First-order methods

\[x \leftarrow x - \eta g(x) \]

\(\nabla f(x) \)
GD

\[\mathbb{E}[g(x)] = \nabla f(x) \]
SGD

\[g(x) \in \partial f(x) \]
Subgrad
Subgradient method
Unconstrained convex problem

\[\min_x f(x) \]
Unconstrained convex problem

min \quad f(x)

1 Start with some guess x^0; set $k = 0$
Unconstrained convex problem

\[
\min_x f(x)
\]

1. Start with some guess \(x^0 \); set \(k = 0 \)
2. If \(0 \in \partial f(x^k) \), **stop**; output \(x^k \)
Unconstrained convex problem

\[\min_x f(x) \]

1. Start with some guess \(x^0 \); set \(k = 0 \)
2. If \(0 \in \partial f(x^k) \), stop; output \(x^k \)
3. Otherwise, generate next guess \(x^{k+1} \)
Unconstrained convex problem

\[\min_x f(x) \]

1. Start with some guess \(x^0 \); set \(k = 0 \)
2. If \(0 \in \partial f(x^k) \), **stop**; output \(x^k \)
3. Otherwise, generate next guess \(x^{k+1} \)
4. Repeat above procedure until \(f(x^k) \leq f(x^*) + \varepsilon \)
Subgradient method

\[x^{k+1} = x^k - \eta_k g^k \]

where \(g^k \in \partial f(x^k) \) is any subgradient.
Subgradient method

\[x^{k+1} = x^k - \eta_k g^k \]

where \(g^k \in \partial f(x^k) \) is any subgradient

Stepsize \(\eta_k > 0 \) must be chosen
Subgradient method

\[x^{k+1} = x^k - \eta_k g^k \]

where \(g^k \in \partial f(x^k) \) is any subgradient

Stepsize \(\eta_k > 0 \) **must be chosen**

- Method generates sequence \(\{x^k\}_{k\geq 0} \)
- Does this sequence converge to an optimal solution \(x^* \)?
- If yes, then how fast?
- What if we have constraints: \(x \in C \)?
Example

\[
\begin{align*}
\min & \quad \frac{1}{2} \|Ax - b\|^2_2 + \lambda \|x\|_1 \\
 x^{k+1} & = x^k - \eta_k (A^T (Ax^k - b) + \lambda \text{sgn}(x^k))
\end{align*}
\]
Example

\[
\begin{align*}
\min & \quad \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1 \\
\Rightarrow & \quad x^{k+1} = x^k - \eta_k (A^T(Ax^k - b) + \lambda \text{sgn}(x^k))
\end{align*}
\]
Example

\[
\begin{align*}
\min & \quad \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1 \\
\therefore x^{k+1} &= x^k - \eta_k (A^T (Ax^k - b) + \lambda \text{sgn}(x^k))
\end{align*}
\]
Example

\[
\min \quad \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1 \\
x^{k+1} = x^k - \eta_k (A^T(Ax^k - b) + \lambda \text{sgn}(x^k))
\]

(More careful implementation)
Exercise: Experiment with deep neural network classifier where we want to learn sparse weights. In particular, experiment with the following loss function:

$$\min_x L(x) := \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \mathcal{N}(x, a_i)) + \lambda \|x\|_1.$$

Implement a stochastic subgradient update to minimize L.

(Hint: If we pretend that the loss part is differentiable, then we can invoke Clarke’s rule: $\partial L = \nabla \text{loss} + \lambda \partial \text{reg}$)
Subgradient method – stepsizes

- **Constant** Set \(\eta_k = \eta > 0 \), for \(k \geq 0 \)
- **Normalized** \(\eta_k = \frac{\eta}{\|g^k\|_2} \) \((\|x^{k+1} - x^k\|_2 = \eta)\)
- **Square summable**
 \[
 \sum_k \eta_k^2 < \infty, \quad \sum_k \eta_k = \infty
 \]
- **Diminishing**
 \[
 \lim_{k} \eta_k = 0, \quad \sum_k \eta_k = \infty
 \]
- **Adaptive stepsizes** (not covered)
Subgradient method – stepsizes

- **Constant** Set $\eta_k = \eta > 0$, for $k \geq 0$
- **Normalized** $\eta_k = \eta / \|g_k\|_2$ ($\|x^{k+1} - x^k\|_2 = \eta$)
- **Square summable**
 \[\sum_k \eta_k^2 < \infty, \quad \sum_k \eta_k = \infty \]
- **Diminishing**
 \[\lim_{k} \eta_k = 0, \quad \sum_k \eta_k = \infty \]
- **Adaptive stepsizes** (not covered)

