Convex Optimization

(EE227A: UC Berkeley)

Lecture 25
(Newton, quasi-Newton)

23 Apr, 2013

o

Suvrit Sra

Admin

& Project poster presentations:

Soda 306 HP Auditorium
Fri May 10, 2013 4pm — 8pm

& HWS5 due on May 02, 2013
Will be released today.

N

25

Newton method

» Recall numerical analysis: Newton method for solving equations

g(x)=0 zeR.

25

Newton method

» Recall numerical analysis: Newton method for solving equations
g(x)=0 zeR.

» Key idea: linear approximation.

25

Newton method

» Recall numerical analysis: Newton method for solving equations
g(x)=0 zeR.

» Key idea: linear approximation.
» Suppose we are at some z close to z* (the root)

25

Newton method

» Recall numerical analysis: Newton method for solving equations
g(x)=0 zeR.

» Key idea: linear approximation.
» Suppose we are at some z close to z* (the root)

g(x + Az) = g(z) + ¢ () Az + o(|Az]).

25

Newton method

» Recall numerical analysis: Newton method for solving equations
g(x)=0 zeR.

» Key idea: linear approximation.
» Suppose we are at some z close to z* (the root)

9(z + Azx) = g(x) + g'(v) Az + o | Az]).
» Equation g(z + Ax) = 0 approximated by
9(z) + g'(x)Az =0 = Az =—g(z)/g'(2).

25

Newton method

Recall numerical analysis: Newton method for solving equations
g(x)=0 zeR.

Key idea: linear approximation.
Suppose we are at some x close to z* (the root)

9(z + Azx) = g(x) + g'(v) Az + o | Az]).
Equation g(z + Az) = 0 approximated by
9(z) + g'(x)Az =0 = Az =—g(z)/g'(2).

If = is close to x*, we can expect Az ~ Azx* =z* —x

25

Newton method

Recall numerical analysis: Newton method for solving equations
g(x)=0 zeR.

Key idea: linear approximation.
Suppose we are at some x close to z* (the root)

9(z + Azx) = g(x) + g'(v) Az + o | Az]).
Equation g(z + Az) = 0 approximated by
9(z) + g'(x)Az =0 = Az =—g(z)/g'(2).

If = is close to x*, we can expect Az ~ Azx* =z* —x
Thus, we may write

25

Newton method

Recall numerical analysis: Newton method for solving equations

g(x)=0 zeR.

Key idea: linear approximation.

Suppose we are at some x close to z* (the root)

g(x + Az) = g(z) + ¢ () Az + o(|Az]).

Equation g(z + Az) = 0 approximated by

g9(x) + 4 (z)Az =0 = Az = —g(z)/g'(x).

If = is close to x*, we can expect Az ~ Azx* =z* —x

Thus, we may write

3/25

Newton method

» Suppose we have a system of nonlinear equations

Gx) =0 G:R"—>R"

/ 25

Newton method

» Suppose we have a system of nonlinear equations
G(z)=0 G:R" — R"
» Again, arguing as above we arrive at the Newton system
G(z) + G'(z)Az = 0,

where G'(z) is the Jacobian.

Newton method

» Suppose we have a system of nonlinear equations
G(z)=0 G:R" — R"
» Again, arguing as above we arrive at the Newton system
G(z) + G'(z)Az = 0,

where G'(z) is the Jacobian.

» Assume G’'(x) is non-degenerate (invertible), we obtain

Tr1 = g — (G (k)] Gla).

25

Newton method

» Suppose we have a system of nonlinear equations
G(z)=0 G:R" — R"
» Again, arguing as above we arrive at the Newton system
G(z) + G'(z)Az = 0,

where G'(z) is the Jacobian.

» Assume G’(x) is non-degenerate (invertible), we obtain
Tep1 = o — (G ()] Gap).

» This is Newton's method for solving nonlinear equations

25

Newton method

min

f(z) such that x € R"

5/25

Newton method

min f(z) such that x € R"

V f(xz) = 0 is necessary for optimality

5/25

Newton method

min f(z) such that x € R"

V f(xz) = 0 is necessary for optimality

Newton system

Vf(z)+ Vif(z)Az =0,

which leads to

Tp1 =z — [V f(20)] 7'V (2).

the Newton method for optimization

Newton method — remarks

» Newton method for equations is more general than minimizing
f(z) by finding roots of V f(z) =0

25

Newton method — remarks

» Newton method for equations is more general than minimizing
f(z) by finding roots of V f(z) =0

» Reason: Not every function G : R™ — R" is a derivative!

