Convex Optimization

(EE227A: UC Berkeley)

Lecture 21
(BCD - Il, Parallel algorithms)

09 Apr, 2013

o

Suvrit Sra

Admin

» Use following URL to submit your project material

» https://www.easychair.org/conferences/?conf=ee227a2013
» You'll have to sign up at easychair for submitting

» Make sure each author is in the system

» Deadline: 4/12/2013; 5pm

25

https://www.easychair.org/conferences/?conf=ee227a2013

Admin

Use following URL to submit your project material
https://www.easychair.org/conferences/?conf=ee227a2013
You'll have to sign up at easychair for submitting

Make sure each author is in the system

Deadline: 4/12/2013; 5pm

I'll assign the papers for review via easychair

25

https://www.easychair.org/conferences/?conf=ee227a2013

Admin

vVvyVvyVvyVvyYVvyy

Use following URL to submit your project material
https://www.easychair.org/conferences/?conf=ee227a2013
You'll have to sign up at easychair for submitting

Make sure each author is in the system

Deadline: 4/12/2013; 5pm

I'll assign the papers for review via easychair

You'll have to upload review to easychair

25

https://www.easychair.org/conferences/?conf=ee227a2013

Admin

VVYyVYVYVYVYVVYYVYY

Use following URL to submit your project material
https://www.easychair.org/conferences/?conf=ee227a2013
You'll have to sign up at easychair for submitting

Make sure each author is in the system

Deadline: 4/12/2013; 5pm

I'll assign the papers for review via easychair

You'll have to upload review to easychair

Reviews are per person

No class on 4/11

Again: project submissions are electronic only!

25

https://www.easychair.org/conferences/?conf=ee227a2013

Randomized BCD

» Let z € RY

3/25

Randomized BCD

> Let x € RY

» Any vector x = Zf\; x;e;, where e; is ith canonical basis
vector (ith column of the identity matrix)

25

Randomized BCD

» Let x € RN
» Any vector x = Zfil x;e;, where e; is ith canonical basis
vector (ith column of the identity matrix)

» Decompose x into n blocks of size V;

25

Randomized BCD

» Let x € RN
» Any vector x = Zf\il x;e;, where e; is ith canonical basis
vector (ith column of the identity matrix)

» Decompose x into n blocks of size V;
» Say block 1 contains coordinates {1,3,5}.
o We write z(1) = (x1,x3,25)

25

Randomized BCD

» Let z € RV
» Any vector x = Zf\il x;e;, where e; is ith canonical basis
vector (ith column of the identity matrix)
» Decompose x into n blocks of size V;
» Say block 1 contains coordinates {1,3,5}.
o We write z(1) = (x1,x3,25)
o Alternatively, 29 = z1e; + r3es3 + rses

25

Randomized BCD

» Let z € RV
» Any vector x = Zf\il x;e;, where e; is ith canonical basis
vector (ith column of the identity matrix)
» Decompose x into n blocks of size V;
» Say block 1 contains coordinates {1,3,5}.
o We write z(1) = (x1,x3,25)
o Alternatively, 29 = z1e; + r3es3 + rses
e Define E; := [e1, e3,e5] (N x 3 matrix)

3/25

Randomized BCD

» Let z € RV
» Any vector x = Zf\il x;e;, where e; is ith canonical basis
vector (ith column of the identity matrix)
» Decompose x into n blocks of size V;
» Say block 1 contains coordinates {1,3,5}.
o We write z(1) = (x1,x3,25)
Alternatively, 29 = z1e; + r3es3 + rses
Define E; := [e1, e3,e5] (N x 3 matrix)
Then, z() = Elx

3/25

Randomized BCD

» Let z € RV
» Any vector x = Zf\il x;e;, where e; is ith canonical basis
vector (ith column of the identity matrix)
» Decompose x into n blocks of size V;
» Say block 1 contains coordinates {1,3,5}.
o We write z(1) = (x1,x3,25)
Alternatively, 29 = z1e; + r3es3 + rses
Define E; := [e1, e3,e5] (N x 3 matrix)
Then, z() = Elx

