a scheme?

I Numerical problems when tk becomes large; breakdown?

I Standard theory of unconstrained minimization predicts
slowdown as tk becomes larger ...

5 / 25

Path-following pseudo code

1 Suppose we have tk > 0 and some xk ∈ int(X) such that xk
is “close” to x∗(tk)

2 Repeat the following updates until needed:

1 Replace penalty tk by a larger value tk+1

2 Run some method to minimize Ftk+1
“warm-starting” at xk

until a point xk+1 “close” to x∗(tk+1) is found
3 New pair (tk+1, xk+1) is close to the “path”

Fairly old idea, 60s or even earlier!

I Any unconstrained method to solve for xk+1

I What is complexity of such a scheme?

I Numerical problems when tk becomes large; breakdown?

I Standard theory of unconstrained minimization predicts
slowdown as tk becomes larger ...

5 / 25

Path-following pseudo code

1 Suppose we have tk > 0 and some xk ∈ int(X) such that xk
is “close” to x∗(tk)

2 Repeat the following updates until needed:

1 Replace penalty tk by a larger value tk+1

2 Run some method to minimize Ftk+1
“warm-starting” at xk

until a point xk+1 “close” to x∗(tk+1) is found
3 New pair (tk+1, xk+1) is close to the “path”

Fairly old idea, 60s or even earlier!

I Any unconstrained method to solve for xk+1

I What is complexity of such a scheme?

I Numerical problems when tk becomes large; breakdown?

I Standard theory of unconstrained minimization predicts
slowdown as tk becomes larger ...

5 / 25

Path-following pseudo code

1 Suppose we have tk > 0 and some xk ∈ int(X) such that xk
is “close” to x∗(tk)

2 Repeat the following updates until needed:

1 Replace penalty tk by a larger value tk+1

2 Run some method to minimize Ftk+1
“warm-starting” at xk

until a point xk+1 “close” to x∗(tk+1) is found
3 New pair (tk+1, xk+1) is close to the “path”

Fairly old idea, 60s or even earlier!

I Any unconstrained method to solve for xk+1

I What is complexity of such a scheme?

I Numerical problems when tk becomes large; breakdown?

I Standard theory of unconstrained minimization predicts
slowdown as tk becomes larger ...

5 / 25

Path-following pseudo code

1 Suppose we have tk > 0 and some xk ∈ int(X) such that xk
is “close” to x∗(tk)

2 Repeat the following updates until needed:

1 Replace penalty tk by a larger value tk+1

2 Run some method to minimize Ftk+1
“warm-starting” at xk

until a point xk+1 “close” to x∗(tk+1) is found
3 New pair (tk+1, xk+1) is close to the “path”

Fairly old idea, 60s or even earlier!

I Any unconstrained method to solve for xk+1

I What is complexity of such a scheme?

I Numerical problems when tk becomes large; breakdown?

I Standard theory of unconstrained minimization predicts
slowdown as tk becomes larger ...

5 / 25

Path-following pseudo code

1 Suppose we have tk > 0 and some xk ∈ int(X) such that xk
is “close” to x∗(tk)

2 Repeat the following updates until needed:

1 Replace penalty tk by a larger value tk+1

2 Run some method to minimize Ftk+1
“warm-starting” at xk

until a point xk+1 “close” to x∗(tk+1) is found
3 New pair (tk+1, xk+1) is close to the “path”

Fairly old idea, 60s or even earlier!

I Any unconstrained method to solve for xk+1

I What is complexity of such a scheme?

I Numerical problems when tk becomes large; breakdown?

I Standard theory of unconstrained minimization predicts
slowdown as tk becomes larger ...

5 / 25

Better barriers?

♠ Renegar (1988) and Gonzaga (1989) introduced improved
path-following methods for linear programming

♠ In particular, for linear-programming with feasible set

X =
{
x | aTi x ≤ bi, 1 ≤ i ≤ m

}
,

they used the logarithmic barrier

F (x) := −
∑

i
log(bi − aTi x).

♠ And with this F (x), they showed a Newton-method based
path-following can be made polynomial time.

♠ Breakthrough result, though ad-hoc analysis of NM

Shortly thereafter, Nesterov realized what intrinsic
properties of the log-barrier made it work!

6 / 25

Better barriers?

♠ Renegar (1988) and Gonzaga (1989) introduced improved
path-following methods for linear programming

♠ In particular, for linear-programming with feasible set

X =
{
x | aTi x ≤ bi, 1 ≤ i ≤ m

}
,

they used the logarithmic barrier

F (x) := −
∑

i
log(bi − aTi x).

♠ And with this F (x), they showed a Newton-method based
path-following can be made polynomial time.

♠ Breakthrough result, though ad-hoc analysis of NM

Shortly thereafter, Nesterov realized what intrinsic
properties of the log-barrier made it work!

6 / 25

Better barriers?

♠ Renegar (1988) and Gonzaga (1989) introduced improved
path-following methods for linear programming

♠ In particular, for linear-programming with feasible set

X =
{
x | aTi x ≤ bi, 1 ≤ i ≤ m

}
,

they used the logarithmic barrier

F (x) := −
∑

i
log(bi − aTi x).

♠ And with this F (x), they showed a Newton-method based
path-following can be made polynomial time.

♠ Breakthrough result, though ad-hoc analysis of NM

Shortly thereafter, Nesterov realized what intrinsic
properties of the log-barrier made it work!

6 / 25

Better barriers?

♠ Renegar (1988) and Gonzaga (1989) introduced improved
path-following methods for linear programming

♠ In particular, for linear-programming with feasible set

X =
{
x | aTi x ≤ bi, 1 ≤ i ≤ m

}
,

they used the logarithmic barrier

F (x) := −
∑

i
log(bi − aTi x).

♠ And with this F (x), they showed a Newton-method based
path-following can be made polynomial time.