Example Consider the linear system

Ax —b=0.

Unless A is symmetric, does not correspond to a derivative (Why?)

6/25

Newton method — remarks

» Newton method for equations is more general than minimizing
f(z) by finding roots of V f(z) =0

» Reason: Not every function G : R™ — R" is a derivative!

Example Consider the linear system

Ax —b=0.

Unless A is symmetric, does not correspond to a derivative (Why?)

» If it were a derivative, then its own derivative is a Hessian, and
we know that Hessians must be symmetric, QED.

6/25

Newton method — remarks

» In general, Newton method highly nontrivial to analyze

Example Consider the iteration

1
Thil = Tk — xo = 2.

May be viewed as iter for ¢**/2 = 0 (which has no real solution)

25

Newton method — remarks

» In general, Newton method highly nontrivial to analyze

Example Consider the iteration
1
Thil = Tk — T = 2.

May be viewed as iter for ¢**/2 = 0 (which has no real solution)

Unknown whether this iteration generates a bounded sequence!

25

Newton method — remarks

» In general, Newton method highly nontrivial to analyze

Example Consider the iteration

1
Th41 :.’L‘k—a, LL‘():Q.

May be viewed as iter for ¢**/2 = 0 (which has no real solution)

Unknown whether this iteration generates a bounded sequence!

Newton fractals (Complex dynamics)

s,
23— 2242 28+ 1524 — 16

Newton method — alternative view

Quadratic approximation

o(x) = f(2) + (Vf(ar), © =) + 3(V2f (@r) (@ — 21), @ — 2x).

/25

Newton method — alternative view

Quadratic approximation

o(x) = f(2) + (Vf(ar), © =) + 3(V2f (@r) (@ — 21), @ — 2x).

Assuming V2 f(zy) = 0, choose 41 as argmin of ¢(z)

/25

Newton method — alternative view

Quadratic approximation

o(x) = f(2) + (Vf(ar), © =) + 3(V2f (@r) (@ — 21), @ — 2x).

Assuming V2 f(zy) = 0, choose 41 as argmin of ¢(z)

¢ (zhs1) = Vf(xr) + V2 f (@) (@hs1 — %) = 0.

Newton method — convergence

» Method breaks down if V2f(xy) # 0

» Only locally convergent

Example Find the root of

Clearly, z* = 0.

25

Newton method — convergence

» Method breaks down if V2f(xy) # 0

» Only locally convergent

Example Find the root of
x

0=

Clearly, z* = 0.

Exercise: Analyze behavior of Newton method for this problem.
Hint: Consider the cases: |zo| < 1, z9 = £1 and |zo| > 1.

Newton method — convergence

» Method breaks down if V2f(xy) # 0

» Only locally convergent

Example Find the root of
x

0=

Clearly, z* = 0.

Exercise: Analyze behavior of Newton method for this problem.
Hint: Consider the cases: |zo| < 1, z9 = £1 and |zo| > 1.

Damped Newton method

Ty = xp — o [V2f(2)] 7TV f (k)

25

Newton — local convergence rate

» Suppose method generates sequence {x} — x*

10/25

Newton — local convergence rate

» Suppose method generates sequence {x} — x*
» where z* is a local min, i.e., Vf(z*) =0 and V2f(2*) = 0

10/25

Newton — local convergence rate

» Suppose method generates sequence {x} — x*
» where z* is a local min, i.e., Vf(z*) =0 and V2f(2*) = 0
» Let g(zx) = Vf(zy); Taylor's theorem:

0=g(z") = g(zx) + (Vg(zr), 2" — z) + o[z, — 27|

10/25

Newton — local convergence rate

» Suppose method generates sequence {x} — x*
» where z* is a local min, i.e., Vf(z*) =0 and V2f(2*) = 0
» Let g(zx) = Vf(zy); Taylor's theorem:

0=g(z") = g(zx) + (Vg(zr), 2" — z) + o[z, — 27|

» Multiply by [Vg(x1)]~! to obtain
zp — 2" — [Vg(ar)] " glax) = o(||lzx — z*)

10/25

Newton — local convergence rate

» Suppose method generates sequence {x} — x*
» where z* is a local min, i.e., Vf(z*) =0 and V2f(2*) = 0
» Let g(zx) = Vf(zy); Taylor's theorem:

0=g(z") = g(zx) + (Vg(zr), 2" — z) + o[z, — 27|

» Multiply by [Vg(x1)]~! to obtain
zy, — 2" — [Vg(zx)] " g(zr) = oz — ™))
» Newton iteration is: 241 = 2 — [Vg(zr)] *g(zx), so

e — 2" = of[lzg — 27]),

10/25

Newton — local convergence rate

v

Suppose method generates sequence {xy} — z*
where x* is a local min, i.e., Vf(z*) = 0 and V2f(z*) = 0
Let g(zx) = Vf(zk); Taylor's theorem:

0=g(z") = g(zx) + (Vg(zr), 2" — z) + o[z, — 27|

Multiply by [Vg(zx)]! to obtain
zp — 2" — [Vg(ar)] " glax) = o(||lzx — z*)

Lg(x,), so

e — 2" = of[lzg — 27]),

Newton iteration is: xg+1 = xx — [Vg(zr)]™

So for xy # =¥ we get

_ * _ *
ot I (Coee s | N

k—oo ||z — x| k—oo ||zp — x*|]

Local superlinear convergence rate

10/25

Newton method — local convergence

Assumptions
e Lipschitz Hessian: ||V2f(z) — V2f(y)| < M|z — y||

e Local strong convexity: There exists a local minimum z* with
Vif(*) = pul, >0

e Locality: Starting point g “close enough” to z*

11/25

Newton method — local convergence

Assumptions
e Lipschitz Hessian: ||V2f(z) — V2f(y)| < M|z — y||

e Local strong convexity: There exists a local minimum z* with
Vif(*) = pul, >0

e Locality: Starting point g “close enough” to z*

Theorem Suppose z(satisfies

2u

3M’

Then, ||z — z*|| < r, Vk and the NM converges quadratically

|lxo —2*|| <r:=

M|z, — 2*||?
p— Ml —2*)

k
— <
loisn — 'l < o7

11/25

Newton method — local convergence

Assumptions
e Lipschitz Hessian: ||V2f(z) — V2f(y)| < M|z — y||

e Local strong convexity: There exists a local minimum z* with
Vif(*) = pul, >0

e Locality: Starting point g “close enough” to z*

Theorem Suppose z(satisfies

2u

3M’

Then, ||z — z*|| < r, Vk and the NM converges quadratically

|lxo —2*|| <r:=

M|z, — 2*||?
p— Ml —2*)

k
— <
loisn — 'l < o7

Reading assignment: Read §9.5.3 of Boyd-Vandenberghe

11/25

Quasi-Newton

12/25

Gradient and Newton

(Grad) Tpt1 = 2 — oV f(zr), ar>0
(Newton) Tpy1 = o — [V2F(2p)] IV f ().

13/25

Gradient and Newton

(Grad) Tpt1 = 2 — oV f(zr), ar>0
(Newton) Tpy1 = o — [V2F(2p)] IV f ().

Viewpoint for the gradient method.

13/25

Gradient and Newton

(Grad) Tpr1 =z — o Vf(xg), ar >0
(Newton) Tyl = Tl — [v2f(ﬂfk)]71Vf(£L‘k)

Viewpoint for the gradient method. Consider approximation

B1(2) == F(on) + (Y f(n), @ =) + 5o — o

13 /25

Gradient and Newton

(Grad) Tpr1 =z — o Vf(xg), ar >0
(Newton) Tyl = Tl — [v2f(ﬂfk)]71Vf(5L‘k)

Viewpoint for the gradient method. Consider approximation
1
$1(x) = flaw) + (VF(zk), © = ap) + 5z —)

Optimality condition yields
¢'(x*) = V() + 5" —ap) =

13 /25

Gradient and Newton

(Grad) Tpr1 =z — o Vf(xg), ar >0
(Newton) Tyl = Tl — [v2f(ﬂfk)]71Vf(5L‘k)