» More generally, say 7 is a random perm of [N] :={1,2,..., N}

3/25

Randomized BCD

v

v

v

Let £ € RY
Any vector & = Zf\il xz;e;, where e; is ith canonical basis
vector (ith column of the identity matrix)
Decompose x into n blocks of size IV;
Say block 1 contains coordinates {1,3,5}.
o We write z(1) = (x1,x3,25)
Alternatively, 29 = z1e; + r3es3 + rses
Define E; := [e1, e3,e5] (N x 3 matrix)
Then, z() = Elx

More generally, say 7 is a random perm of [N] :={1,2,... N}

Let E be the permutation of I induced by 7

3/25

BCD — Decomposition

» Decomposition: E = [Ey,...

, Ey] into n blocks

/25

BCD — Decomposition

» Decomposition: E = [Ey,..., E,] into n blocks

» Corresponding decomposition of z is

(Blw,Elx,..., BTz)= (W), 2@ . 2)
~—~— N ~—~—

Nit Not -+ +Np=N

25

BCD — Decomposition

» Decomposition: E = [Ey,..., E,] into n blocks

» Corresponding decomposition of z is

T T T 1 2
(ETe,ETe, ..., Elz)= (W, @, ..
e S~~~
Ni+ Nt - +No=N

» Observation:

BTg, = v 1=
B ONmNJ‘ P F J.

25

BCD — Decomposition

» Decomposition: E = [Ey,..., E,] into n blocks

» Corresponding decomposition of z is

(Blw,Elx,..., BTz)= (W), 2@ . 2)
~—~— N ~—~—
Ni+ Not -+ +N,=N

» Observation:

ETE, = In; 1=
t ONmNJ‘ Z#]

» So the E;s define our partitioning of the coordinates

25

BCD — Decomposition

Decomposition: E = [Ey,..., E,] into n blocks

Corresponding decomposition of x is

(Blw,Elx,..., BTz)= (W), 2@ . 2)
~—~— N ~—~—
Ni+ Nat -+ +Np=N

Observation:
Iy, 1=7
EfB;=¢ ™ -
ONi,Nj ? #]
So the E;s define our partitioning of the coordinates
Just fancier notation for a random partition of coordinates

Now with this notation . ..

25

BCD - Setup

min f(x) where x € RY

/25

BCD - Setup

min f(x) where x € RY

Assume gradient of block i is Lipschitz continuous™*

25

BCD - Setup

min f(x) where x € RY

Assume gradient of block i is Lipschitz continuous™*
IVif (@ + Eih) = Vif ()|« < Lil|]

Block gradient V; f(x) is projection of full grad: EI'Vf(x)

5/25

BCD - Setup

min f(x) where x € RY

Assume gradient of block i is Lipschitz continuous™*
IVif (@ + Eih) = Vif ()|« < Lil|]

Block gradient V; f(x) is projection of full grad: EI'Vf(x)
** — each block can use its own norm

BCD - Setup

min f(x) where x € RY

Assume gradient of block i is Lipschitz continuous™*
IVif (@ + Eih) = Vif ()|« < Lil|]

Block gradient V; f(x) is projection of full grad: EI'Vf(x)
** — each block can use its own norm

Block Coordinate “Gradient” Descent

25

BCD - Setup

min f(x) where x € RY

Assume gradient of block i is Lipschitz continuous™*
IVif (@ + Eih) = Vif ()|« < Lil|]

Block gradient V; f(x) is projection of full grad: EI'Vf(x)
** — each block can use its own norm

Block Coordinate “Gradient” Descent

» Using the descent lemma, we have blockwise upper bounds

flx+ Eih) < f(x) + (Vif (@), h) + S [hl*, fori=1,....n.

