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◦
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Organizational

I HW2 deadline now 7th March, 2013

I Project guidelines now on course website

I Email me to schedule meeting if you need

I Midterm on: 19th March, 2013 (in class or take home?)
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Recap

♠ xk+1 = PX (xk − αkgk)
♠ Different choices of αk (const, diminishing, Polyak)

♠ Can be slow; tuning αk not so nice

♠ How to decide when to stop?

♠ Some other subgradient methods
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Differentiable optimization

min f0(x) s.t. fi(x) ≤ 0, i = 1, . . . ,m

KKT Necessary conditions

fi(x
∗) ≤ 0, i = 1, . . . ,m (primal feasibility)
λ∗i ≥ 0, i = 1, . . . ,m (dual feasibility)

λ∗i fi(x
∗) = 0, i = 1, . . . ,m (compl. slackness)

∇xL(x, λ∗)|x=x∗ = 0 (Lagrangian stationarity)

Could try to solve these directly!
Nonlinear equations; sometimes solvable directly

Usually quite hard; so we’ll discuss iterative methods
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Descent methods

minx f(x)

x∗ ∇f(x∗) = 0

xk

xk+1

. . .
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Gradient methods

Unconstrained optimization

min f(x) x ∈ Rn.

I Suppose we have a vector x ∈ Rn for which ∇f(x) 6= 0

I Consider the ray: x(α) = x− α∇f(x) for α ≥ 0

I As before, make first-order Taylor expansion around x

f(x(α)) = f(x) + 〈∇f(x), x(α)− x〉+ o(‖x(α)− x‖2)

= f(x)− α‖∇f(x)‖22 + o(α‖∇f(x)‖2)

= f(x)− α‖∇f(x)‖22 + o(α)

I For α near 0, α‖∇f(x)‖22 dominates o(α)

I For positive, sufficiently small α, f(x(α)) smaller than f(x)
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Descent methods

I Carrying the idea further, consider

x(α) = x+ αd,

where direction d ∈ Rn obtuse to ∇f(x), i.e.,

〈∇f(x), d〉 < 0.

I Again, we have the Taylor expansion

f(x(α)) = f(x) + α〈∇f(x), d〉+ o(α),

where 〈∇f(x), d〉 dominates o(α) for suff. small α

I Since d is obtuse to ∇f(x), this implies f(x(α)) < f(x)
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Descent methods

x
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Descent methods

∇f(x)

−∇f(x)

x
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Descent methods

∇f(x)

−∇f(x)

x
x− α∇f(x)

x− δ∇f(x)
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Descent methods

∇f(x)

−∇f(x)

x
x− α∇f(x)

x− δ∇f(x)
d

x+ α2d
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Algorithm

1 Start with some guess x0;
2 For each k = 0, 1, . . .

xk+1 ← xk + αkd
k

Check when to stop (e.g., if
∇f(xk+1) = 0)
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Gradient methods

xk+1 = xk + αkd
k, k = 0, 1, . . .

stepsize αk ≥ 0, usually ensures f(xk+1) < f(xk)

Descent direction dk satisfies

〈∇f(xk), dk〉 < 0

Numerous ways to select αk and dk

Usually methods seek monotonic descent

f(xk+1) < f(xk)

10 / 34



Gradient methods

xk+1 = xk + αkd
k, k = 0, 1, . . .

stepsize αk ≥ 0, usually ensures f(xk+1) < f(xk)

Descent direction dk satisfies

〈∇f(xk), dk〉 < 0

Numerous ways to select αk and dk

Usually methods seek monotonic descent

f(xk+1) < f(xk)

10 / 34



Gradient methods

xk+1 = xk + αkd
k, k = 0, 1, . . .

stepsize αk ≥ 0, usually ensures f(xk+1) < f(xk)

Descent direction dk satisfies

〈∇f(xk), dk〉 < 0

Numerous ways to select αk and dk

Usually methods seek monotonic descent

f(xk+1) < f(xk)

10 / 34



Gradient methods

xk+1 = xk + αkd
k, k = 0, 1, . . .

stepsize αk ≥ 0, usually ensures f(xk+1) < f(xk)