♠ Breakthrough result, though ad-hoc analysis of NM

Shortly thereafter, Nesterov realized what intrinsic
properties of the log-barrier made it work!

6 / 25

Better barriers?

♠ Renegar (1988) and Gonzaga (1989) introduced improved
path-following methods for linear programming

♠ In particular, for linear-programming with feasible set

X =
{
x | aTi x ≤ bi, 1 ≤ i ≤ m

}
,

they used the logarithmic barrier

F (x) := −
∑

i
log(bi − aTi x).

♠ And with this F (x), they showed a Newton-method based
path-following can be made polynomial time.

♠ Breakthrough result, though ad-hoc analysis of NM

Shortly thereafter, Nesterov realized what intrinsic
properties of the log-barrier made it work!

6 / 25

Better barriers?

♠ Renegar (1988) and Gonzaga (1989) introduced improved
path-following methods for linear programming

♠ In particular, for linear-programming with feasible set

X =
{
x | aTi x ≤ bi, 1 ≤ i ≤ m

}
,

they used the logarithmic barrier

F (x) := −
∑

i
log(bi − aTi x).

♠ And with this F (x), they showed a Newton-method based
path-following can be made polynomial time.

♠ Breakthrough result, though ad-hoc analysis of NM

Shortly thereafter, Nesterov realized what intrinsic
properties of the log-barrier made it work!

6 / 25

Newton method – affine invariance

Consider f(x) and φ(y) = f(Ay), where A is invertible

Lemma Let {xk} be generated by Newton method for f :

xk+1 = xk − [f ′′(xk)]
−1f ′(xk) k ≥ 0.

Let {yk} be seq. generated by NM for φ:

yk+1 = yk − [φ′′(yk)]
−1φ′(yk),

with Ay0 = x0. Then, Ayk = xk for all k ≥ 0.

Newton method remains same—strong contrast to gradient method!
Stopping condition:

〈[f ′′(xk)]−1f ′(xk), f ′(xk)〉 < ε

independent of choice of basis A!

7 / 25

Newton method – affine invariance

Consider f(x) and φ(y) = f(Ay), where A is invertible

Lemma Let {xk} be generated by Newton method for f :

xk+1 = xk − [f ′′(xk)]
−1f ′(xk) k ≥ 0.

Let {yk} be seq. generated by NM for φ:

yk+1 = yk − [φ′′(yk)]
−1φ′(yk),

with Ay0 = x0. Then, Ayk = xk for all k ≥ 0.

Newton method remains same—strong contrast to gradient method!
Stopping condition:

〈[f ′′(xk)]−1f ′(xk), f ′(xk)〉 < ε

independent of choice of basis A!

7 / 25

Newton method – affine invariance

Consider f(x) and φ(y) = f(Ay), where A is invertible

Lemma Let {xk} be generated by Newton method for f :

xk+1 = xk − [f ′′(xk)]
−1f ′(xk) k ≥ 0.

Let {yk} be seq. generated by NM for φ:

yk+1 = yk − [φ′′(yk)]
−1φ′(yk),

with Ay0 = x0. Then, Ayk = xk for all k ≥ 0.

Newton method remains same—strong contrast to gradient method!
Stopping condition:

〈[f ′′(xk)]−1f ′(xk), f ′(xk)〉 < ε

independent of choice of basis A!

7 / 25

Newton method – local convergence

Assumptions

• Lipschitz Hessian: ‖∇2f(x)−∇2f(y)‖ ≤M‖x− y‖
• Local strong convexity: There exists a local minimum x∗ with

∇2f(x∗) � µI, µ > 0.

• Locality: Starting point x0 “close enough” to x∗

Theorem Suppose x0 satisfies

‖x0 − x∗‖ < r :=
2µ

3M
.

Then, ‖xk − x∗‖ < r, ∀k and the NM converges quadratically

‖xk+1 − x∗‖ ≤
M‖xk − x∗‖2

2(µ−M‖xk − x∗‖)

8 / 25

Newton method – local convergence

What’s wrong / missing?

I Convergence analysis depends on µ, and M

I These quantities are not basis independent!

I Mismatch between geometry of method and its
convergence analysis

9 / 25

Newton method – local convergence

What’s wrong / missing?

I Convergence analysis depends on µ, and M

I These quantities are not basis independent!

I Mismatch between geometry of method and its
convergence analysis

9 / 25

Newton method – local convergence

What’s wrong / missing?

I Convergence analysis depends on µ, and M

I These quantities are not basis independent!

I Mismatch between geometry of method and its
convergence analysis

9 / 25

Newton method – local convergence

What’s wrong / missing?

I Convergence analysis depends on µ, and M

I These quantities are not basis independent!

I Mismatch between geometry of method and its
convergence analysis

9 / 25

What’s missing

� Key condition used was ‖f ′′(x)− f ′′(y)‖ ≤M‖x− y‖

� Third derivative in direction u ∈ Rn is

f ′′′(x)[u] = lim
α→0

f ′′(x+ αu)− f ′′(x)

α

� Lipschitz Hessian equivalent (prove!) to

‖f ′′′(x)[u]‖ ≤M‖u‖

� Thus, at x ∈ dom f , and any u, v ∈ Rn we have

〈f ′′′(x)[u]v, v〉 ≤M‖u‖‖v‖2

10 / 25

What’s missing

� Key condition used was ‖f ′′(x)− f ′′(y)‖ ≤M‖x− y‖
� Third derivative in direction u ∈ Rn is

f ′′′(x)[u] = lim
α→0

f ′′(x+ αu)− f ′′(x)