Viewpoint for the gradient method. Consider approximation
1
$1(x) = flaw) + (VF(zk), © = ap) + 5z —)

Optimality condition yields
¢'(a*) = Vflep)+ @ —ap) =0
¥ = zp—aVf(xg)

13 /25

Gradient and Newton

(Grad) Tpr1 =z — o Vf(xg), ar >0
(Newton) Tyl = Tl — [v2f(ﬂfk)]71Vf(£L‘k)

Viewpoint for the gradient method. Consider approximation
1
$1(x) = flaw) + (VF(zk), © = ap) + 5z —)

Optimality condition yields
¢'(x*) = Vf(xr)+ 5@ —ar) =0
¥ = zp—aVf(xg)

If a € (0, 1], ¢1() is global overestimator

f@) < d(x), Vo eR™

13 /25

Gradient and Newton

Viewpoint for Newton method. Consider quadratic approx

6a(@) = F(a) (VT (@), & —)+ 5 (V2 () (@ — 20, 2 —).

14 /25

Gradient and Newton

Viewpoint for Newton method. Consider quadratic approx

6a(@) = F(a) (VT (@), & —)+ 5 (V2 () (@ — 20, 2 —).

Minimum of this function is

ot =g, — V2 f ()] 7'V f ()

14 /25

Gradient and Newton

Viewpoint for Newton method. Consider quadratic approx

6a(@) = F(a) (VT (@), & —)+ 5 (V2 () (@ — 20, 2 —).

Minimum of this function is

ot =g, — V2 f ()] 7'V f ()

£
Cﬁ Something better than ¢4, less expensive than ¢,7?

14 /25

Quasi-Newton methods

Generic Quadratic Model

op(x) := f(zg) + (Vf(y), — 2k) + 5 (Hp(z — %), © — 33).

15/25

Quasi-Newton methods

Generic Quadratic Model

op(x) == f(zr) + (Vf(2k), ¢ — zx) + 5 (He(z — %), © — 28).

» Matrix Hy > 0, some posdef matrix

» Leads to optimum
ot =z, — H, 'V f(zy)
=z — SpV (k).

15/25

Quasi-Newton methods

Generic Quadratic Model

op(x) == f(zr) + (Vf(2k), ¢ — zx) + 5 (He(z — %), © — 28).

» Matrix Hy > 0, some posdef matrix

» Leads to optimum
ot = xp — H, 'V f(zy)
x* = xp, — SEVf(xr).

» The first-order methods that form a sequence of matrices
{Hy} © Hy, — V2f(z*)
where H}, is constructed using only gradient information,

15/25

Quasi-Newton methods

Generic Quadratic Model

¢p(@) = fay) + (Vf(xy), v —ap) + 5 (Hy(x —), @ — x3).
» Matrix Hy > 0, some posdef matrix
» Leads to optimum
xt =y — Hk_IVf(xk)
=z — SpV (k).

» The first-order methods that form a sequence of matrices
{H} © Hy — V2f(2*)
where H}, is constructed using only gradient information,are
called variable metric or quasi-Newton methods.

$k+1=$k—H,€_1Vf(a:k) k=0,1,...
Lh+1 = Tk — Ska(xk) k= 0, 1, P

15/25

Quasi-Newton method

o Choose zg € R™. Let Hy = 1.
Compute f(xg) and V f(z)

16/25

Quasi-Newton method

o Choose zg € R™. Let Hy = 1.
Compute f(xg) and V f(z)

o For k> 0:
descent direction: dy < S;V f(z)

16 /25

Quasi-Newton method

o Choose zg € R™. Let Hy = 1.
Compute f(xg) and V f(z)
o For k> 0:
descent direction: dy < S;V f(z)
stepsize: search for good oy > 0

16 /25

Quasi-Newton method

o Choose zg € R™. Let Hy = 1.
Compute f(xg) and V f(z)
o For k> 0:
descent direction: dy < S;V f(z)
stepsize: search for good oy > 0
update: 1 = xx — agdy

16 /25

Quasi-Newton method

o Choose xop € R™. Let Hy = 1.
Compute f(xg) and V f(z0)
o For k> 0:
descent direction: dy < S;V f(z)
stepsize: search for good oy > 0
update: 1 = xx — agdy
compute f(zj41) and V/(zs1)

