Convex Optimization

(EE227A: UC Berkeley)

Lecture 13
(Gradient methods)

05 March, 2013

o

Suvrit Sra



Organizational

» HW?2 deadline now 7th March, 2013

» Project guidelines now on course website

» Email me to schedule meeting if you need

» Midterm on: 19th March, 2013 (in class or take home?)



Recap

& 2F = Py(af — apg")

& Different choices of ay, (const, diminishing, Polyak)
& Can be slow; tuning oy not so nice

#® How to decide when to stop?

& Some other subgradient methods
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Differentiable optimization

min  fo(x) stt. fi(z) <0,i=1,...,m
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Differentiable optimization

min  fo(z) stt. fi(z) <0,i=1,...,m

KKT Necessary conditions

filz*) < 0, i=1,....,m (primal feasibility)

Af> 0, i=1,....,m (dual feasibility)

ANfi(z®) = 0, i1=1,....,m (compl. slackness)
Vail(x,\)|g=ex = 0 (Lagrangian stationarity)
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Differentiable optimization

min  fo(z) stt. fi(z) <0,i=1,...,m

KKT Necessary conditions

filz*) < 0, i=1,....,m (primal feasibility)
Af>0, i=1,...,m (dual feasibility)

ANfi(z®) = 0, i1=1,....,m (compl. slackness)
Vail(x,\)|g=ex = 0 (Lagrangian stationarity)

Could try to solve these directly!
Nonlinear equations; sometimes solvable directly

Usually quite hard; so we'll discuss iterative methods
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Descent methods

min, f(x)
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Descent methods

min, f(z)

5/34



Gradient methods

Unconstrained optimization
min  f(z) xz € R™
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Gradient methods

Unconstrained optimization
min  f(z) x € R™
» Suppose we have a vector z € R™ for which V f(z) # 0
» Consider the ray: z(a) =2 — aV f(x) for a > 0
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Gradient methods

Unconstrained optimization
min  f(z) xz € R™
» Suppose we have a vector z € R™ for which V f(z) # 0
» Consider the ray: z(a) =2 — aV f(x) for a > 0
» As before, make first-order Taylor expansion around x

fx(@)) = [f(2) +(Vf(2), 2(a) = z) + o([|z(a) — 2]]2)
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Gradient methods

Unconstrained optimization
min  f(z) xz € R™
» Suppose we have a vector z € R™ for which V f(z) # 0
» Consider the ray: z(a) =2 — aV f(x) for a > 0
» As before, make first-order Taylor expansion around x

fa(@)) = [f(2) +(Vf(z), 2(a) = z) + o([|z(a) — 2]}2)
= f() = al| V(@) + o(allVF(z)|2)
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Gradient methods

Unconstrained optimization
min  f(z) xz € R™

» Suppose we have a vector z € R™ for which V f(z) # 0
» Consider the ray: z(a) =2 — aV f(x) for a > 0
» As before, make first-order Taylor expansion around x

f(z(e))

f(@) + (Vf(2), z(@) — 2) + o([Jx(a) — [|2)
f(x) = al[ V()] + o(a| Vf(2)]2)
f(@) = a|Vf(@)]3 +o(a)

6
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Gradient methods

v

Unconstrained optimization
min  f(z) x € R™
Suppose we have a vector € R” for which V f(x) # 0
Consider the ray: (o) =2 —aV f(z) for a >0

As before, make first-order Taylor expansion around x

fa(@)) = [f(2) +(Vf(z), 2(a) = z) + o([|z(a) — 2]}2)
= f() = al| V(@) + o(allVF(z)|2)
= f(z) = al[Vf(@)|3+o(a)

For a near 0, ||V f(z)||3 dominates o(«)

For positive, sufficiently small «, f(z(a)) smaller than f(z)

6
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Descent methods

» Carrying the idea further, consider

z(a) =z + ad,

where direction d € R" obtuse to Vf(x), i.e.,

(Vf(z), d) < 0.
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Descent methods