α

� Lipschitz Hessian equivalent (prove!) to

‖f ′′′(x)[u]‖ ≤M‖u‖

� Thus, at x ∈ dom f , and any u, v ∈ Rn we have

〈f ′′′(x)[u]v, v〉 ≤M‖u‖‖v‖2

10 / 25

What’s missing

� Key condition used was ‖f ′′(x)− f ′′(y)‖ ≤M‖x− y‖
� Third derivative in direction u ∈ Rn is

f ′′′(x)[u] = lim
α→0

f ′′(x+ αu)− f ′′(x)

α

� Lipschitz Hessian equivalent (prove!) to

‖f ′′′(x)[u]‖ ≤M‖u‖

� Thus, at x ∈ dom f , and any u, v ∈ Rn we have

〈f ′′′(x)[u]v, v〉 ≤M‖u‖‖v‖2

10 / 25

What’s missing

� Key condition used was ‖f ′′(x)− f ′′(y)‖ ≤M‖x− y‖
� Third derivative in direction u ∈ Rn is

f ′′′(x)[u] = lim
α→0

f ′′(x+ αu)− f ′′(x)

α

� Lipschitz Hessian equivalent (prove!) to

‖f ′′′(x)[u]‖ ≤M‖u‖

� Thus, at x ∈ dom f , and any u, v ∈ Rn we have

〈f ′′′(x)[u]v, v〉 ≤M‖u‖‖v‖2

10 / 25

What’s missing

� Using x← Ay, u′ ← Au, v′ ← Av, φ(y) = f(Ay)

〈f ′′′(x)[u]v, v〉 = 〈φ′′′(x)[u′]v′, v′〉

� Thus, in the inequality 〈f ′′′(x)[u]v, v〉 ≤M‖u‖‖v‖2, lhs is
affine invariant, but rhs is not

� What can be a quick fix? Observation, use local norms on rhs

‖u‖f ′′(x) := 〈f ′′(x)u, u〉1/2 =
√
uT f ′′(x)u

Then, we immediately have

‖A−1u‖f ′′(Ax) = ‖u‖f ′′(x)

� This brings us to the idea of self-concordance

11 / 25

What’s missing

� Using x← Ay, u′ ← Au, v′ ← Av, φ(y) = f(Ay)

〈f ′′′(x)[u]v, v〉 = 〈φ′′′(x)[u′]v′, v′〉

� Thus, in the inequality 〈f ′′′(x)[u]v, v〉 ≤M‖u‖‖v‖2, lhs is
affine invariant, but rhs is not

� What can be a quick fix? Observation, use local norms on rhs

‖u‖f ′′(x) := 〈f ′′(x)u, u〉1/2 =
√
uT f ′′(x)u

Then, we immediately have

‖A−1u‖f ′′(Ax) = ‖u‖f ′′(x)

� This brings us to the idea of self-concordance

11 / 25

What’s missing

� Using x← Ay, u′ ← Au, v′ ← Av, φ(y) = f(Ay)

〈f ′′′(x)[u]v, v〉 = 〈φ′′′(x)[u′]v′, v′〉

� Thus, in the inequality 〈f ′′′(x)[u]v, v〉 ≤M‖u‖‖v‖2, lhs is
affine invariant, but rhs is not

� What can be a quick fix? Observation, use local norms on rhs

‖u‖f ′′(x) := 〈f ′′(x)u, u〉1/2 =
√
uT f ′′(x)u

Then, we immediately have

‖A−1u‖f ′′(Ax) = ‖u‖f ′′(x)

� This brings us to the idea of self-concordance

11 / 25

What’s missing

� Using x← Ay, u′ ← Au, v′ ← Av, φ(y) = f(Ay)

〈f ′′′(x)[u]v, v〉 = 〈φ′′′(x)[u′]v′, v′〉

� Thus, in the inequality 〈f ′′′(x)[u]v, v〉 ≤M‖u‖‖v‖2, lhs is
affine invariant, but rhs is not

� What can be a quick fix? Observation, use local norms on rhs

‖u‖f ′′(x) := 〈f ′′(x)u, u〉1/2 =
√
uT f ′′(x)u

Then, we immediately have

‖A−1u‖f ′′(Ax) = ‖u‖f ′′(x)

� This brings us to the idea of self-concordance

11 / 25

What’s missing

� Using x← Ay, u′ ← Au, v′ ← Av, φ(y) = f(Ay)

〈f ′′′(x)[u]v, v〉 = 〈φ′′′(x)[u′]v′, v′〉

� Thus, in the inequality 〈f ′′′(x)[u]v, v〉 ≤M‖u‖‖v‖2, lhs is
affine invariant, but rhs is not

� What can be a quick fix? Observation, use local norms on rhs

‖u‖f ′′(x) := 〈f ′′(x)u, u〉1/2 =
√
uT f ′′(x)u

Then, we immediately have

‖A−1u‖f ′′(Ax) = ‖u‖f ′′(x)

� This brings us to the idea of self-concordance

11 / 25

Self-concordant functions

• Let f ∈ C3(dom f) be a closed, convex with open domain

• Fix x ∈ dom f and a direction vector u ∈ Rn

• Denote restriction to line φ(x; t) := f(x+ tu)

Derivatives

Df(x)[u] = φ′(x; t) = 〈f ′(x), u〉
D2f(x)[u, u] = φ′′(x; t) = 〈f ′′(x)u, u〉 = ‖u‖2f ′′(x)

D3f(x)[u, u, u] = φ′′′(x; t)= 〈D3f(x)[u]u, u〉

Note: Third derivative: symmetric trilinear operator, so it
operates on [u1, u2, u3] to yield a trilinear symmetric form.