Descent direction dk satisfies

〈∇f(xk), dk〉 < 0

Numerous ways to select αk and dk

Usually methods seek monotonic descent

f(xk+1) < f(xk)

10 / 34



Gradient methods

xk+1 = xk + αkd
k, k = 0, 1, . . .

stepsize αk ≥ 0, usually ensures f(xk+1) < f(xk)

Descent direction dk satisfies

〈∇f(xk), dk〉 < 0

Numerous ways to select αk and dk

Usually methods seek monotonic descent

f(xk+1) < f(xk)

10 / 34



Generic matlab code

f unc t i on [ x , f ] = grad ientDescent ( x0 )

fx = @( x ) ob j fn ( x ) ; % h a n d l e to f ( x )
gfx = @( x ) grad ( x ) ; % h a n d l e to n a b l a f ( x )

x=x0 ; % i n p u t s t a r t i n g p o i n t
maxiter = 100 ; % t u n a b l e pa ram et e r

f o r k=1: maxiter % or o t h e r c r i t e r i o n
g = gfx ( x ) ; % compute g r a d i e n t a t x
a l = s t e p S i z e ( x ) ; % compute a s t e p s i z e
x = x − a l ∗g ; % pe r f o rm update
f p r i n t f ( ’ I t e r : %d\ t Obj : %d\n ’ , fx ( x ) ) ;

end
end
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Gradient methods – direction

xk+1 = xk + αkd
k, k = 0, 1, . . .

I Different choices of direction dk

◦ Scaled gradient: dk = −Dk∇f(xk), Dk � 0

◦ Newton’s method: (Dk = [∇2f(xk)]−1)

◦ Quasi-Newton: Dk ≈ [∇2f(xk)]−1

◦ Steepest descent: Dk = I

◦ Diagonally scaled: Dk diagonal with Dk
ii ≈

(
∂2f(xk)
(∂xi)2

)−1

◦ Discretized Newton: Dk = [H(xk)]−1, H via finite-diff.

◦ . . .

Exercise: Verify that 〈∇f(xk), dk〉 < 0 for above choices
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Gradient methods – stepsize

I Exact: αk := argmin
α≥0

f(xk + αdk)

I Limited min: αk = argmin
0≤α≤s

f(xk + αdk)

I Armijo-rule. Given fixed scalars, s, β, σ with 0 < β < 1 and
0 < σ < 1 (chosen experimentally). Set

αk = βmks,

where we try βms for m = 0, 1, . . . until sufficient descent

f(xk)− f(x+ βmsdk) ≥ −σβms〈∇f(xk), dk〉

If 〈∇f(xk), dk〉 < 0, stepsize guaranteed to exist
Usually, σ small ∈ [10−5, 0.1], while β from 1/2 to 1/10
depending on how confident we are about initial stepsize s.
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Gradient methods – stepsize

I Constant: αk = 1/L (for suitable value of L)

I Diminishing: αk → 0 but
∑

k αk =∞.

Latter condition ensures that
{
xk
}

does not converge to
nonstationary points.
Say, xk → x̄; then for sufficiently large m and n, (m > n)

xm ≈ xn ≈ x̄, xm ≈ xn −
(
m−1∑
k=n

αk

)
∇f(x̄).

The sum can be made arbitrarily large, contradicting
nonstationarity of x̄
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Gradient methods – nonmonotonic steps∗

Stepsize computation can be expensive
Convergence analysis depends on monotonic descent

Give up search for stepsizes
Use closed-form formulae for stepsizes
Don’t insist on monotonic descent?
(e.g., diminishing stepsizes do not enforce monotonic descent)

Barzilai & Borwein stepsizes

xk+1 = xk − αk∇f(xk), k = 0, 1, . . .

αk =
〈uk, vk〉
‖vk‖2

, αk =
‖uk‖2

〈uk, vk〉
uk = xk − xk−1, vk = ∇f(xk)−∇f(xk−1)
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Barzilai-Borwein steps – remarks

Intriguing behavior:

♠ Akin to simultaneous descent-direction × step
♠ Result in non-monotonic descent
♠ Work quite well empirically
♠ Good for large-scale problems
♠ Difficult convergence analysis
♠ Often supplemented with nonmonotonic line-search
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Convergence theory

17 / 34



Gradient descent – convergence

xk+1 = xk − αk∇f(xk), k = 0, 1, . . .