» Carrying the idea further, consider
(o) =z + ad,
where direction d € R" obtuse to Vf(x), i.e.,
(Vf(z),d) <0.
» Again, we have the Taylor expansion
f(z(@) = f(z) + a({V [(2), d) + o(a),

where (V f(x), d) dominates o(«) for suff. small «



Descent methods

» Carrying the idea further, consider
(o) =z + ad,
where direction d € R" obtuse to Vf(x), i.e.,
(Vf(z),d) <0.
» Again, we have the Taylor expansion
f(z(@) = f(z) + a({V [(2), d) + o(a),

where (V f(x), d) dominates o(«) for suff. small «
» Since d is obtuse to V f(x), this implies f(z(a)) < f(x)



Descent methods
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Descent methods

V(x)
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Descent methods

V(x)
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Descent methods

V(x)
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Algorithm

Start with some guess z°;

For each k =0,1,...
a 2F — 2F 4 qpd”
= Check when to stop (e.g., if
Vf($k+1) — O)
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Gradient methods

oFt = oF + apd”,

k=0,1,...
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Gradient methods

o = aF apdt, E=0,1,...

m stepsize oy > 0, usually ensures f(2zF+1) < f(aF)
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Gradient methods
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Gradient methods

o = aF apdt, E=0,1,...

m stepsize a; > 0, usually ensures f(z*+1) < f(zF)
m Descent direction d" satisfies

(Vf(b), d") <0

Numerous ways to select a;, and d*

Usually methods seek monotonic descent

Fa"h) < f(a®)
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Generic matlab code

function [x,f] = gradientDescent (x0)

fx = @(x) objfn(x
gfx = Q(x) grad(x)

i

); % handle to f(x)

% handle to nabla f(x)
x=x0; % input starting point
maxiter = 100; % tunable parameter
for k=1:maxiter % or other criterion

g = gfx(x); % compute gradient at x
al = stepSize(x); % compute a stepsize
x = x — alxg; % perform update
fprintf(’ITter: J%d\t_.Obj: Ad\n’, fx(x));
end
end
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Gradient methods — direction

oM =2k 4 apd®, k=0,1,...

» Different choices of direction d*

Scaled gradient: d* = —D*V f(2*), D¥ - 0
Newton’s method: (D = [V2f(z*)]~1)
Quasi-Newton: DF =~ [V2f(z*)]~!
Steepest descent: DF =T

O

o

o

o

o

-1
Diagonally scaled: D* diagonal with D ~ (8(28]3332))

Discretized Newton: D* = [H(z*)]7!, H via finite-diff.

(@]
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Gradient methods — direction

oM =2k 4 apd®, k=0,1,...

» Different choices of direction d*

Scaled gradient: d* = —D*V f(2*), D¥ - 0
Newton’s method: (D = [V2f(z*)]~1)
Quasi-Newton: DF =~ [V2f(z*)]~!
Steepest descent: DF =T

O

o

o

o

o

-1
Diagonally scaled: D* diagonal with D ~ (8(28]3332))

Discretized Newton: D* = [H(z*)]7!, H via finite-diff.
o ...

Exercise: Verify that (Vf(2*), d*) < 0 for above choices

(@]
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Gradient methods — stepsize

» Exact: oy, := argmin f(z* + ad®)
a>0
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Gradient methods — stepsize

» Exact: oy, := argmin f(z* + ad®)
a>0

» Limited min: a; = argmin f(z* + adb)
0<a<s

» Armijo-rule. Given fixed scalars, s, 3,0 with 0 < 8 < 1 and
0 < o < 1 (chosen experimentally). Set

o, = Bs,
where we try 8™s for m = 0,1, ... until sufficient descent

f@¥) = fla+ Bmsd") > —oB™s(V f(aF), d¥)
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a>0

» Limited min: a; = argmin f(z* + adb)
0<a<s

» Armijo-rule. Given fixed scalars, s, 3,0 with 0 < 8 < 1 and
0 < o < 1 (chosen experimentally). Set

ap = BM*s,
where we try 8™s for m = 0,1, ... until sufficient descent
F(a¥) = fla+ Bmsd") > —oB™s(V f(a"), d)

If (Vf(xF), d¥) <0, stepsize guaranteed to exist
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Gradient methods — stepsize

» Exact: oy, := argmin f(z* + ad®)
a>0

» Limited min: a; = argmin f(z* + adb)
0<a<s

» Armijo-rule. Given fixed scalars, s, 3,0 with 0 < 8 < 1 and
0 < o < 1 (chosen experimentally). Set

ap = BM*s,
where we try 8™s for m = 0,1, ... until sufficient descent
F(a¥) = fla+ Bmsd") > —oB™s(V f(a"), d)

If (Vf(xF), d¥) <0, stepsize guaranteed to exist
Usually, o small € [1075,0.1], while 3 from 1/2 to 1/10
depending on how confident we are about initial stepsize s.