Dpf(x)[u1, . . . , up] =
∂p

∂t1 · · · ∂tp

∣∣∣∣
t1=···=tp=0

f(x+t1u1+· · ·+tpup)

12 / 25

Self-concordant functions

• Let f ∈ C3(dom f) be a closed, convex with open domain

• Fix x ∈ dom f and a direction vector u ∈ Rn

• Denote restriction to line φ(x; t) := f(x+ tu)

Derivatives

Df(x)[u] = φ′(x; t) = 〈f ′(x), u〉
D2f(x)[u, u] = φ′′(x; t) = 〈f ′′(x)u, u〉 = ‖u‖2f ′′(x)

D3f(x)[u, u, u] = φ′′′(x; t)= 〈D3f(x)[u]u, u〉

Note: Third derivative: symmetric trilinear operator, so it
operates on [u1, u2, u3] to yield a trilinear symmetric form.

Dpf(x)[u1, . . . , up] =
∂p

∂t1 · · · ∂tp

∣∣∣∣
t1=···=tp=0

f(x+t1u1+· · ·+tpup)

12 / 25

Self-concordant functions

• Let f ∈ C3(dom f) be a closed, convex with open domain

• Fix x ∈ dom f and a direction vector u ∈ Rn

• Denote restriction to line φ(x; t) := f(x+ tu)

Derivatives

Df(x)[u] = φ′(x; t) = 〈f ′(x), u〉
D2f(x)[u, u] = φ′′(x; t) = 〈f ′′(x)u, u〉 = ‖u‖2f ′′(x)

D3f(x)[u, u, u] = φ′′′(x; t)= 〈D3f(x)[u]u, u〉

Note: Third derivative: symmetric trilinear operator, so it
operates on [u1, u2, u3] to yield a trilinear symmetric form.

Dpf(x)[u1, . . . , up] =
∂p

∂t1 · · · ∂tp

∣∣∣∣
t1=···=tp=0

f(x+t1u1+· · ·+tpup)

12 / 25

Self-concordant functions

• Let f ∈ C3(dom f) be a closed, convex with open domain

• Fix x ∈ dom f and a direction vector u ∈ Rn

• Denote restriction to line φ(x; t) := f(x+ tu)

Derivatives

Df(x)[u] = φ′(x; t) = 〈f ′(x), u〉
D2f(x)[u, u] = φ′′(x; t) = 〈f ′′(x)u, u〉 = ‖u‖2f ′′(x)

D3f(x)[u, u, u] = φ′′′(x; t)= 〈D3f(x)[u]u, u〉

Note: Third derivative: symmetric trilinear operator, so it
operates on [u1, u2, u3] to yield a trilinear symmetric form.

Dpf(x)[u1, . . . , up] =
∂p

∂t1 · · · ∂tp

∣∣∣∣
t1=···=tp=0

f(x+t1u1+· · ·+tpup)

12 / 25

Self-concordant functions and barriers

Def. (Self-concordant). Let X be a closed convex set. A function
f : int(X)→ R called self-concordant (SC) on X if

� f ∈ C3(X) with f(xk)→ +∞ if xk → x̄ ∈ ∂X
� f satisfies the SC inequality

|D3f(x)[u, u, u]| ≤ 2
(
D2f(x)[u, u]

)3/2
, ∀x ∈ int(X), u ∈ Rn

Def. Given a real ϑ ≥ 1, F is called a ϑ-self-concordant barrier
(SCB) for X if F is SC and

|DF (x)[u]| ≤ ϑ1/2
(
D2f(x)[u, u]

)1/2
, ∀x ∈ int(X), u ∈ Rn.

I Exponents 3/2 and 1/2 crucial—ensure both sides have
same degree of homogeneity in u (for affine invariance)

I Factor 2 can be scaled by scaling f ; chosen for convenience;
equiv. to D2f Lipschitz with constant 2 in norm ‖·‖f ′′(x)

13 / 25

Self-concordant functions and barriers

Def. (Self-concordant). Let X be a closed convex set. A function
f : int(X)→ R called self-concordant (SC) on X if

� f ∈ C3(X) with f(xk)→ +∞ if xk → x̄ ∈ ∂X
� f satisfies the SC inequality

|D3f(x)[u, u, u]| ≤ 2
(
D2f(x)[u, u]

)3/2
, ∀x ∈ int(X), u ∈ Rn

Def. Given a real ϑ ≥ 1, F is called a ϑ-self-concordant barrier
(SCB) for X if F is SC and

|DF (x)[u]| ≤ ϑ1/2
(
D2f(x)[u, u]

)1/2
, ∀x ∈ int(X), u ∈ Rn.

I Exponents 3/2 and 1/2 crucial—ensure both sides have
same degree of homogeneity in u (for affine invariance)

I Factor 2 can be scaled by scaling f ; chosen for convenience;
equiv. to D2f Lipschitz with constant 2 in norm ‖·‖f ′′(x)

13 / 25

Self-concordant functions and barriers

Def. (Self-concordant). Let X be a closed convex set. A function
f : int(X)→ R called self-concordant (SC) on X if

� f ∈ C3(X) with f(xk)→ +∞ if xk → x̄ ∈ ∂X
� f satisfies the SC inequality

|D3f(x)[u, u, u]| ≤ 2
(
D2f(x)[u, u]

)3/2
, ∀x ∈ int(X), u ∈ Rn

Def. Given a real ϑ ≥ 1, F is called a ϑ-self-concordant barrier
(SCB) for X if F is SC and

|DF (x)[u]| ≤ ϑ1/2
(
D2f(x)[u, u]

)1/2
, ∀x ∈ int(X), u ∈ Rn.

I Exponents 3/2 and 1/2 crucial—ensure both sides have
same degree of homogeneity in u (for affine invariance)

I Factor 2 can be scaled by scaling f ; chosen for convenience;
equiv. to D2f Lipschitz with constant 2 in norm ‖·‖f ′′(x)

13 / 25

Self-concordant barriers

I SC functions well-suited to Newton minimization.

Example f(x) = − log x : R++ → R is a 1-SCB for R+

Proof: f ′′(x) = x−2, f ′′′(x) = −2x−3; directly verifies.

