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min f(z) =Y, fi(x)

Th+1l = Tk — O ZZI 9i(%k),
where g; € 0f;(x1,) — so that ), g; € Of (vy)
& The sum has m components
& Easy parallelization: compute each g;(zy) on diff. processor
& Then collect the answers on a master node
& Update ay and xx1 in serial
& Share / Broadcast x4 and repeat
& Highly synchronized computation

& Makes sense if computing a single g; is much slower than the
involved costs of synchronization
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If even one of the processors is slow in computing its subgradient
gi(x), the whole update gets blocked due to synchronization

Asynchronous updates

Tryr = 2k — o Y _ gi(k — &)
=1

where g;(k — 9;) is a delayed subgradient.
Notation: We write g;(k) = g;(xx)



More realistic methods

& If no delay, then §; = 0 — synchronized case

4/5



More realistic methods

& If no delay, then §; = 0 — synchronized case

& Each processor can have its own delay §;



More realistic methods

& If no delay, then §; = 0 — synchronized case
& Each processor can have its own delay ¢;
& If g;(k) not available from node i, don’t block the update



More realistic methods

& If no delay, then §; = 0 — synchronized case
& Each processor can have its own delay §;
& If g;(k) not available from node i, don’t block the update

& instead we go ahead and use the most recently available
subgradient g;(k — ;) from processor i



More realistic methods

& If no delay, then §; = 0 — synchronized case
& Each processor can have its own delay §;
& If g;(k) not available from node i, don’t block the update

& instead we go ahead and use the most recently available
subgradient g;(k — ;) from processor i

& The delays can be random / arbitrary but bounded



More realistic methods

& If no delay, then §; = 0 — synchronized case
& Each processor can have its own delay ¢;
& If g;(k) not available from node i, don’t block the update

& instead we go ahead and use the most recently available
subgradient g;(k — ;) from processor i

& The delays can be random / arbitrary but bounded

& Key idea to analyze: view asynchronous method as an iterative
gradient-method with deterministic or stochastic errors.



More realistic methods

& If no delay, then §; = 0 — synchronized case
& Each processor can have its own delay ¢;
& If g;(k) not available from node i, don’t block the update

& instead we go ahead and use the most recently available
subgradient g;(k — ;) from processor i

& The delays can be random / arbitrary but bounded

& Key idea to analyze: view asynchronous method as an iterative
gradient-method with deterministic or stochastic errors.

‘ Delays impact speed of convergence




More realistic methods

& If no delay, then §; = 0 — synchronized case
& Each processor can have its own delay ¢;
& If g;(k) not available from node i, don’t block the update

& instead we go ahead and use the most recently available
subgradient g;(k — ;) from processor i

& The delays can be random / arbitrary but bounded

& Key idea to analyze: view asynchronous method as an iterative
gradient-method with deterministic or stochastic errors.

‘ Delays impact speed of convergence ‘

Delay 4, leads to convergence rate: O(+/d/T).
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Algorithm 2: Mirror descent version
: 1
Tp+1 = argmin {(gz(kz —08;), x) + DO(JJ,IIJk)}
T 673

Dy(z,y) is some strongly convex Bregman divergence

‘ The above methods work for stochastic optimization

‘ Rates depend on: network topology and delay process