Not a descent method!
Could use best f^k so far: $f_{\min}^k := \min_{0 \leq i \leq k} f^i$
Convergence

(sketch)
Convergence analysis

Assumptions

▶ Min is attained: $f^* := \inf_x f(x) > -\infty$, with $f(x^*) = f^*$
Convergence analysis

Assumptions

► Min is attained: \(f^* := \inf_x f(x) > -\infty \), with \(f(x^*) = f^* \)

► Bounded subgradients: \(\|g\|_2 \leq G \) for all \(g \in \partial f \)
Convergence analysis

Assumptions

- Min is attained: $f^* := \inf_x f(x) > -\infty$, with $f(x^*) = f^*$
- Bounded subgradients: $\|g\|_2 \leq G$ for all $g \in \partial f$
- Bounded domain: $\|x^0 - x^*\|_2 \leq R$
Convergence analysis

Assumptions

► Min is attained: \(f^* := \inf_x f(x) > -\infty \), with \(f(x^*) = f^* \)
► Bounded subgradients: \(\|g\|_2 \leq G \) for all \(g \in \partial f \)
► Bounded domain: \(\|x^0 - x^*\|_2 \leq R \)

Convergence results for: \(f^k_{\min} := \min_{0 \leq i \leq k} f^i \)
Lyapunov function: Distance to x^* (instead of $f - f^*$)

Subgradient method – convergence

$\parallel x_{k+1} - x^* \parallel_2^2 = \parallel x_k - \eta_k g_k - x^* \parallel_2^2 = \parallel x_k - x^* \parallel_2^2 + \eta_k^2 \parallel g_k \parallel_2^2 - 2\eta_k \langle g_k, x_k - x^* \rangle$.

Apply same argument to $\parallel x_k - x^* \parallel_2^2$ recursively.

$\parallel x_{k+1} - x^* \parallel_2^2 \leq \parallel x_0 - x^* \parallel_2^2 + \sum_{t=1}^{k} \eta_t^2 \parallel g_t \parallel_2^2 - 2\sum_{t=1}^{k} \eta_t (f_t - f^*)$.

Now use our convenient assumptions!
Lyapunov function: Distance to x^* (instead of $f - f^*$)

$$
\|x^{k+1} - x^*\|_2^2 = \|x^k - \eta_k g^k - x^*\|_2^2
$$
Subgradient method – convergence

Lyapunov function: Distance to x^* (instead of $f - f^*$)

\[
\|x^{k+1} - x^*\|^2 \leq \|x^k - \eta_k g^k - x^*\|^2 \\
= \|x^k - x^*\|^2 + \eta_k^2 \|g^k\|^2 - 2\langle \eta_k g^k, x^k - x^* \rangle
\]
Subgradient method – convergence

Lyapunov function: Distance to x^* (instead of $f - f^*$)

\[
\|x^{k+1} - x^*\|_2^2 = \|x^k - \eta_k g^k - x^*\|_2^2 \\
= \|x^k - x^*\|_2^2 + \eta_k^2 \|g^k\|_2^2 - 2\langle \eta_k g^k, x^k - x^* \rangle \\
\leq \|x^k - x^*\|_2^2 + \eta_k^2 \|g^k\|_2^2 - 2\eta_k (f(x^k) - f^*) ,
\]

since $f^* = f(x^*) \geq f(x^k) + \langle g^k, x^* - x^k \rangle$
Subgradient method – convergence

Lyapunov function: Distance to x^* (instead of $f - f^*$)

\[
\|x^{k+1} - x^*\|^2_2 = \|x^k - \eta_k g^k - x^*\|^2_2 \\
= \|x^k - x^*\|^2_2 + \eta_k^2 \|g^k\|^2_2 - 2\langle \eta_k g^k, x^k - x^* \rangle \\
\leq \|x^k - x^*\|^2_2 + \eta_k^2 \|g^k\|^2_2 - 2\eta_k (f(x^k) - f^*),
\]

since $f^* = f(x^*) \geq f(x^k) + \langle g^k, x^* - x^k \rangle$

Apply same argument to $\|x^k - x^*\|^2_2$ recursively
Lyapunov function: Distance to x^* (instead of $f - f^*$)