5/25

BCD - Setup

min f(x) where x € RY

Assume gradient of block i is Lipschitz continuous™*
IVif (@ + Eih) = Vif ()|« < Lil|]

Block gradient V; f(x) is projection of full grad: EI'Vf(x)
** — each block can use its own norm

Block Coordinate “Gradient” Descent

» Using the descent lemma, we have blockwise upper bounds

flx+ Eih) < f(x) + (Vif (@), h) + S [hl*, fori=1,....n.

» At each step, minimize these upper bounds!

5/25

Randomized BCD

» For k > 0 (no init. of & necessary)

/25

Randomized BCD

» For £ >0 (no init. of & necessary)
» Pick a block i from [n] with probability p; > 0

25

Randomized BCD

» For £ >0 (no init. of & necessary)
» Pick a block i from [n] with probability p; > 0
» Optimize upper bound (partial gradient step) for block i

h = arg}ILnin flme) + (Vif(zr), h) + 5t ||A)?

h = —L%.Vif(l'k)

6

25

Randomized BCD

» For £ >0 (no init. of & necessary)
» Pick a block i from [n] with probability p; > 0
» Optimize upper bound (partial gradient step) for block i

h = arg}ILnin f(xr) +(Vif(xr), h) + %”hHQ
h = —L%.Vif(l'k)

» Update the impacted coordinates of x, formally

6

25

Randomized BCD

» For £ >0 (no init. of & necessary)
» Pick a block i from [n] with probability p; > 0
» Optimize upper bound (partial gradient step) for block i

h = argmin f(@y) + (Vif (@), h) + 3 Al
h = —L%.Vif(l'k)
» Update the impacted coordinates of x, formally

a:grl — :1:,(3) +h

Ty 4k — 1BV f(zy)

6

25

Randomized BCD

» For £ >0 (no init. of & necessary)
» Pick a block i from [n] with probability p; > 0
» Optimize upper bound (partial gradient step) for block i

h = arg}ILnin f(xr) +(Vif(xr), h) + %”hHQ
h = —L%.Vif(l'k)
» Update the impacted coordinates of x, formally
a:grl — :1:,(5) +h
Tpyy @ — 7BV f ()

Notice: Original BCD had: 3:,(:) =argmin, f(..., h ,...)
block i

6/25

Randomized BCD

» For £ >0 (no init. of & necessary)
» Pick a block i from [n] with probability p; > 0
» Optimize upper bound (partial gradient step) for block i

h = argmin f(@y) + (Vif (@), h) + 3 Al
h = —L%.Vif(l'k)
» Update the impacted coordinates of x, formally

a:grl — :1:,(3) +h

Ty 4k — 1BV f(zy)

Notice: Original BCD had: 3:,(:) =argmin, f(..., h ,...)
block i

We'll call this BCM (Block Coordinate Minimization)

6

25

Randomized BCD — slight extension

min f(x) + r(x)

/25

Randomized BCD — slight extension

min f(x) + r(x)

» If block separable r(zx) := > ri(z®)

/25

Randomized BCD — slight extension

min f(x) + r(x)

» If block separable r(zx) := > ri(z®)

7y = argmin f (i) + (Vif (2i), b+ 51017 + (B @+ 1)
.’,E](;) — prOXri(' :)

Exercise: Fill in the dots

Randomized BCD — slight extension

min f(x) + r(x)

» If block separable r(zx) := > ri(z®)

zy) = arg}rlninf(iﬂk) +(Vif (@), h) + GBI + ri(Bl @y, + h)
:v,(j) = prox,, (---)

Exercise: Fill in the dots

h = prox(y 1., (B @x — L%sz(mk))

25

Randomized BCD - analysis

h < argminy, f(zx) + (Vif(zi), h) + Z||h[?

/25

Randomized BCD - analysis

h < argminy, f(zx) + (Vif(zi), h) + Z||h[?