Convergence

Theorem ‖∇f(xk)‖2 → 0 as k →∞

Convergence rate with constant stepsize

Theorem Let f ∈ C1
L and

{
xk
}

be sequence generated as above,
with αk = 1/L. Then, f(xT+1)− f(x∗) = O(1/T ).

Proof plan:

I Show that f(xk+1) < f(xk) (for suitable L)

I Measure progress via ‖xk − x∗‖22 as before

I Sum up bounds, induct to obtain rate
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I Measure progress via ‖xk − x∗‖22 as before

I Sum up bounds, induct to obtain rate
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Gradient descent – convergence

Assumption: Lipschitz continuous gradient; denoted f ∈ C1
L

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2

♣ Gradient vectors of closeby points are close to each other

♣ Objective function has “bounded curvature”

♣ Speed at which gradient varies is bounded

Lemma (Descent). Let f ∈ C1
L. Then,

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ L
2 ‖x− y‖22

For convex f , compare with
f(x) ≥ f(y) + 〈∇f(y), x− y〉.
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Descent lemma

Proof. Since f ∈ C1
L, by Taylor’s theorem, for the vector

zt = y + t(x− y) we have

f(x) = f(y) +
∫ 1

0 〈∇f(zt), x− y〉dt.

Add and subtract 〈∇f(y), x− y〉 on rhs we have

f(x)− f(y)− 〈∇f(y), x− y〉 =
∫ 1

0
〈∇f(zt)−∇f(y), x− y〉dt

|f(x)− f(y)− 〈∇f(y), x− y〉| ≤
∣∣∣∫ 1

0
〈∇f(zt)−∇f(y), x− y〉dt

∣∣∣
≤

∫ 1

0
|〈∇f(zt)−∇f(y), x− y〉|dt

≤
∫ 1

0
‖∇f(zt)−∇f(y)‖2x− ydt

≤ L
∫ 1

0
t‖x− y‖22dt

= L
2 ‖x− y‖22.

Bounds f(x) above and below with quadratic functions
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Descent lemma – corollaries

Coroll. 1 If f ∈ C1
L, and 0 < αk < 2/L, then f(xk+1) < f(xk)

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ L
2 ‖xk+1 − xk‖2

= f(xk)− αk‖∇f(xk)‖22 +
α2
kL
2 ‖∇f(xk)‖22

= f(xk)− αk(1− αk
2 L)‖∇f(xk)‖22

Thus, if αk < 2/L we have descent. Minimize over αk to get best
bound: this yields αk = 1/L—we’ll use this stepsize

21 / 34



Descent lemma – corollaries

Coroll. 1 If f ∈ C1
L, and 0 < αk < 2/L, then f(xk+1) < f(xk)

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ L
2 ‖xk+1 − xk‖2

= f(xk)− αk‖∇f(xk)‖22 +
α2
kL
2 ‖∇f(xk)‖22

= f(xk)− αk(1− αk
2 L)‖∇f(xk)‖22

Thus, if αk < 2/L we have descent. Minimize over αk to get best
bound: this yields αk = 1/L—we’ll use this stepsize

21 / 34



Descent lemma – corollaries

Coroll. 1 If f ∈ C1
L, and 0 < αk < 2/L, then f(xk+1) < f(xk)

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ L
2 ‖xk+1 − xk‖2

= f(xk)− αk‖∇f(xk)‖22 +
α2
kL
2 ‖∇f(xk)‖22

= f(xk)− αk(1− αk
2 L)‖∇f(xk)‖22

Thus, if αk < 2/L we have descent. Minimize over αk to get best
bound: this yields αk = 1/L—we’ll use this stepsize

21 / 34



Descent lemma – corollaries

Coroll. 1 If f ∈ C1
L, and 0 < αk < 2/L, then f(xk+1) < f(xk)

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ L
2 ‖xk+1 − xk‖2

= f(xk)− αk‖∇f(xk)‖22 +
α2
kL
2 ‖∇f(xk)‖22

= f(xk)− αk(1− αk
2 L)‖∇f(xk)‖22

Thus, if αk < 2/L we have descent.