16 /25

Quasi-Newton method

o Choose xop € R™. Let Hy = 1.
Compute f(xg) and V f(z0)

o For k> 0:
descent direction: dy < S;V f(z)
stepsize: search for good oy > 0
update: 1 = xx — agdy
compute f(z11) and V f(zy41)
QN update: S — Si11

16 /25

Quasi-Newton method

o Choose xop € R™. Let Hy = 1.
Compute f(xo) and V f(z0)

o For k> 0:
descent direction: dy < S;V f(z)
stepsize: search for good oy > 0
update: 1 = xx — agdy
compute f(zj41) and V/(zs1)
QN update: S — Si11

QN schemes differ in how S, = ch_l are updated!

16 /25

Quasi-Newton methods

Secant equation / QN rule
Sk1(Vf (@r41) = Vf(2k)) = Thr — @k

17/25

Quasi-Newton methods

Secant equation / QN rule
Sk1(Vf (@r41) = Vf(2k)) = Thr — @k

» Quadratic models from iteration & — k + 1

or(x) = ak + (gr, @ — a3) + 3 (H(z — 1), © —)
Orr1(2) = arg1 + (Grt1, © — Tpg1) + 5(H (2 — Tpg1), T — Tpg)

17/25

Quasi-Newton methods

Secant equation / QN rule
Sk1(Vf (@r41) = Vf(2k)) = Thr — @k

» Quadratic models from iteration & — k + 1

or(x) = ak + (gr, @ — a3) + 3 (H(z — 1), © —)
Orr1(2) = arg1 + (Grt1, © — Tpg1) + 5(H (2 — Tpg1), T — Tpg)

> ¢ (z) — 2+1(93) = gk — Gky1 + H(Tp11 — 71)

17/25

Quasi-Newton methods

Secant equation / QN rule
Sk1(Vf (@r41) = Vf(2k)) = Thr — @k

» Quadratic models from iteration & — k + 1

Or(x) = ap + (gr, © — zp) + 5(H(z — 2), T — 73
Orr1(2) = arg1 + (Grt1, © — Tpg1) + 5(H (2 — Tpg1), T — Tpg)

> ¢(z) — ¢2+1(93) =gk — gk+1 + H(zpp1 — o)
» Setting this to zero, we get

Gk+1 — 9k = H(xpq1 — 71)
S(Grt1 — gk) = Thg1 — T

» So we construct Hy — Hyy1 or Sy — Sky1 to respect this.

17/25

Hessian updates

» Barzilai-Borwein stepsize. Let y, = gx+1 — gk, Sk = Tk+1 — Tk

min [[Hsp —yill, H=al.

18/25

Hessian updates

» Barzilai-Borwein stepsize. Let y, = gx+1 — gk, Sk = Tk+1 — Tk

min [[Hsp —yill, H=al.
» Davidon-Fletcher-Powell (DFP): 5 :=1/{yx, sk)

Hy1 = (I - Bygsi)Hi(I — Bskyl) + Byryi
SksksgSk

Sk+1 = Sk — Sesms 55)

+ BYryt -

18/25

Hessian updates

» Barzilai-Borwein stepsize. Let y, = gx+1 — gk, Sk = Tk+1 — Tk

min [[Hsp —yill, H=al.
» Davidon-Fletcher-Powell (DFP): 5 :=1/{yx, sk)

Hyi1 = (I — Bypst) He(I — Bspyl) + Buryi
SksksgSk
(SkSk, Sk)

» Broyden-Fletcher-Goldfarb-Shanno (BFGS)
Sa1 = (L= Bswyi)Sk(I — Byesi) + Bsesy

Hksks;‘ng
(Hysk, Sk)

Sk+1 = Sk — + Byryr -

Hyy = Hy — + ByryrT.

18/25

Hessian updates

» Barzilai-Borwein stepsize. Let y, = gx+1 — gk, Sk = Tk+1 — Tk

min [[Hsp —yill, H=al.
» Davidon-Fletcher-Powell (DFP): 5 :=1/{yx, sk)

Hyi1 = (I — Bypst) He(I — Bspyl) + Buryi
SksksfSk
(Sksk, Sk)

» Broyden-Fletcher-Goldfarb-Shanno (BFGS)
Sa1 = (L= Bswyi)Sk(I — Byesi) + Bsesy

Hksks;fHk
(Hysk, Sk)

BFGS believed to be most stable, best scheme.