Descent:

L1

f(xpi1)

= x + E;h
< flak) + (Vif (), h) + L2

25

Randomized BCD - analysis

h < argminy, f(zx) + (Vif(zi), h) + Z||h[?

Descent:

Lh+1
f(xpi1)

Th41

= x + E;h
< flak) + (Vif (), h) + L2
= T — L%Ezvzf(mk)

VAN

25

Randomized BCD - analysis

h < argminy, f(zx) + (Vif(zi), h) + Z||h[?

Descent:
Tpi1 = T+ Eih
Flaie) < flxr) + (Vif (), b) + 5t||h)?
Tpt1 = a?k—L%EiVif(iL‘k)
2
an) < @) = EIVif @l + 5 ||~ Var @)

Randomized BCD - analysis

h < argminy, f(zx) + (Vif(zi), h) + Z||h[?

Descent:

L1
(1)
Lp+1

f(®rt1)
f(xps1)

x + E;h

flar) + (Vif (r), b) + 5[12))?

x, — 1BV f(xr)

fl@n) = £Vt @l + 5 || £ Vs)|
f@r) = 5p IV f ()],

VAN

IN

IN

fl@r) = f(@ri1) > 5 [Vif (@)]1°

Randomized BCD - analysis

Expected descent:

flar) —E[f (@rpalen)] = D pi(f() = fl@e — £EVif (z))
i=1

/ 25

Randomized BCD - analysis

Expected descent:

f(xr) — E[f (zpr1|zr)] =

M=

pi(f(®x) — f(zr — - EVif(21)))
1

.
Il

M=

ot IVif (@)
1

<.
I

25

Randomized BCD - analysis

Expected descent:

f(z)

— E[f (xp41|xr)]

v

S pi(flar) — flan — EEVif (@)
=1

S B Vif ()]

=1

LIV f(@)l3 (suitable).

Randomized BCD - analysis

Expected descent:

flap) —Ef (xplon)] = Y pi(f(@e) — f(@r — £ EVif(w1)))

a1 Vi f ()|

M:

= %HVf(:z:k)HW (suitable W).

Exercise: What is the expected descent with uniform probabilities?

25

Randomized BCD - analysis

Expected descent:
f(@r) — Elf (T |on)] = sz fley — 4 EVif(zy)))

> Z%invif(wkw
=1
= YV} (suitable W).

Exercise: What is the expected descent with uniform probabilities?

Descent combined with some more notation and hard work yields

oY Lillag —al|?)

as the iteration complexity of obtaining E[f(xx)] — f* <€

25

Exercise

vVvyVvyVvyyvyy

Recall Lasso problem: min || Az — b[|> + X[z |1
Here x € RY

Make n = N blocks

Show what the Randomized BCD iterations look like
Notice, 1D prox operations for A| - | arise

Try to implement it as efficiently as you can (i.e., do not copy or
update vectors / coordinates than necessary)

10/25

Exercise — details

Assuming n = NN blocks, each update is scalar valued.
» Letzg=0; yp=Axg—b=—-b
» Fork>0

e Pick random coordinate j

e Compute o < (aj, y) —i.e., V;f(xy)

e Min ah + 5ih? + Al

h = proxy.(zj — L%_oz)
)

h = sgn(x; — Lija max(|z; — Lija] - \,0)

11/25

Exercise — details

Assuming n = NN blocks, each update is scalar valued.
» Letzg=0; yp=Axg—b=—-b
» Fork>0

e Pick random coordinate j

e Compute o < (aj, y) —i.e., V;f(xy)

e Min ah + Lih2 + A

h = proxy.(zj — L%_oz)
)

h = sgn(x; — Lija max(|z; — Lija] - \,0)

e Update: 1 = T, + he;