13 /34



Gradient methods — stepsize

» Constant: oy = 1/L (for suitable value of L)
» Diminishing: oy, — 0 but ), oy, = o0.
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nonstationary points.
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» Constant: oy = 1/L (for suitable value of L)

» Diminishing: oy, — 0 but ), oy, = o0.
Latter condition ensures that {:1:’“} does not converge to
nonstationary points.
Say, ¥ — Z; then for sufficiently large m and n, (m > n)

m—1
xR r T, " e — (Z a’k> Vf(z).
k=n
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Gradient methods — stepsize

» Constant: oy = 1/L (for suitable value of L)

» Diminishing: oy, — 0 but ), oy, = o0.
Latter condition ensures that {a:k} does not converge to
nonstationary points.
Say, ¥ — Z; then for sufficiently large m and n, (m > n)

m—1
xR r T, " e — (Z ak> Vf(z).
k=n

The sum can be made arbitrarily large, contradicting
nonstationarity of &

14 /34



Gradient methods — nonmonotonic steps*

m Stepsize computation can be expensive
m Convergence analysis depends on monotonic descent
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Stepsize computation can be expensive

Convergence analysis depends on monotonic descent

Give up search for stepsizes

Use closed-form formulae for stepsizes

Don't insist on monotonic descent?

(e.g., diminishing stepsizes do not enforce monotonic descent)
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Gradient methods — nonmonotonic steps*

Stepsize computation can be expensive

Convergence analysis depends on monotonic descent

Give up search for stepsizes

Use closed-form formulae for stepsizes

Don't insist on monotonic descent?

(e.g., diminishing stepsizes do not enforce monotonic descent)

Barzilai & Borwein stepsizes
ot =k — ok f(2%), k=0,1,...

Whot) P
P (uF, o)

uk _ Cli’k - xk—l) Uk _ Vf(xk) o vf(xk—l)

A —
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Barzilai-Borwein steps — remarks

Intriguing behavior:

# Akin to simultaneous descent-direction x step

& Result in non-monotonic descent

& Work quite well empirically

& Good for large-scale problems

& Difficult convergence analysis

& Often supplemented with nonmonotonic line-search
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Convergence theory
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Gradient descent — convergence

oFH = oF — , Vf(2b),

k=0,1,...
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Gradient descent — convergence

oFH = oF — o VF(2¥), k=0,1,...

Convergence

Theorem ||V f(zF)|ls — 0 as k — oo

Convergence rate with constant stepsize

Theorem Let f € C’i and {xk} be sequence generated as above,
with a = 1/L. Then, f(zT+1) — f(z*) = O(1/T).
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Gradient descent — convergence

oFH = oF — o VF(2¥), k=0,1,...

Convergence

Theorem ||V f(zF)|ls — 0 as k — oo

Convergence rate with constant stepsize

Theorem Let f € C’i and {xk} be sequence generated as above,
with a = 1/L. Then, f(zT+1) — f(z*) = O(1/T).

Proof plan:

» Show that f(zF*1) < f(2*) (for suitable L)
» Measure progress via ||z% — 2*||3 as before

» Sum up bounds, induct to obtain rate
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Gradient descent — convergence

Assumption: Lipschitz continuous gradient; denoted f € C’}J

IV (@) = V)lla < Lz = ylla
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& Gradient vectors of closeby points are close to each other
& Objective function has “bounded curvature”

& Speed at which gradient varies is bounded
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Gradient descent — convergence

Assumption: Lipschitz continuous gradient; denoted f € C’i

IVf(x) = Vi)l < Lz —yll

& Gradient vectors of closeby points are close to each other
& Objective function has “bounded curvature”

& Speed at which gradient varies is bounded

Lemma (Descent). Let f € C}. Then,
f(@) < fy) + (V@) 2 —y) + 5l —yll3

For convex f, compare with

f@) > fly) +(Vf(y), z —y).
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Descent lemma

