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Simple parallelization / distribution

min f(x) =
∑m

i=1 fi(x)

xk+1 = xk − αk
∑m

i=1
gi(xk),

where gi ∈ ∂fi(xk) — so that
∑

i gi ∈ ∂f(xk)

♣ The sum has m components

♣ Easy parallelization: compute each gi(xk) on diff. processor

♣ Then collect the answers on a master node

♣ Update αk and xk+1 in serial

♣ Share / Broadcast xk+1 and repeat

♣ Highly synchronized computation

♣ Makes sense if computing a single gi is much slower than the
involved costs of synchronization
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More realistic methods

If even one of the processors is slow in computing its subgradient
gi(xk), the whole update gets blocked due to synchronization

Asynchronous updates

xk+1 = xk − αk
m∑
i=1

gi(k − δi)

where gi(k − δi) is a delayed subgradient.

Notation: We write gi(k) ≡ gi(xk)
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More realistic methods

♣ If no delay, then δi = 0 – synchronized case

♣ Each processor can have its own delay δi

♣ If gi(k) not available from node i, don’t block the update

♣ instead we go ahead and use the most recently available
subgradient gi(k − δi) from processor i

♣ The delays can be random / arbitrary but bounded

♣ Key idea to analyze: view asynchronous method as an iterative
gradient-method with deterministic or stochastic errors.

Delays impact speed of convergence

Delay δ, leads to convergence rate: O(
√
δ/T ).
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More realistic methods

Algorithm

xk+1 = argmin
x

{
〈gi(k − δi), x〉+

1

αk
‖x− xk‖22

}

Algorithm 2: Mirror descent version

xk+1 = argmin
x

{
〈gi(k − δi), x〉+

1

αk
Dφ(x, xk)

}
Dφ(x, y) is some strongly convex Bregman divergence

The above methods work for stochastic optimization

Rates depend on: network topology and delay process
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