I Linear functions are SC; f ′′′(x) = 0

I Convex quadratic functions; f ′′′(x) = 0

I Log-barrier for φ(x) = a+ 〈b, x〉 − 1
2x

TAx; f(x) = − log φ(x)
Show: |D3f(x)[u, u, u]| = |2ω3

1 + 3ω1ω2|, where ω1 = Df(x)[u],
ω2 = 1

φ(x)u
TAu; also show that D2f(x)[u, u] = ω2

1 + ω2.

Lemma A function f is SC iff for any x ∈ int(X), and u1, u2, u3 ∈ Rn

|D3f(x)[u1, u2, u3]| ≤ 2‖u1‖f ′′(x)‖u1‖f ′′(x)‖u1‖f ′′(x)

Proof: Essentially generalized Cauchy-Schwarz (some work).

14 / 25

Self-concordant barriers

I SC functions well-suited to Newton minimization.

Example f(x) = − log x : R++ → R is a 1-SCB for R+

Proof: f ′′(x) = x−2, f ′′′(x) = −2x−3; directly verifies.

I Linear functions are SC; f ′′′(x) = 0

I Convex quadratic functions; f ′′′(x) = 0

I Log-barrier for φ(x) = a+ 〈b, x〉 − 1
2x

TAx; f(x) = − log φ(x)
Show: |D3f(x)[u, u, u]| = |2ω3

1 + 3ω1ω2|, where ω1 = Df(x)[u],
ω2 = 1

φ(x)u
TAu; also show that D2f(x)[u, u] = ω2

1 + ω2.

Lemma A function f is SC iff for any x ∈ int(X), and u1, u2, u3 ∈ Rn

|D3f(x)[u1, u2, u3]| ≤ 2‖u1‖f ′′(x)‖u1‖f ′′(x)‖u1‖f ′′(x)

Proof: Essentially generalized Cauchy-Schwarz (some work).

14 / 25

Self-concordant barriers

I SC functions well-suited to Newton minimization.

Example f(x) = − log x : R++ → R is a 1-SCB for R+

Proof: f ′′(x) = x−2, f ′′′(x) = −2x−3; directly verifies.

I Linear functions are SC; f ′′′(x) = 0

I Convex quadratic functions; f ′′′(x) = 0

I Log-barrier for φ(x) = a+ 〈b, x〉 − 1
2x

TAx; f(x) = − log φ(x)
Show: |D3f(x)[u, u, u]| = |2ω3

1 + 3ω1ω2|, where ω1 = Df(x)[u],
ω2 = 1

φ(x)u
TAu; also show that D2f(x)[u, u] = ω2

1 + ω2.

Lemma A function f is SC iff for any x ∈ int(X), and u1, u2, u3 ∈ Rn

|D3f(x)[u1, u2, u3]| ≤ 2‖u1‖f ′′(x)‖u1‖f ′′(x)‖u1‖f ′′(x)

Proof: Essentially generalized Cauchy-Schwarz (some work).

14 / 25

Self-concordant barriers

I SC functions well-suited to Newton minimization.

Example f(x) = − log x : R++ → R is a 1-SCB for R+

Proof: f ′′(x) = x−2, f ′′′(x) = −2x−3; directly verifies.

I Linear functions are SC; f ′′′(x) = 0

I Convex quadratic functions; f ′′′(x) = 0

I Log-barrier for φ(x) = a+ 〈b, x〉 − 1
2x

TAx; f(x) = − log φ(x)
Show: |D3f(x)[u, u, u]| = |2ω3

1 + 3ω1ω2|, where ω1 = Df(x)[u],
ω2 = 1

φ(x)u
TAu; also show that D2f(x)[u, u] = ω2

1 + ω2.

Lemma A function f is SC iff for any x ∈ int(X), and u1, u2, u3 ∈ Rn

|D3f(x)[u1, u2, u3]| ≤ 2‖u1‖f ′′(x)‖u1‖f ′′(x)‖u1‖f ′′(x)

Proof: Essentially generalized Cauchy-Schwarz (some work).

14 / 25

SC Optimization

15 / 25

Key quantities

I Let f(x) be SC, and that f ′′(x) � 0 within dom f

I Simplified notation for the local norms at x

‖u‖x := 〈f ′′(x)u, u〉1/2

‖v‖∗x = 〈[f ′′(x)]−1v, v〉1/2

I Let us use these to state three crucial observations

16 / 25

Key quantities

I Let f(x) be SC, and that f ′′(x) � 0 within dom f

I Simplified notation for the local norms at x

‖u‖x := 〈f ′′(x)u, u〉1/2

‖v‖∗x = 〈[f ′′(x)]−1v, v〉1/2

I Let us use these to state three crucial observations

16 / 25

Three key facts

� At any point x ∈ dom f = int(X), there is an ellipsoid

W (x) := {y ∈ Rn | ‖y − x‖x ≤ 1} ⊂ dom f.

� Within this ellipsoid (aka Dinkin ellipsoid), f is almost quadratic

r := ‖u‖x < 1 =⇒

(1− r)2f ′′(x) � f ′′(x+ u) � 1

(1− r)2
f ′′(x)

� Moreover, it also holds that

f(x)+ 〈f ′(x), u〉+ρ(−r) ≤ f(x+u) ≤ f(x)+ 〈f ′(x), u〉+ρ(r),

where ρ(r) := − log(1− r)− s = s2/2 + s3/3 + · · ·

Proof: See Chap. 4 of Nesterov (2004).

17 / 25

Three key facts

� At any point x ∈ dom f = int(X), there is an ellipsoid

W (x) := {y ∈ Rn | ‖y − x‖x ≤ 1} ⊂ dom f.