Proof. Since f € C1, by Taylor's theorem, for the vector
2zt =y +t(x —y) we have

F(@) = fly) + [ (VF(z), © —y)dt.
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Descent lemma

Proof. Since f € C1, by Taylor's theorem, for the vector
2zt =y +t(x —y) we have

F(@) = fly) + [ (VF(z), © —y)dt.
Add and subtract (Vf(y), z — y) on rhs we have

f@) = f@) = (Vi) —y) = [(V(z) = V@), o —y)di
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Descent lemma

Proof. Since f € C1, by Taylor's theorem, for the vector
2zt =y +t(x —y) we have

F@) = fy)+ [y (VF(z), - y)dt.
Add and subtract (Vf(y), * — y) on rhs we have
F@) = f@) = (V@) o —y) = [} (Vf(z) = V), —y)dt
@) = F) = (Vi@ a =9 < | (TS0 = V), @ -yt
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Descent lemma

Proof. Since f € C1, by Taylor's theorem, for the vector
2zt =y +t(x —y) we have

F@) = fy)+ [y (VF(z), - y)dt.
Add and subtract (Vf(y), * — y) on rhs we have
F@) = @) = (VW) e —y) = [ (VF(z) = VI(y), - y)dt
@) = @) = (V@ e =] < |[ (V) = Vi), 2=yt

Sy UV f(z0) = V(y), x —y)ldt
Sy IV f(z) = V(y)lloa — ydt

A

IN A
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Descent lemma

Proof. Since f € C1, by Taylor's theorem, for the vector
2zt =y +t(x —y) we have

fl@) = fy) + [} (Vf(z), z - y)dt.
Add and subtract (Vf(y), * — y) on rhs we have
F@) = fy) = (VI e —y) = [}(VF(z)— Vi), z—y)dt
@) = F) = (V@) z = < (VI = V), @ =yt

Jo UV F(z0) = Vf(y), = — y)|dt
SV F(z) = VI ()llaz — ydt
L [} tllz —y|3dt

A

ININ A
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Descent lemma

Proof. Since f € C1, by Taylor's theorem, for the vector
2zt =y +t(x —y) we have

F(@) = fly) + [ (VF(z), © —y)dt.

Add and subtract (Vf(y), * — y) on rhs we have

Jo(Vf(z) = Vf(y),  —y)dt
o (95 (0) = VI (), @ = )t
Jo UV £(z0) = V), z — y)ldt
SV £ () = VF () o — yat
L [y tlla —yl3dt

5l —yli3-

flx) = f(y) = (VI(y), = —y)
[f(@) = f(y) = (VI(y), = — )]

IN

A IN A

Bounds f(z) above and below with quadratic functions
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Descent lemma — corollaries

Coroll. 11If f € C}, and 0 < ay, < 2/L, then f(2F1) < f(2*)

P < R (AR, 5 - o)+ B - b
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Descent lemma — corollaries

Coroll. 11If f € C}, and 0 < ay, < 2/L, then f(2F1) < f(2*)

At < S+ TA, =) 4 ot

= @) - | VEE)IB+ SV N3
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Descent lemma — corollaries

Coroll. 11If f € C}, and 0 < ay, < 2/L, then f(2F1) < f(2*)
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= f(ab) — ag| V)R + EE V()12
= f(@") —an(1 -2 D)|Vf(")3
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Descent lemma — corollaries

Coroll. 11If f € C}, and 0 < ay, < 2/L, then f(2F1) < f(2*)

FEY) < @) + (TR, o5 = ak) 4 L2kt - g,
= f(ab) — ag| V)R + EE V()12
= f(@") —an(1 -2 D)|Vf(")3

Thus, if o < 2/L we have descent.