Sk+1 = Sk — + Byryr -

Hyy = Hy — + ByryrT.

18/25

Hessian updates

» Barzilai-Borwein stepsize. Let y, = gx+1 — gk, Sk = Tk+1 — Tk

min [[Hsp —yill, H=al.
» Davidon-Fletcher-Powell (DFP): 5 :=1/{yx, sk)
Hyy1 = (I = Byesi) Hi(I — Bskyiy) + Byry,

SksksgSk
(Sksk, Sk)

» Broyden-Fletcher-Goldfarb-Shanno (BFGS)
Sa1 = (L= Bswyi)Sk(I — Byesi) + Bsesy

Hksks;fHk
(Hysk, Sk)

BFGS believed to be most stable, best scheme.
» Notice, updates computationally “cheap”

Sk+1 = Sk — + Byryr -

Hyy = Hy — + ByryrT.

18/25

Limited memory methods

Hessian storage and update has O(n?) cost

19/25

Limited memory methods

Hessian storage and update has O(n?) cost

Estimate Hj. or Sy using only previous few iterations; so
essentially, use only O(mn) storage, where m ~ 5-17

» Each step of BFGS is: xp11 = o — oSV f(xg)

19/25

Limited memory methods

Hessian storage and update has O(n?) cost

Estimate Hj. or Sy using only previous few iterations; so
essentially, use only O(mn) storage, where m ~ 5-17

» Each step of BFGS is: xp11 = o — oSV f(xg)
» Sk is updated at every iteration using

Sir1 = Vil SiVi + Brspst

19/25

Limited memory methods

Hessian storage and update has O(n?) cost

Estimate Hj. or Sy using only previous few iterations; so
essentially, use only O(mn) storage, where m ~ 5-17

» Each step of BFGS is: xp11 = o — oSV f(xg)
» Sk is updated at every iteration using

Sir1 = Vil SiVi + Brspst

where, with s 1= z;11 — 2% and yx := V f(zke1) — Vf(zk),

1
Be=-—7—> Vi=1I—Bryest,
Yy Sk

19/25

Limited memory methods

Hessian storage and update has O(n?) cost

Estimate Hj. or Sy using only previous few iterations; so
essentially, use only O(mn) storage, where m ~ 5-17

» Each step of BFGS is: xp11 = o — oSV f(xg)
» Sk is updated at every iteration using

Sir1 = Vil SiVi + Brspst

where, with s 1= z;11 — 2% and yx := V f(zke1) — Vf(zk),
1 T
Be=—— Vi=1—Bryrsg,
Yi. Sk

» We use m vector pairs (s;,y;), fori =k —m,...,k—1

19/25

Limited memory methods

Unroll the Sy update loop for m iterations to obtain

20/25

Limited memory methods

Unroll the Sy update loop for m iterations to obtain

S = (VI VL VS (Vi -+ Vi)

20/25

Limited memory methods

Unroll the Sy update loop for m iterations to obtain

S = (VI VL VS (Vi -+ Vi)

+ Bk—m(VkT—l T ijim-i-l)sk—msg—m(vlg;m—i-l T VkT—l)

20/25

Limited memory methods

Unroll the Sy update loop for m iterations to obtain

S = (VI VL VS (Vi -+ Vi)
+ Bk—m(VkT—l T ijim-i-l)sk—msg—m(vlg;m—i-l T VkT—l)
+ Bk—m—i—l(vkjil T ijlm+2)8k—m+15£fm+l(ijlerQ T ijll)

20 /25

Limited memory methods

Unroll the Sy update loop for m iterations to obtain

Sk = (ViLy Vi)Se (Vi -+ Vie1)
+ Bem (Vi Vi) skm St (Vi in - Vit
+ Bk—m—i—l(vkjil e Vkam+2)Sk—m+18ilm+l(ijlerQ T Vlil)
+
+ Br-15k-154_1-

‘ Ultimate aim is to efficiently compute: SV f(z) ‘

20 /25

Limited memory methods

Unroll the Sy update loop for m iterations to obtain

Sk = (ViLy Vi)Se (Vi -+ Vie1)
+ Bem (Vi Vi) skm St (Vi in - Vit
+ Bk—m—i—l(vkjil e Vkam+2)Sk—m+18ilm+l(ijlerQ T Vlil)
+
+

T
Bl—15k—15j_1-

‘ Ultimate aim is to efficiently compute: SV f(z) ‘

Exercise: Implement procedure to compute SV f(zy) efficiently.