$$
\|x^{k+1} - x^*\|^2 \leq \|x^k - x^*\|^2 + \eta_k^2 \|g^k\|^2 - 2\eta_k (f(x^k) - f^*),
$$

since $f^* = f(x^*) \geq f(x^k) + \langle g^k, x^* - x^k \rangle$

Apply same argument to $\|x^k - x^*\|^2$ recursively

$$
\|x^{k+1} - x^*\|^2 \leq \|x^0 - x^*\|^2 + \sum_{t=1}^k \eta_t^2 \|g^t\|^2 - 2 \sum_{t=1}^k \eta_t (f^t - f^*).
$$
Lyapunov function: Distance to x^* (instead of $f - f^*$)

$$
\|x^{k+1} - x^*\|_2^2 = \|x^k - \eta_k g^k - x^*\|_2^2 \\
= \|x^k - x^*\|_2^2 + \eta_k^2 \|g^k\|_2^2 - 2\langle \eta_k g^k, x^k - x^* \rangle \\
\leq \|x^k - x^*\|_2^2 + \eta_k^2 \|g^k\|_2^2 - 2\eta_k (f(x^k) - f^*),
$$

since $f^* = f(x^*) \geq f(x^k) + \langle g^k, x^* - x^k \rangle$

Apply same argument to $\|x^k - x^*\|_2^2$ recursively

$$
\|x^{k+1} - x^*\|_2^2 \leq \|x^0 - x^*\|_2^2 + \sum_{t=1}^k \eta_t^2 \|g^t\|_2^2 - 2 \sum_{t=1}^k \eta_t (f^t - f^*).
$$

Now use our convenient assumptions!
\[\|x^{k+1} - x^*\|_2^2 \leq R^2 + G^2 \sum_{t=1}^{k} \eta_t^2 - 2 \sum_{t=1}^{k} \eta_t (f^t - f^*). \]

To get a bound on the last term, simply notice (for \(t \leq k \))

\[f^t \geq f^t_{\min} \geq f^k_{\min} \quad \text{since} \quad f^t_{\min} := \min_{0 \leq i \leq t} f(x^i). \]
Subgradient method – convergence

\[\|x^{k+1} - x^*\|_2^2 \leq R^2 + G^2 \sum_{t=1}^{k} \eta_t^2 - 2 \sum_{t=1}^{k} \eta_t (f^t - f^*). \]

To get a bound on the last term, simply notice (for \(t \leq k \))

\[f^t \geq f^t_{\text{min}} \geq f^k_{\text{min}} \quad \text{since} \quad f^t_{\text{min}} := \min_{0 \leq i \leq t} f(x^i) \]

Plugging this in yields the bound

\[2 \sum_{t=1}^{k} \eta_t (f^t - f^*) \geq 2(f^k_{\text{min}} - f^*) \sum_{t=1}^{k} \eta_t. \]
Subgradient method – convergence

\[\|x^{k+1} - x^*\|_2^2 \leq R^2 + G^2 \sum_{t=1}^{k} \eta_t^2 - 2 \sum_{t=1}^{k} \eta_t (f^t - f^*) \]

► To get a bound on the last term, simply notice (for \(t \leq k \))

\[f^t \geq f^t_{\min} \geq f^{k}_{\min} \quad \text{since} \quad f^t_{\min} := \min_{0 \leq i \leq t} f(x^i) \]

► Plugging this in yields the bound

\[2 \sum_{t=1}^{k} \eta_t (f^t - f^*) \geq 2(f^k_{\min} - f^*) \sum_{t=1}^{k} \eta_t. \]

► So that we finally have

\[0 \leq \|x^{k+1} - x^*\|_2^2 \leq R^2 + G^2 \sum_{t=1}^{k} \eta_t^2 - 2(f^k_{\min} - f^*) \sum_{t=1}^{k} \eta_t \]
Subgradient method – convergence

$$\|x^{k+1} - x^*\|_2^2 \leq R^2 + G^2 \sum_{t=1}^{k} \eta_t^2 - 2 \sum_{t=1}^{k} \eta_t (f^t - f^*).$$

To get a bound on the last term, simply notice (for $t \leq k$)

$$f^t \geq f_{\min}^t \geq f_{\min}^k \quad \text{since} \quad f_{\min}^t := \min_{0 \leq i \leq t} f(x^i)$$