21/34



Descent lemma — corollaries

Coroll. 11If f € C}, and 0 < ay, < 2/L, then f(2F1) < f(2*)

FEY) < @) + (TR, o5 = ak) 4 L2kt - g,
= f(ab) — ag| V)R + EE V()12
= f(@") —an(1 -2 D)|Vf(")3

Thus, if o < 2/L we have descent. Minimize over «y, to get best
bound: this yields o = 1/L—we’ll use this stepsize

21/34



Convergence

» We showed that

Fa®) = f@™h) = £V F )3,

(¢ =1/2 for a, = 1/L; c has diff. value for other stepsize rules)
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Convergence

» We showed that

F@®) = f@* ) > £V F(®)3,
(¢ =1/2 for a, = 1/L; c has diff. value for other stepsize rules)
» Sum up above inequalities for £k = 0,1,...,T to obtain
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k=0
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» We assume f* > —o0, so rhs is some fixed positive constant



Convergence

» We showed that

F@®) = f@* ) > £V F(®)3,
(¢ =1/2 for a, = 1/L; c has diff. value for other stepsize rules)
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Convergence

» We showed that

Fa®) = f@™h) = £V F )3,

(¢ =1/2 for a, = 1/L; c has diff. value for other stepsize rules)
» Sum up above inequalities for £k = 0,1,...,T to obtain

T
ESIVIERIE < ) - T < ) - 5
Lk:

» We assume f* > —o0, so rhs is some fixed positive constant
» Thus, as kK — oo, lhs must converge; thus
IVf(zF)a =0 as k— oc.

» Notice, we did not require f to be convex ...



Descent lemma — another corollary

Corollary 2 If f is a convex function € C}, then

LIV f(@) - VW3 < (Vf() - VI(y), = —y),

Exercise: Prove this corollary.
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Convergence rate — convex f

* Let a, =1/L
% Shorthand notation ¢* = V f(2*), ¢* = Vf(z*)

* Let 7 := ||z* — 2*||2 (distance to optimum)
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* Let a, =1/L
x Shorthand notation ¢* = Vf(zF), ¢* = Vf(z*)

* Let 7 := ||z* — 2*||2 (distance to optimum)

Lemma Distance to min shrinks monotonically; 7,1 < 7 ‘

Proof. Descent lemma implies that: f(z**1) < f(z%) — 3-(|¢"|3

Consider, T]%,_H = ||kt — z*|3 = |k — 2% — Oékng%-

i = 7t oillgtl - 20k(g®, o — a7
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Convergence rate — convex f

* Let a, =1/L
x Shorthand notation ¢* = Vf(zF), ¢* = Vf(z*)

* Let 7 := ||z* — 2*||2 (distance to optimum)

Lemma Distance to min shrinks monotonically; 7,1 < 7 ‘

Proof. Descent lemma implies that: f(z**1) < f(z%) — 3-(|¢"|3

Consider, T]%,_H = [Ja*+t — 2|3 = [|2F — 2% — awgF|3.
resr = T+ agllet (- 2au(g”, oF - 2)

= 12+ al|d"|3 - 2ax (g — g, 2 —2*) asg* =0
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Convergence rate — convex f

* Let a, =1/L
x Shorthand notation ¢* = Vf(zF), ¢* = Vf(z*)
* Let 7 := ||z* — 2*||2 (distance to optimum)

Lemma Distance to min shrinks monotonically; 7,1 < 7

Proof. Descent lemma implies that: f(z**1) < f(z%) — 3-(|¢"|3

Consider, 77, | = ||=

2
Tk+1

<

k+1

rii + aillg® 3 - 20 (g®, * — a7)

2+ alllgF)3 — 20k (g" — g%, ¥ —2*) asg* =0

k 2 k
i+ aillg®l3 — 22 g" — g*113

— @' = [l=* — 2% — awg®|I3.

(Coroll. 2)
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Convergence rate — convex f

* Let a, =1/L
x Shorthand notation ¢* = Vf(zF), ¢* = Vf(z*)
* Let 7 := ||z* — 2*||2 (distance to optimum)

Lemma Distance to min shrinks monotonically; 7,1 < 7 ‘

Proof. Descent lemma implies that: f(z**1) < f(z%) — 3-(|¢"|3

k+1

Consider, T]%,_H = ||zF ! — 2*||3 = |k — 2% — Oékng%-

i = 7t oillgtl - 20k(g®, o — a7

i+ apllg® |3 — 20 (g* — g, 2F —2*) asg*=0
e+ aillg®3 = 225 gF — g5 (Coroll. 2)

= 1 — (% —ap)g"3.