11/25

Exercise — details

Assuming n = NN blocks, each update is scalar valued.
» Letzg=0; yp=Axg—b=—-b
» Fork>0

e Pick random coordinate j

e Compute o < (aj, y) —i.e., V;f(xy)

e Min ah + Lih2 + A

h = proxy.(zj — L%_oz)
)

h = sgn(x; — Lija max(|z; — Lija] - ,0)

Update: x4 = Ty, + he;
Update: yi41 < yi + ha;

11/25

Parallel BCD

Parallel BCD

Previously

mlnf(x) = f(xla"'7$n)

13/25

Parallel BCD

Previously

min f(z) = f(@1,.. . 2)

What if?

min f(z) = 32, fi(x:)

13 /25

Parallel BCD

Previously

min f(z) = f(@1,.. . 2)

What if?

min f(z) = 32, fi(x:)

» Can solve all n problems independently in parallel

» In theory: n times speedup possible compared to serial case

13 /25

Parallel BCD

Previously

min f(z) = f(@1,.. . 2)

What if?

min f(z) = 32, fi(x:)

» Can solve all n problems independently in parallel
» In theory: n times speedup possible compared to serial case

» So if objective functions are “almost separable” we would still
expect high speedup, diminished by amount of separability

» Big data problems often have this “almost separable” structure!

13 /25

Partial Separability

Consider the sparse data matrix

dir di2
doo doag c Rmxn

14 /25

Partial Separability

Consider the sparse data matrix

dir di2
daa da3 c RmMx"

)

» Objective f(z) = ||Dx —b||3 =3 (dFx — b;)? also equals
(di1z1 + dioza — b1)® + (daoxa + dogws — b)) + - -

» Each term depends on only 2 coordinates

» Formally, we could write this as

f(x):ZJEJfJ(x)v
where 7 = {{1,2},{2,3}, -}

» Key point: f;(z) depends only on z; for j € J.

14 /25

Partial Separability

min f(z) s.t. x € R”

Def. Let # be a collection of subsets of {1,...,n}. We say f is
partially separable of degree w if it can be written as

fl@) =Y fi(x),
Je g

where each f; depends only on z; for j € J, and

J<w Ve 7.

Example: If Dy, is a sparse matrix, then w = maxi<;<m ||diT||0

15/25

Partial Separability

min f(z) s.t. x € R”

Def. Let # be a collection of subsets of {1,...,n}. We say f is
partially separable of degree w if it can be written as

fl@) =Y fi(x),
Je g

where each f; depends only on z; for j € J, and

J<w Ve 7.

Example: If Dy, is a sparse matrix, then w = maxj<;<m ||diT||0
Exercise: Extend this notion to & = (z(1), ... z(")
Hint: Now, f; will depend only on z9) for j € J

15/25

Parallel Stochastic Gradient!

Each core runs the computation:
Sample coordinates J from {1,...,n} (all sets of variables)
Read current state of x; from shared memory

For each individual coordinate j € J
zj x5 — o[V (el

16 /25

Parallel Stochastic Gradient!

Each core runs the computation:
Sample coordinates J from {1,...,n} (all sets of variables)
Read current state of x; from shared memory
For each individual coordinate j € J
zj x5 — o[V (el

» Atomic update only for z; <— z; — a (not for gradient)

16 /25

Parallel Stochastic Gradient!

Each core runs the computation:
Sample coordinates J from {1,...,n} (all sets of variables)
Read current state of x; from shared memory
For each individual coordinate j € J
zj x5 — o[V (el
» Atomic update only for z; <— z; — a (not for gradient)

» Since the actual coordinate j can arise in various J,
processors can overwrite each others’ work.

16 /25

Parallel Stochastic Gradient!

Each core runs the computation:
Sample coordinates J from {1,...,n} (all sets of variables)
Read current state of x; from shared memory
For each individual coordinate j € J
zj x5 — o[V (el
» Atomic update only for z; <— z; — a (not for gradient)

» Since the actual coordinate j can arise in various J,
processors can overwrite each others’ work.