Minimize over αk to get best
bound: this yields αk = 1/L—we’ll use this stepsize

21 / 34



Descent lemma – corollaries

Coroll. 1 If f ∈ C1
L, and 0 < αk < 2/L, then f(xk+1) < f(xk)

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ L
2 ‖xk+1 − xk‖2

= f(xk)− αk‖∇f(xk)‖22 +
α2
kL
2 ‖∇f(xk)‖22

= f(xk)− αk(1− αk
2 L)‖∇f(xk)‖22

Thus, if αk < 2/L we have descent. Minimize over αk to get best
bound: this yields αk = 1/L—we’ll use this stepsize

21 / 34



Convergence

I We showed that

f(xk)− f(xk+1) ≥ c
L‖∇f(xk)‖22,

(c = 1/2 for αk = 1/L; c has diff. value for other stepsize rules)

I Sum up above inequalities for k = 0, 1, . . . , T to obtain

c

L

T∑
k=0

‖∇f(xk)‖22 ≤ f(x0)− f(xT+1) ≤ f(x0)− f∗

I We assume f∗ > −∞, so rhs is some fixed positive constant

I Thus, as k →∞, lhs must converge; thus

‖∇f(xk)‖2 → 0 as k →∞.

I Notice, we did not require f to be convex . . .
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Descent lemma – another corollary

Corollary 2 If f is a convex function ∈ C1
L, then

1
L‖∇f(x)−∇f(y)‖22 ≤ 〈∇f(x)−∇f(y), x− y〉,

Exercise: Prove this corollary.
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Convergence rate – convex f

? Let αk = 1/L

? Shorthand notation gk = ∇f(xk), g∗ = ∇f(x∗)

? Let rk := ‖xk − x∗‖2 (distance to optimum)

Lemma Distance to min shrinks monotonically; rk+1 ≤ rk
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? Let rk := ‖xk − x∗‖2 (distance to optimum)

Lemma Distance to min shrinks monotonically; rk+1 ≤ rk

Proof. Descent lemma implies that: f(xk+1) ≤ f(xk)− 1
2L‖gk‖22

Consider, r2
k+1 = ‖xk+1 − x∗‖22 = ‖xk − x∗ − αkgk‖22.

r2
k+1 = r2

k + α2
k‖gk‖22 − 2αk〈gk, xk − x∗〉

= r2
k + α2

k‖gk‖22 − 2αk〈gk − g∗, xk − x∗〉 as g∗ = 0

≤ r2
k + α2

k‖gk‖22 − 2αk
L ‖gk − g∗‖22 (Coroll. 2)

= r2
k − αk( 2

L − αk)‖gk‖22.

Since αk < 2/L, it follows that rk+1 ≤ rk
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k‖gk‖22 − 2αk〈gk, xk − x∗〉

= r2
k + α2

k‖gk‖22 − 2αk〈gk − g∗, xk − x∗〉 as g∗ = 0

≤ r2
k + α2

k‖gk‖22 − 2αk
L ‖gk − g∗‖22 (Coroll. 2)

= r2
k − αk( 2

L − αk)‖gk‖22.

Since αk < 2/L, it follows that rk+1 ≤ rk
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Convergence rate

Lemma Let ∆k := f(xk)− f(x∗). Then, ∆k+1 ≤ ∆k(1− β)

f(xk)− f(x∗) = ∆k

cvx f
≤ 〈gk, xk − x∗〉

CS
≤ ‖gk‖2 ‖xk − x∗‖2︸ ︷︷ ︸

rk

.

That is, ‖gk‖2 ≥ ∆k/rk. In particular, since rk ≤ r0, we have

‖gk‖2 ≥
∆k

r0
.

Now we have a bound on the gradient norm...
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Convergence rate

Recall f(xk+1) ≤ f(xk)− 1
2L‖gk‖22; subtracting f∗ from both sides

∆k+1 ≤ ∆k −
∆2
k

2Lr2
0

= ∆k

(
1− ∆k

2Lr20

)

= ∆k(1− β).

