Convex Optimization

(EE227A: UC Berkeley)

Lecture 22
(Parallel, Distributed Optimization)

11 Apr, 2013

o

Suvrit Sra

Simple parallelization / distribution

min f(z) =Y, fi(x)

m
Thr = ok — oy gilaw),

where g; € 0f;(x1,) — so that), g; € Of (vy)

Simple parallelization / distribution

min f(z) =Y, fi(x)

m
Th+1 = Tk — Qg Zi:l gi(zk),
where g; € 0f;(x1,) — so that), g; € Of (vy)

& The sum has m components

Simple parallelization / distribution

min f(z) =Y, fi(x)

m
Th+1 = Tk — QX Z¢=1 gi(xk),
where g; € afz(xk) — so that Zz g; € 8f(xk)

& The sum has m components

& Easy parallelization: compute each g;(zy) on diff. processor

Simple parallelization / distribution

min f(z) =Y, fi(x)

m
Th+1 = Tk — QX Z¢=1 gi(xk),
where g; € afz(xk) — so that Zz g; € 8f(:vk)

& The sum has m components
& Easy parallelization: compute each g;(zy) on diff. processor

& Then collect the answers on a master node

Simple parallelization / distribution

min f(z) =Y, fi(x)

m
Th+1 = Tk — QX Z¢=1 gi(xk),
where g; € afz(xk) — so that Zz gi € 8f(:vk)
& The sum has m components
& Easy parallelization: compute each g;(zy) on diff. processor

& Then collect the answers on a master node

& Update ay and xx1 in serial

Simple parallelization / distribution

min f(z) =Y, fi(x)

Tl = Tk — Q Zzl 9i(%k),
where g; € 0f;(x1,) — so that), g; € Of (vy)
& The sum has m components
& Easy parallelization: compute each g;(zy) on diff. processor
& Then collect the answers on a master node
& Update ay and xx1 in serial
& Share / Broadcast x4 and repeat

Simple parallelization / distribution

min f(z) =Y, fi(x)

Th+1l = Tk — O ZZI 9i(%k),
where g; € 0f;(x1,) — so that), g; € Of (vy)
& The sum has m components
& Easy parallelization: compute each g;(zy) on diff. processor
& Then collect the answers on a master node
& Update ay and xx1 in serial
& Share / Broadcast x4 and repeat
& Highly synchronized computation

Simple parallelization / distribution

min f(z) =Y, fi(x)

Th+1l = Tk — O ZZI 9i(%k),
where g; € 0f;(x1,) — so that), g; € Of (vy)
& The sum has m components
& Easy parallelization: compute each g;(zy) on diff. processor
& Then collect the answers on a master node
& Update ay and xx1 in serial
& Share / Broadcast x4 and repeat
& Highly synchronized computation

& Makes sense if computing a single g; is much slower than the
involved costs of synchronization

More realistic methods

If even one of the processors is slow in computing its subgradient
gi(x), the whole update gets blocked due to synchronization

More realistic methods

If even one of the processors is slow in computing its subgradient
gi(x), the whole update gets blocked due to synchronization

Asynchronous updates

Tryr = 2k — o Y _ gi(k — &)
=1

where g;(k — 9;) is a delayed subgradient.
Notation: We write g;(k) = g;(xx)

More realistic methods

& If no delay, then §; = 0 — synchronized case

4/5

More realistic methods

& If no delay, then §; = 0 — synchronized case

& Each processor can have its own delay §;

More realistic methods

& If no delay, then §; = 0 — synchronized case
& Each processor can have its own delay ¢;
& If g;(k) not available from node i, don’t block the update

More realistic methods

& If no delay, then §; = 0 — synchronized case
& Each processor can have its own delay §;
& If g;(k) not available from node i, don’t block the update

& instead we go ahead and use the most recently available
subgradient g;(k — ;) from processor i

More realistic methods

& If no delay, then §; = 0 — synchronized case
& Each processor can have its own delay §;
& If g;(k) not available from node i, don’t block the update

& instead we go ahead and use the most recently available
subgradient g;(k — ;) from processor i

& The delays can be random / arbitrary but bounded

More realistic methods

& If no delay, then §; = 0 — synchronized case
& Each processor can have its own delay ¢;
& If g;(k) not available from node i, don’t block the update

& instead we go ahead and use the most recently available
subgradient g;(k — ;) from processor i

& The delays can be random / arbitrary but bounded

& Key idea to analyze: view asynchronous method as an iterative
gradient-method with deterministic or stochastic errors.

More realistic methods

& If no delay, then §; = 0 — synchronized case
& Each processor can have its own delay ¢;
& If g;(k) not available from node i, don’t block the update

& instead we go ahead and use the most recently available
subgradient g;(k — ;) from processor i

& The delays can be random / arbitrary but bounded

& Key idea to analyze: view asynchronous method as an iterative
gradient-method with deterministic or stochastic errors.

‘ Delays impact speed of convergence

More realistic methods

& If no delay, then §; = 0 — synchronized case
& Each processor can have its own delay ¢;
& If g;(k) not available from node i, don’t block the update

& instead we go ahead and use the most recently available
subgradient g;(k — ;) from processor i

& The delays can be random / arbitrary but bounded

& Key idea to analyze: view asynchronous method as an iterative
gradient-method with deterministic or stochastic errors.

‘ Delays impact speed of convergence ‘

Delay 4, leads to convergence rate: O(+/d/T).

More realistic methods

Algorithm

) 1
Tp41 = argmin {<9i(k —6i), v) + — ||z — $k||g}
x (0753

More realistic methods

Algorithm
. 1
o =arguin { (g6~ 8. 2) + _llo — aulB}
T (0753
Algorithm 2: Mirror descent version
: 1
Tp+1 = argmin {(gz(k —08;), x) + Do(x,:nk)}
T 673

Dy (z,y) is some strongly convex Bregman divergence

More realistic methods

Algorithm
. 1
Tp4+1 = argmin {(éﬁ(k‘ = 6i), @) + —|lv — $k\|§}
T (0753
Algorithm 2: Mirror descent version
: 1
Tp+1 = argmin {(gz(kz —08;), x) + DO(JJ,IIJk)}
T 673

Dy (z,y) is some strongly convex Bregman divergence

‘ The above methods work for stochastic optimization

More realistic methods

Algorithm
. 1
Tp4+1 = argmin {(éﬁ(k‘ = 6i), @) + —|lv — $k\|g}
T (0753
Algorithm 2: Mirror descent version
: 1
Tp+1 = argmin {(gz(kz —08;), x) + DO(JJ,IIJk)}
T 673

Dy(z,y) is some strongly convex Bregman divergence

‘ The above methods work for stochastic optimization

‘ Rates depend on: network topology and delay process