» But if partial overlaps (separability), coordinate j does not
appear in too many different subsets J, method works fine!

16 /25

Parallel BCD

Choose initial point xg € RN

17/25

Parallel BCD

Choose initial point xg € RN
For k>0
e Randomly pick (in parallel) a set of blocks S;, C {1,...,n}

17/25

Parallel BCD

Choose initial point xg € RN
For k>0

e Randomly pick (in parallel) a set of blocks S;, C {1,...,n}
e Perform BCD updates (in parallel) for i € S

i i 1
ml(ﬁll — aclg) - Vif(xk)

Bw;

— w; typically L;; 8 depends on degree of separability w

17/25

Parallel BCD

Choose initial point xg € RN
For k>0

e Randomly pick (in parallel) a set of blocks S;, C {1,...,n}
e Perform BCD updates (in parallel) for i € Sj

i i 1
ml(ﬁll — aclg) - Vif(xk)

Pw;
— w; typically L;; 8 depends on degree of separability w

& Uniform sampling of blocks (or just coordinates)

& More careful sampling leads to better guarantees

17/25

Parallel BCD

Choose initial point xg € RN
For k>0

e Randomly pick (in parallel) a set of blocks S;, C {1,...,n}
e Perform BCD updates (in parallel) for i € Sj

i i 1
ml(ﬁll — aclg) - Vif(xk)

Pw;
— w; typically L;; 8 depends on degree of separability w

& Uniform sampling of blocks (or just coordinates)
& More careful sampling leads to better guarantees

® Theory requires atomic updates

17/25

Parallel BCD

Choose initial point xg € RN
For k>0

e Randomly pick (in parallel) a set of blocks S;, C {1,...,n}
e Perform BCD updates (in parallel) for i € Sj

ml(czll — xl(;) _ 5wvzf($k)
— w; typically L;; 8 depends on degree of separability w
& Uniform sampling of blocks (or just coordinates)
& More careful sampling leads to better guarantees
® Theory requires atomic updates

& Useful to implement asynchronously (i.e., use whatever latest
2 a given core has access to)

17/25

Parallel BCD

Choose initial point xg € RN
For k>0

e Randomly pick (in parallel) a set of blocks S;, C {1,...,n}
e Perform BCD updates (in parallel) for i € Sj

ml(gl — acl(;) ~ Bu; Vif(xy)
— w; typically L;; 8 depends on degree of separability w
& Uniform sampling of blocks (or just coordinates)
& More careful sampling leads to better guarantees
® Theory requires atomic updates

& Useful to implement asynchronously (i.e., use whatever latest
2 a given core has access to)

& Theory of above method requires guaranteed descent

17/25

ADMM & Co.

Background

min f(z)
s.t. Az = b.

19/25

Background

min f(x)

s.t. Ax = b.

Typical approach:
& Form the Lagrangian: L(x,y) = f(x) +yT (Az — b)

19/25

Background

min f(z)

s.t. Ax = b.

Typical approach:
& Form the Lagrangian: L(x,y) = f(x) +yT (Az — b)

& Compute dual function

9(y) :=min L(z,y)

19/25

Background

min f(z)

s.t. Ax = b.

Typical approach:
& Form the Lagrangian: L(x,y) = f(x) +yT (Az — b)

& Compute dual function

9(y) :=min L(z,y)

& Solve dual problem: max, g(y) to get y*

19/25

Background

min f(z)

s.t. Ax = b.

Typical approach:
& Form the Lagrangian: L(x,y) = f(x) +yT (Az — b)

& Compute dual function

9(y) :=min L(z,y)

& Solve dual problem: max, g(y) to get y*

& Recover primal solution: z* = argmin L(z, y*)

19/25

How to solve dual?

Use some gradient method on dual!

20/25

How to solve dual?

Use some gradient method on dual!

Yk+1 = Yk + Vg (yr)

(notice 4y, since we are doing ascent)

20 /25

How to solve dual?