But we want to bound: f(xT+1)− f(x∗)

=⇒ 1

∆k+1
≥ 1

∆k
(1 + β) =

1

∆k
+

1

2Lr2
0

I Sum both sides over k = 0, . . . , T to obtain

1

∆T+1
≥ 1

∆0
+
T + 1

2Lr2
0
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Convergence rate

I Sum both sides over k = 0, . . . , T to obtain

1

∆T+1
≥ 1

∆0
+
T + 1

2Lr2
0

I Rearrange to conclude

f(xT )− f∗ ≤ 2L∆0r
2
0

2Lr2
0 + T∆0

I Use descent lemma to bound ∆0 ≤ (L/2)‖x0 − x∗‖22; simplify

f(xT )− f(x∗) ≤ 2L∆0‖x0 − x∗‖22
T + 4

= O(1/T ).

Exercise: Prove above simplification.
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Gradient descent – faster rate

Assumption: Strong convexity; denote f ∈ S1
L,µ

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ µ
2‖x− y‖22

• Setting αk = 2/(µ+ L) yields linear rate (µ > 0)
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Strongly convex case

Thm 2. Suppose f ∈ S1
L,µ. Then, for any x, y ∈ Rn

〈∇f(x)−∇f(y), x− y〉 ≥ µL

µ+ L
‖x− y‖22 +

1

µ+ L
‖∇f(x)−∇f(y)‖22

I Consider the convex function φ(x) = f(x)− µ
2‖x‖22

I ∇φ(x) = ∇f(x)− µx
I If µ = L, then easily true (due to strong convexity and Coroll. 2)

I If µ < L, then φ ∈ C1
L−µ; now invoke Coroll. 2

〈∇φ(x)−∇φ(y), x− y〉 ≥ 1

L− µ‖∇φ(x)−∇φ(y)‖2
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Strongly convex – rate

Theorem. If f ∈ S1
L,µ, 0 < α < 2/(L + µ), then the gradient

method generates a sequence
{
xk
}

that satisfies

‖xk − x∗‖22 ≤
(

1− 2αµL

µ+ L

)k
‖x0 − x∗‖2.

Moreover, if α = 2/(L+ µ) then

f(xk)− f∗ ≤ L

2

(
κ− 1

κ+ 1

)2k

‖x0 − x∗‖22,

where κ = L/µ is the condition number.

30 / 34



Strongly convex – rate

I As before, let rk = ‖xk − x∗‖2, and consider

r2
k+1 = ‖xk − x∗ − α∇f(xk)‖22

= r2
k − 2α〈∇f(xk), xk − x∗〉+ α2‖∇f(xk)‖22

≤
(

1− 2αµL

µ+ L

)
r2
k + α

(
α− 2

µ+ L

)
‖∇f(xk)‖22

where we used Thm. 2 with ∇f(x∗) = 0 for last inequality.

Exercise: Complete the proof using above argument.
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Gradient methods – lower bounds

xk+1 = xk − αk∇f(xk)

Theorem Lower bound I (Nesterov) For any x0 ∈ Rn, and 1 ≤ T ≤
1
2(n− 1), there is a smooth f , s.t.

f(xT )− f(x∗) ≥ 3L‖x0 − x∗‖22
32(T + 1)2

Theorem Lower bound II (Nesterov). For class of smooth, strongly
convex, i.e., S∞L,µ (µ > 0, κ > 1)

f(xT )− f(x∗) ≥ µ

2

(√
κ− 1√
κ+ 1

)2T

‖x0 − x∗‖22.

We’ll come back to these towards end of course
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Exercise

♠ Let D be the (n− 1)× n differencing matrix

D =


−1 1

−1 1
. . .

−1 1

 ∈ R(n−1)×n,

♠ f(x) = 1
2‖DTx− b‖22 = 1

2(‖DTx‖22 + ‖b‖22 − 2〈DTx, b〉)
♠ Notice that ∇f(x) = D(DTx− b)
♠ Try different choices of b, and different initial vectors x0

♠ Exercise: Experiment to see how large n must be before
subgradient method starts outperforming CVX

♠ Exercise: Minimize f(x) for large n; e.g., n = 106, n = 107

♠ Exercise: Repeat same exercise with constraints: xi ∈ [−1, 1].
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