IN
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Convergence rate — convex f

* Let a, =1/L
* Shorthand notation g¥ = Vf(2F), g* = Vf(z*)
* Let 7 := ||z* — 2*||2 (distance to optimum)

Lemma Distance to min shrinks monotonically; 7,1 < 7

Proof. Descent lemma implies that: f(z**1) < f(z%) — 3-(|¢"|3

2
k+1

Consider, T]%,_H = ||zF ! — 2*||3 = |k — 2% — Oékng%-

i = 7t oillgtl - 20k(g®, o — a7

i+ apllg® |3 — 20 (g* — g, 2F —2*) asg*=0
e+ aillg®3 = 225 gF — g5 (Coroll. 2)

= 1 — (% —ap)g"3.

IN

Since ay, < 2/L, it follows that 7511 < ry
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Convergence rate

Lemma Let Ay := f(2*) — f(z*). Then, Apy1 < Ap(1 —B)
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Convergence rate

Lemma Let Ay := f(z%) — f(z*). Then, Apyq < Ap(1—f)

cvx f

f@®) = fa*) = Ay < (g, ab —a")
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cvx f

Cs
fa®) = fl@) = DAp < (gF b —at) < gtz )|2" — als
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That is, ||gk||2 > Ak/T‘k
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Convergence rate

Lemma Let Ay := f(z%) — f(z*). Then, Apyq < Ap(1—f)

cvx f . CS .
fah) = f@) =0, < (g5 a2t =2t < gfl2 et — a7
—_————

Tk

That is, ||g¥||2 > Ak /rk. In particular, since r, < ro, we have

Ay,
lg¥[l2 > =
To
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Convergence rate

Lemma Let Ay := f(z%) — f(z*). Then, Apyq < Ap(1—f)

cvx f

Cs
fa®) = fl@) = DAp < (gF b —at) < gtz )|2" — als
—_———

Tk

That is, ||g¥||2 > Ak /rk. In particular, since r, < ro, we have

Ay,
lg¥[l2 > =
To

Now we have a bound on the gradient norm...
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Convergence rate

Recall f(z"1) < f(2*) — 5-[|g"||3; subtracting f* from both sides

A

A < Ap —
kL = Sk 2L7“(2)

= A (1- 2%%)
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Convergence rate

Recall f(z"1) < f(2*) — 5-[|g"||3; subtracting f* from both sides

A2
2Lr3

App1 < Ag — = Ap(1 — 57 2) Ap(1 = B).
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Convergence rate

Recall f(z"1) < f(2*) — 5-[|g"||3; subtracting f* from both sides

A2
2Lr3

App1 < Ag — = Ap(1 — 57 2) Ap(1 = B).

But we want to bound: f(xT*!) — f(x*)
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Convergence rate

Recall f(z"1) < f(2*) — 5-[|g"||3; subtracting f* from both sides

A2
2Lr3

App1 < Ag — = Ap(1 — 57 2) Ap(1 = B).

But we want to bound: f(xT*!) — f(x*)

>i(1+5) ! + 73 !

—
Ak+1 Ak Ak 2L7“0
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Convergence rate

Recall f(z"1) < f(2*) — 5-[|g"||3; subtracting f* from both sides

AZ
2Lr3

App1 < Ag — = Ap(1 — 57 2) Ap(1 = B).

But we want to bound: f(xT*!) — f(x*)

> i(1+6) ! + 73 !
Ak+1 Ak Ak 2L7“0

» Sum both sides over £k = 0,...,T to obtain

—

1 S 1 +T+1
AT+1_A() 2LT’%
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Convergence rate

» Sum both sides over £k = 0,...,T to obtain

1 S L+T+1
AT+1 — Ay 2[/{’%
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Convergence rate

» Sum both sides over kK =0,...,T to obtain

1 S L+T+1
AT+1 — Ay 2[/{’3

» Rearrange to conclude

. 2LAgr3
R )

LT% + TA()
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Convergence rate

» Sum both sides over kK =0,...,T to obtain

1 S L+T+1
AT+1 — Ay 2[/{’3

» Rearrange to conclude

2LAgr2
Ty _ px o 2282000
fa)—f = 2Lr2 + TAg

» Use descent lemma to bound Ag < (L/2)||z° — x*||3; simplify

< 2LA0||330 — x*”%

fa”) = fla) < 2R — o),

Exercise: Prove above simplification.
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Gradient descent — faster rate