Use some gradient method on dual!

Yk+1 = Yk + Vg (yr)

(notice 4y, since we are doing ascent)

But what is Vg(y)?

20 /25

How to solve dual?

Use some gradient method on dual!

Yk+1 = Yk + Vg (yr)

(notice 4y, since we are doing ascent)

But what is Vg(y)?

gly) = minf(z)+y"(Az—b)
Vg(ye) = Az —0b

Z = argmin L(x,yx)
x

20 /25

Dual ascent method

Tpy1 = argmin L(x,yk)
Yet1 = Ykt ar(Azpyr —b)

21/25

Dual ascent method

Tpr1 = argmin L(zx,yk)
Yer1 = Yk +ag(Azgir —b)

Works, but expensive; needs strong technical assumptions on f(x)

21/25

Dual ascent method

Tpr1 = argmin L(zx,yk)
Ykr1 = Yk +ar(Azpi — D)

Works, but expensive; needs strong technical assumptions on f(x)

What if fully separable f
f(@) =32, filzi)

21/25

Dual ascent — fully separable

For fully separable f, the Lagrangian is also fully separable

L(z,y) = > (fi(z:) +y" Ass) — y7b

2

22 /25

Dual ascent — fully separable

For fully separable f, the Lagrangian is also fully separable

L(z,y) = > (fi(z:) +y" Ass) — y7b

2

Thus, argmin L(x, yi) splits into n separate minimizations

(2i)k+1 = argmin(fi(z;) + y” Asz;)

Ty

<Y All can be done in parallel

22 /25

Dual decomposition

The above idea leads to dual decomposition—classic idea from the
60s (Everett, Danzig, Wolfe, Benders, ...)

23 /25

Dual decomposition

The above idea leads to dual decomposition—classic idea from the
60s (Everett, Danzig, Wolfe, Benders, ...)

[wilker = argmin(fi(z;) +y Aix;) i=1,...,n
x;
n

verr = v+ oD Ailwilrp —b)
=1

23 /25

Dual decomposition

The above idea leads to dual decomposition—classic idea from the
60s (Everett, Danzig, Wolfe, Benders, ...)

(il = argmin(fi(z;) +y" Aiz) i=1,...,n
x;
n
verr = v+ oD Ailwilrp —b)
=1

distributed processing
» distribute yg

23 /25

Dual decomposition

The above idea leads to dual decomposition—classic idea from the
60s (Everett, Danzig, Wolfe, Benders, ...)

(il = argmin(fi(z;) +y" Aiz) i=1,...,n
x;
n
verr = v+ oD Ailwilrp —b)
=1

distributed processing
» distribute yg

» compute (z;)r+1 (simultaneously)

23 /25

Dual decomposition

The above idea leads to dual decomposition—classic idea from the
60s (Everett, Danzig, Wolfe, Benders, ...)

(il = argmin(fi(z;) +y" Aiz) i=1,...,n
x;
n
verr = v+ oD Ailwilrp —b)
=1

distributed processing
» distribute yg
» compute (z;)r+1 (simultaneously)

» collect updated values A;(z;)k+1

23 /25

Dual decomposition

The above idea leads to dual decomposition—classic idea from the
60s (Everett, Danzig, Wolfe, Benders, ...)

(il = argmin(fi(z;) +y" Aiz) i=1,...,n
x;
n
verr = v+ oD Ailwilrp —b)
=1

distributed processing
» distribute yg
» compute (z;)r+1 (simultaneously)
» collect updated values A;(z;)g4+1

» centralize to compute yx1

This method works but can be often very slow.

23 /25

Next time

» ADMM for distributed computation

» Basic methods in distributed optimization

24 /25

References

& P. Richtarik, M. Taka¢. Parallel Coordniate Descent Methods
for Big Data Optimization (Dec. 2012)

& F. Niu, et al. Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent

& S. P. Boyd. Slides on ADMM.

25 /25