� Within this ellipsoid (aka Dinkin ellipsoid), f is almost quadratic

r := ‖u‖x < 1 =⇒

(1− r)2f ′′(x) � f ′′(x+ u) � 1

(1− r)2
f ′′(x)

� Moreover, it also holds that

f(x)+ 〈f ′(x), u〉+ρ(−r) ≤ f(x+u) ≤ f(x)+ 〈f ′(x), u〉+ρ(r),

where ρ(r) := − log(1− r)− s = s2/2 + s3/3 + · · ·

Proof: See Chap. 4 of Nesterov (2004).

17 / 25

Three key facts

� At any point x ∈ dom f = int(X), there is an ellipsoid

W (x) := {y ∈ Rn | ‖y − x‖x ≤ 1} ⊂ dom f.

� Within this ellipsoid (aka Dinkin ellipsoid), f is almost quadratic

r := ‖u‖x < 1 =⇒

(1− r)2f ′′(x) � f ′′(x+ u) � 1

(1− r)2
f ′′(x)

� Moreover, it also holds that

f(x)+ 〈f ′(x), u〉+ρ(−r) ≤ f(x+u) ≤ f(x)+ 〈f ′(x), u〉+ρ(r),

where ρ(r) := − log(1− r)− s = s2/2 + s3/3 + · · ·

Proof: See Chap. 4 of Nesterov (2004).

17 / 25

Setting up Newton’s method

Newton decrement

λf (x) := 〈[f ′′(x)]−1f ′(x), f ′(x)〉1/2.

Observe: λf (x) = ‖f ′(x)‖∗x (local, dual-norm of gradient).

λf (x) = max
u

{
Df(x)[u] | D2f(x)[u, u] ≤ 1

}
I λf (x) if a finite continuous function of x ∈ dom f

I It vanishes at the (unique, if any) minimizer x∗f of f on dom f

Theorem If λf (x) < 1 for some x ∈ dom f . Then, min f(x) s.t.,
x ∈ dom f , has a unique optimal solution.

18 / 25

Setting up Newton’s method

Newton decrement

λf (x) := 〈[f ′′(x)]−1f ′(x), f ′(x)〉1/2.

Observe: λf (x) = ‖f ′(x)‖∗x (local, dual-norm of gradient).

λf (x) = max
u

{
Df(x)[u] | D2f(x)[u, u] ≤ 1

}
I λf (x) if a finite continuous function of x ∈ dom f

I It vanishes at the (unique, if any) minimizer x∗f of f on dom f

Theorem If λf (x) < 1 for some x ∈ dom f . Then, min f(x) s.t.,
x ∈ dom f , has a unique optimal solution.

18 / 25

Setting up Newton’s method

Newton decrement

λf (x) := 〈[f ′′(x)]−1f ′(x), f ′(x)〉1/2.

Observe: λf (x) = ‖f ′(x)‖∗x (local, dual-norm of gradient).

λf (x) = max
u

{
Df(x)[u] | D2f(x)[u, u] ≤ 1

}
I λf (x) if a finite continuous function of x ∈ dom f

I It vanishes at the (unique, if any) minimizer x∗f of f on dom f

Theorem If λf (x) < 1 for some x ∈ dom f . Then, min f(x) s.t.,
x ∈ dom f , has a unique optimal solution.

18 / 25

Damped Newton method

1 Select x0 ∈ dom f

2 For k ≥ 0: xk+1 = xk − 1
1+λf (xk)

[f ′′(xk)]
−1f ′(xk)

Theorem For any k ≥ 0, the iterates of the damped NM satisfy

f(xk+1) ≤ f(xk)− ρ(−λf (xk))

Proof: Denote λ = λf (xk). Also, set ω(t) := ρ(−t). Then,
‖xk+1 − xk‖x = λ

1+λ = ω′(λ). Thus, using one of the key facts

f(xk+1) ≤ f(xk) + 〈f ′(xk), xk+1 − xk〉+ ω∗(‖xk+1 − xk‖x)

= f(xk)−
λ2

1 + λ
+ ω∗(ω′(λ))

= f(xk)− λω′(λ) + ω∗(ω′(λ)) = f(xk)− ω(λ).

At each step, f(x) decreases by at least ω(λ)

19 / 25

Damped Newton method

1 Select x0 ∈ dom f

2 For k ≥ 0: xk+1 = xk − 1
1+λf (xk)

[f ′′(xk)]
−1f ′(xk)

Theorem For any k ≥ 0, the iterates of the damped NM satisfy

f(xk+1) ≤ f(xk)− ρ(−λf (xk))

Proof: Denote λ = λf (xk). Also, set ω(t) := ρ(−t).

Then,
‖xk+1 − xk‖x = λ

1+λ = ω′(λ). Thus, using one of the key facts

f(xk+1) ≤ f(xk) + 〈f ′(xk), xk+1 − xk〉+ ω∗(‖xk+1 − xk‖x)

= f(xk)−
λ2

1 + λ
+ ω∗(ω′(λ))

= f(xk)− λω′(λ) + ω∗(ω′(λ)) = f(xk)− ω(λ).

At each step, f(x) decreases by at least ω(λ)

19 / 25

Damped Newton method

1 Select x0 ∈ dom f

2 For k ≥ 0: xk+1 = xk − 1
1+λf (xk)

[f ′′(xk)]
−1f ′(xk)

Theorem For any k ≥ 0, the iterates of the damped NM satisfy

f(xk+1) ≤ f(xk)− ρ(−λf (xk))

Proof: Denote λ = λf (xk). Also, set ω(t) := ρ(−t). Then,
‖xk+1 − xk‖x = λ

1+λ = ω′(λ).

Thus, using one of the key facts

f(xk+1) ≤ f(xk) + 〈f ′(xk), xk+1 − xk〉+ ω∗(‖xk+1 − xk‖x)

= f(xk)−
λ2

1 + λ
+ ω∗(ω′(λ))

= f(xk)− λω′(λ) + ω∗(ω′(λ)) = f(xk)− ω(λ).