Assumption: Strong convexity; denote f € Si#

f@) > fy) +(Vf(y), = —y) + 5llz —yl3

e Setting ay, = 2/(p + L) yields linear rate (1 > 0)
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Strongly convex case

Thm 2. Suppose f € ST ,. Then, for any z,y € R"

1

(Vf(@)=Vf(y),z—y) > s

L 1
Zllz =yl + mllvf(x) Ol
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Strongly convex case

Thm 2. Suppose f € ST ,. Then, for any z,y € R"

(Vf(x)=Vf(y), z—y) >

pL o2 L . 2
Lol =yl S IV ) - VW)

» Consider the convex function ¢(z) = f(z) — &||z||3
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Thm 2. Suppose f € ST ,. Then, for any z,y € R"

uL
w+ L
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» Consider the convex function ¢(z) = f(z) — &||z||3
> Vo(x) =V f(r) - px
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Strongly convex case

Thm 2. Suppose f € ST ,. Then, for any z,y € R"

(Vf(x)=Vf(y), z—y) >

pL o2 L . 2
Lol =yl S IV ) - VW)

» Consider the convex function ¢(z) = f(z) — &||z||3
> Vo(r) = V() - o
» If = L, then easily true (due to strong convexity and Coroll. 2)
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Strongly convex case

Thm 2. Suppose f € ST ,. Then, for any z,y € R"

uL
w+ L

(V1(@) = VHw) =) = Ll =yl + =7 V@) = T3

» Consider the convex function ¢(z) = f(z) — &||z||3

> Vo(r) = V() - o

» If = L, then easily true (due to strong convexity and Coroll. 2)
» If u < L, then ¢ € C’ify; now invoke Coroll. 2

1

(Vo(z) =Voly), z —y) = 7— .

IVo(x) = Vo(y)ll2
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Strongly convex — rate

Theorem. If f € Si’#, 0 < a < 2/(L+ p), then the gradient
method generates a sequence {xk} that satisfies

2apL k .
||.7jk _x*Hg < <1 — M+L> on —x ||2

Moreover, if « = 2/(L + p) then

. L (r-1 2k N
s -r <t (5) 10—,

where k = L/ is the condition number.
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Strongly convex — rate

» As before, let 7, = ||z¥ — 2*||2, and consider
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Strongly convex — rate

» As before, let 7, = ||z¥ — 2*||2, and consider

i = e =2t —aVih)3

= i —20(Vf(a"), 2" —a") + 2|V f ()3
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Strongly convex — rate

» As before, let 7, = ||z¥ — 2*||2, and consider

i = ll2t =2 —aV )3
rii = 20(V f(a¥), 2" — %) + ?|V f(2") 3

2apL 2
(1- 20 kv (a2 ) IVAERIE

where we used Thm. 2 with V f(z*) = 0 for last inequality.

IN

Exercise: Complete the proof using above argument.
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Gradient methods — lower bounds

oF = ok — ap V f(2F)

Theorem Lower bound | (Nesterov) For any 2° € R*, and 1 < T <
1

5(n —1), there is a smooth f, s.t.

3L|j2° — 2|3

ST =16 = S
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Gradient methods — lower bounds

oF = ok — ap V f(2F)

Theorem Lower bound | (Nesterov) For any 2° € R*, and 1 < T <
1

5(n —1), there is a smooth f, s.t.

3L|j2° — 2|3

FT) =16 2 T

Theorem Lower bound Il (Nesterov). For class of smooth, strongly
convex, i.e., Sz?u (pw>0k>1)

* M\/E_lzTo *
Fa) - 1) 2 b (V7)1 - ol

We’'ll come back to these towards end of course
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Exercise

& Let D be the (n — 1) x n differencing matrix

A f(z) = 5lID"z —b]3 = 3(|D |3 + ||b]3 — 2(D", b))
& Notice that Vf(z) = D(D"z —b)
& Try different choices of b, and different initial vectors xg

& Exercise: Experiment to see how large n must be before
subgradient method starts outperforming CVX

& Exercise: Minimize f(x) for large n; e.g., n = 106, n = 107

& Exercise: Repeat same exercise with constraints: z; € [—1, 1].
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