20 /25

Limited memory methods

Unroll the Sy update loop for m iterations to obtain

Sk = (ViLy Vi)Se (Vi -+ Vie1)
+ Bem (Vi Vi) skm St (Vi in - Vit
+ Bk—m—i—l(vkjil e ijim+2)8k—m+lszfm+l(ijlerQ T ijll)
+
+

T
Bl—15k—15j_1-

‘ Ultimate aim is to efficiently compute: SV f(z) ‘

Exercise: Implement procedure to compute SV f(zy) efficiently.

T
Sp—1Yk—1

yg;lyk—l

» Typical choice for S} = I

20 /25

Limited memory methods

Unroll the Sy update loop for m iterations to obtain

Sk = (ViLy Vi)Se (Vi -+ Vie1)
+ Bem (Vi Vi) skm St (Vi in - Vit
+ Bk—m—i—l(vkjil e ijim+2)8k—m+lszfm+l(ijlerQ T ijll)
+
+

T
Bl—15k—15j_1-

‘ Ultimate aim is to efficiently compute: SV f(z) ‘

Exercise: Implement procedure to compute SV f(zy) efficiently.

T
Sp—1Yk—1

yg;lyk—l

» This is related to the BB stepsize!

» Typical choice for S} = I

20 /25

Constrained problems

21/25

Constrained problems

Two-metric projection method

Tpt1 = PX($k - Oszka(l'k))

21/25

Constrained problems

Two-metric projection method

Tpt1 = PX($k - Oszka(.Ik))

» Fundamental problem: not a descent iteration!

21/25

Constrained problems

Two-metric projection method

Tpt1 = PX($k - Oszka(.Ik))

» Fundamental problem: not a descent iteration!
» We may have f(zr41) > f(zk) for all o > 0

21/25

Constrained problems

Two-metric projection method

Tpt1 = PX($k - Oszka(.Ik))

» Fundamental problem: not a descent iteration!
» We may have f(zr41) > f(zk) for all o > 0

» Method might not even recognize a stationary point!

21/25

Failure of projected-Newton methods

Iy

Vila')

P.[z" - aD'V f(2")
" //mxk - (@6 GG -G,

evel sets of f

z=2" - (G76)Y(GTGz" - GTh)

22/25

Constrained problems

» Projected-gradient works! BUT

23/25

Constrained problems

» Projected-gradient works! BUT

» Projected Newton or Quasi-Newton do not work!

23 /25

Constrained problems

» Projected-gradient works! BUT
» Projected Newton or Quasi-Newton do not work!

» More careful selection of Sy, (or Hy) needed

23 /25

Constrained problems

» Projected-gradient works! BUT

» Projected Newton or Quasi-Newton do not work!

» More careful selection of Sy, (or Hy) needed

> See e.g., Bertsekas and Gafni (Projected QN) (1984)

23 /25

Constrained problems

» Projected-gradient works! BUT

» Projected Newton or Quasi-Newton do not work!

» More careful selection of Sy, (or Hy) needed

> See e.g., Bertsekas and Gafni (Projected QN) (1984)
» With simple bound constraints: LBFGS-B

23 /25

Nonsmooth problems

‘ We did not cover many interesting ideas

& Proximal Newton methods

& f(z)+ r(z) problems (see book chapter)
& Nonsmooth BFGS - Lewis, Overton

#® Nonsmooth LBFGS

24 /25

References

QY. Nesterov. Introductory Lectures on Convex Optimization (2004).

O J. Nocedal, S. J. Wright. Numerical Optimization (1999).

QO M. Schmidt, D. Kim, S. Sra. Newton-type methods in machine
learning, Chapter 13 in Optimization for Machine Learning (2011).

25 /25