At each step, f(x) decreases by at least ω(λ)

19 / 25

Damped Newton method

1 Select x0 ∈ dom f

2 For k ≥ 0: xk+1 = xk − 1
1+λf (xk)

[f ′′(xk)]
−1f ′(xk)

Theorem For any k ≥ 0, the iterates of the damped NM satisfy

f(xk+1) ≤ f(xk)− ρ(−λf (xk))

Proof: Denote λ = λf (xk). Also, set ω(t) := ρ(−t). Then,
‖xk+1 − xk‖x = λ

1+λ = ω′(λ). Thus, using one of the key facts

f(xk+1) ≤ f(xk) + 〈f ′(xk), xk+1 − xk〉+ ω∗(‖xk+1 − xk‖x)

= f(xk)−
λ2

1 + λ
+ ω∗(ω′(λ))

= f(xk)− λω′(λ) + ω∗(ω′(λ)) = f(xk)− ω(λ).

At each step, f(x) decreases by at least ω(λ)

19 / 25

Damped Newton method

1 Select x0 ∈ dom f

2 For k ≥ 0: xk+1 = xk − 1
1+λf (xk)

[f ′′(xk)]
−1f ′(xk)

Theorem For any k ≥ 0, the iterates of the damped NM satisfy

f(xk+1) ≤ f(xk)− ρ(−λf (xk))

Proof: Denote λ = λf (xk). Also, set ω(t) := ρ(−t). Then,
‖xk+1 − xk‖x = λ

1+λ = ω′(λ). Thus, using one of the key facts

f(xk+1) ≤ f(xk) + 〈f ′(xk), xk+1 − xk〉+ ω∗(‖xk+1 − xk‖x)

= f(xk)−
λ2

1 + λ
+ ω∗(ω′(λ))

= f(xk)− λω′(λ) + ω∗(ω′(λ)) = f(xk)− ω(λ).

At each step, f(x) decreases by at least ω(λ)

19 / 25

Damped Newton method

1 Select x0 ∈ dom f

2 For k ≥ 0: xk+1 = xk − 1
1+λf (xk)

[f ′′(xk)]
−1f ′(xk)

Theorem For any k ≥ 0, the iterates of the damped NM satisfy

f(xk+1) ≤ f(xk)− ρ(−λf (xk))

Proof: Denote λ = λf (xk). Also, set ω(t) := ρ(−t). Then,
‖xk+1 − xk‖x = λ

1+λ = ω′(λ). Thus, using one of the key facts

f(xk+1) ≤ f(xk) + 〈f ′(xk), xk+1 − xk〉+ ω∗(‖xk+1 − xk‖x)

= f(xk)−
λ2

1 + λ
+ ω∗(ω′(λ))

= f(xk)− λω′(λ) + ω∗(ω′(λ)) = f(xk)− ω(λ).

At each step, f(x) decreases by at least ω(λ)

19 / 25

Damped Newton method

1 Select x0 ∈ dom f

2 For k ≥ 0: xk+1 = xk − 1
1+λf (xk)

[f ′′(xk)]
−1f ′(xk)

Theorem For any k ≥ 0, the iterates of the damped NM satisfy

f(xk+1) ≤ f(xk)− ρ(−λf (xk))

Proof: Denote λ = λf (xk). Also, set ω(t) := ρ(−t). Then,
‖xk+1 − xk‖x = λ

1+λ = ω′(λ). Thus, using one of the key facts

f(xk+1) ≤ f(xk) + 〈f ′(xk), xk+1 − xk〉+ ω∗(‖xk+1 − xk‖x)

= f(xk)−
λ2

1 + λ
+ ω∗(ω′(λ))

= f(xk)− λω′(λ) + ω∗(ω′(λ)) = f(xk)− ω(λ).

At each step, f(x) decreases by at least ω(λ)

19 / 25

Damped Newton method

1 Select x0 ∈ dom f

2 For k ≥ 0: xk+1 = xk − 1
1+λf (xk)

[f ′′(xk)]
−1f ′(xk)

Theorem For any k ≥ 0, the iterates of the damped NM satisfy

f(xk+1) ≤ f(xk)− ρ(−λf (xk))

Proof: Denote λ = λf (xk). Also, set ω(t) := ρ(−t). Then,
‖xk+1 − xk‖x = λ

1+λ = ω′(λ). Thus, using one of the key facts

f(xk+1) ≤ f(xk) + 〈f ′(xk), xk+1 − xk〉+ ω∗(‖xk+1 − xk‖x)

= f(xk)−
λ2

1 + λ
+ ω∗(ω′(λ))

= f(xk)− λω′(λ) + ω∗(ω′(λ)) = f(xk)− ω(λ).

At each step, f(x) decreases by at least ω(λ)

19 / 25

Damped Newton method

• Globally convegent; iteration complexity can be derived.

• Local quadratic convergence: λf (xk+1) ≤ 2λf (xk)
2 for

small enough λf (xk)

• Though, better to start with DN, and switch to pure
Newton after N iterations, where

N ≤ 1

ω(β)[f(x0)− f(x∗f)]
,

and λf (xk) ≥ β, where β ∈ (0, 0.3819...)

20 / 25

Minimization using SC Barriers

I class of ϑ-SCB smaller than general SC.

Standard convex problem

min cTx x ∈ X ,

where X is a compact set for which domF ≡ X .
I Recall path-following scheme

x∗(t) = argmin
x∈domF

tcTx+ F (x), t ≥ 0.

I Any point of the central path (set {x∗(t)}) satisfies

tc+ F ′(x∗(t)) = 0.

I Aim is to iteratively find points close to central path

21 / 25

Minimization using SC Barriers

I class of ϑ-SCB smaller than general SC.

Standard convex problem

min cTx x ∈ X ,

where X is a compact set for which domF ≡ X .

I Recall path-following scheme

x∗(t) = argmin
x∈domF

tcTx+ F (x), t ≥ 0.

I Any point of the central path (set {x∗(t)}) satisfies

tc+ F ′(x∗(t)) = 0.

I Aim is to iteratively find points close to central path

21 / 25

Minimization using SC Barriers

I class of ϑ-SCB smaller than general SC.

Standard convex problem

min cTx x ∈ X ,

where X is a compact set for which domF ≡ X .
I Recall path-following scheme

x∗(t) = argmin
x∈domF

tcTx+ F (x), t ≥ 0.

I Any point of the central path (set {x∗(t)}) satisfies

tc+ F ′(x∗(t)) = 0.

I Aim is to iteratively find points close to central path

21 / 25

Minimization using SC Barriers

I class of ϑ-SCB smaller than general SC.

Standard convex problem

min cTx x ∈ X ,

where X is a compact set for which domF ≡ X .
I Recall path-following scheme

x∗(t) = argmin
x∈domF

tcTx+ F (x), t ≥ 0.

I Any point of the central path (set {x∗(t)}) satisfies

tc+ F ′(x∗(t)) = 0.

I Aim is to iteratively find points close to central path

21 / 25

Minimization using SCBs

Approximate solution:

λFt(x) := ‖F ′t(x)‖∗x = ‖tc+ F ′(x)‖∗x ≤ β,

where β is the centering parameter (approx. solution quality).

Theorem For any t > 0, we have

cTx∗(t)− cTx∗ ≤ ϑ

t
.

If a point x is an approximate solution (close to x∗(t)), then

cTx− cTx∗ ≤ 1

t

(
ϑ+

β(β +
√
ϑ)

1− β

)
.

22 / 25

Minimization using SCBs

Approximate solution:

λFt(x) := ‖F ′t(x)‖∗x = ‖tc+ F ′(x)‖∗x ≤ β,

where β is the centering parameter (approx. solution quality).

Theorem For any t > 0, we have

cTx∗(t)− cTx∗ ≤ ϑ

t
.

If a point x is an approximate solution (close to x∗(t)), then

cTx− cTx∗ ≤ 1

t

(
ϑ+

β(β +
√
ϑ)

1− β

)
.

22 / 25

Path-following algorithm

1 Set t0 = 0. Choose accuracy ε > 0 and x0 ∈ domF such that

‖F ′(x0)‖∗x0 ≤ β

2 At k-th iteration, set

tk+1 = tk +
γ

‖c‖∗xk
, γ =

√
β

1−
√
β
− β,

xk+1 = xk − [F ′′(xk)]
−1(tk+1c+ F ′(xk))

3 Stop the process if

εtk ≥ ϑ+
β(β +

√
ϑ)

1− β

Theorem Above scheme yields cTxN − cTx∗ ≤ ε after no more than
N steps, where

N ≤ O
(√

ϑ log
ϑ‖c‖∗x∗
ε

)
.

23 / 25

Path-following algorithm

1 Set t0 = 0. Choose accuracy ε > 0 and x0 ∈ domF such that

‖F ′(x0)‖∗x0 ≤ β
2 At k-th iteration, set

tk+1 = tk +
γ

‖c‖∗xk
, γ =

√
β

1−
√
β
− β,

xk+1 = xk − [F ′′(xk)]
−1(tk+1c+ F ′(xk))

3 Stop the process if

εtk ≥ ϑ+
β(β +

√
ϑ)

1− β

Theorem Above scheme yields cTxN − cTx∗ ≤ ε after no more than
N steps, where

N ≤ O
(√

ϑ log
ϑ‖c‖∗x∗
ε

)
.

23 / 25

Path-following algorithm

1 Set t0 = 0. Choose accuracy ε > 0 and x0 ∈ domF such that

‖F ′(x0)‖∗x0 ≤ β
2 At k-th iteration, set

tk+1 = tk +
γ

‖c‖∗xk
, γ =

√
β

1−
√
β
− β,

xk+1 = xk − [F ′′(xk)]
−1(tk+1c+ F ′(xk))

3 Stop the process if

εtk ≥ ϑ+
β(β +

√
ϑ)

1− β

Theorem Above scheme yields cTxN − cTx∗ ≤ ε after no more than
N steps, where

N ≤ O
(√

ϑ log
ϑ‖c‖∗x∗
ε

)
.

23 / 25

Path-following algorithm

1 Set t0 = 0. Choose accuracy ε > 0 and x0 ∈ domF such that

‖F ′(x0)‖∗x0 ≤ β
2 At k-th iteration, set

tk+1 = tk +
γ

‖c‖∗xk
, γ =

√
β

1−
√
β
− β,

xk+1 = xk − [F ′′(xk)]
−1(tk+1c+ F ′(xk))

3 Stop the process if

εtk ≥ ϑ+
β(β +

√
ϑ)

1− β

Theorem Above scheme yields cTxN − cTx∗ ≤ ε after no more than
N steps, where

N ≤ O
(√

ϑ log
ϑ‖c‖∗x∗
ε

)
.

23 / 25

More

We’ve barely scratched the surface!

I Much more to interior point methods.

I See references for fuller picture.

Also read: Ch. 9,10,11 of BV for high-level overview.

24 / 25

More

We’ve barely scratched the surface!

I Much more to interior point methods.

I See references for fuller picture.

Also read: Ch. 9,10,11 of BV for high-level overview.

24 / 25

References

♥ A. Nemirovski, M. J. Todd. Interior-point methods for optimization.
(2008)

♥ Y. Nesterov. Introductory lectures on convex optimization (2004).

♥ Y. Nesterov, A. Nemirovski. Interior-Point Polynomial Algorithms in
Convex Programming (1994).

25 / 25