Plugging this in yields the bound

$$2 \sum_{t=1}^{k} \eta_t (f^t - f^*) \geq 2(f_{\min}^k - f^*) \sum_{t=1}^{k} \eta_t.$$

So that we finally have

$$0 \leq \|x^{k+1} - x^*\|_2 \leq R^2 + G^2 \sum_{t=1}^{k} \eta_t^2 - 2(f_{\min}^k - f^*) \sum_{t=1}^{k} \eta_t$$

$$f_{\min}^k - f^* \leq \frac{R^2 + G^2 \sum_{t=1}^{k} \eta_t^2}{2 \sum_{t=1}^{k} \eta_t}$$
Subgradient method – convergence

\[
f^k_{\text{min}} - f^* \leq \frac{R^2 + G^2 \sum_{t=1}^{k} \eta_t^2}{2 \sum_{t=1}^{k} \eta_t}
\]

Exercise: Analyze \(\lim_{k \to \infty} f^k_{\text{min}} - f^* \) for the different choices of stepsize that we mentioned.
Subgradient method – convergence

$ f^k_{\text{min}} - f^* \leq \frac{R^2 + G^2 \sum_{t=1}^{k} \eta_t^2}{2 \sum_{t=1}^{k} \eta_t}$

Exercise: Analyze $\lim_{k \to \infty} f^k_{\text{min}} - f^*$ for the different choices of stepsize that we mentioned.

Constant step: $\eta_k = \eta$; We obtain

$ f^k_{\text{min}} - f^* \leq \frac{R^2 + G^2 k \eta^2}{2 k \eta}$
Subgradient method – convergence

\[
f^k_{\min} - f^* \leq \frac{R^2 + G^2 \sum_{t=1}^k \eta_t^2}{2 \sum_{t=1}^k \eta_t}
\]

Exercise: Analyze \(\lim_{k \to \infty} f^k_{\min} - f^*\) for the different choices of stepsize that we mentioned.

Constant step: \(\eta_k = \eta\); We obtain

\[
f^k_{\min} - f^* \leq \frac{R^2 + G^2 k \eta^2}{2k \eta} \to \frac{G^2 \eta}{2} \quad \text{as } k \to \infty.
\]
Subgradient method – convergence

\[f^k_{\text{min}} - f^* \leq \frac{R^2 + G^2 \sum_{t=1}^{k} \eta_t^2}{2 \sum_{t=1}^{k} \eta_t} \]

Exercise: Analyze \(\lim_{k \to \infty} f^k_{\text{min}} - f^* \) for the different choices of stepsize that we mentioned.

Constant step: \(\eta_k = \eta \); We obtain

\[f^k_{\text{min}} - f^* \leq \frac{R^2 + G^2 k \eta^2}{2k \eta} \to \frac{G^2 \eta}{2} \quad \text{as } k \to \infty. \]

Square summable, not summable: \(\sum_k \eta_k^2 < \infty, \sum_k \eta_k = \infty \)
Subgradient method – convergence

\[f_{\min}^k - f^* \leq \frac{R^2 + G^2 \sum_{t=1}^{k} \eta_t^2}{2 \sum_{t=1}^{k} \eta_t} \]

Exercise: Analyze \(\lim_{k \to \infty} f_{\min}^k - f^* \) for the different choices of stepsize that we mentioned.

Constant step: \(\eta_k = \eta \); We obtain

\[f_{\min}^k - f^* \leq \frac{R^2 + G^2 k \eta^2}{2k \eta} \to \frac{G^2 \eta}{2} \text{ as } k \to \infty. \]

Square summable, not summable: \(\sum_k \eta_k^2 < \infty, \sum_k \eta_k = \infty \)

As \(k \to \infty \), numerator \(< \infty \) but denominator \(\to \infty \); so \(f_{\min}^k \to f^* \)
Subgradient method – convergence

\[
 f^k_{\text{min}} - f^* \leq \frac{R^2 + G^2 \sum_{t=1}^k \eta_t^2}{2 \sum_{t=1}^k \eta_t}
\]

Exercise: Analyze \(\lim_{k \to \infty} f^k_{\text{min}} - f^* \) for the different choices of stepsize that we mentioned.

Constant step: \(\eta_k = \eta \); We obtain

\[
 f^k_{\text{min}} - f^* \leq \frac{R^2 + G^2 k \eta^2}{2k\eta} \to \frac{G^2 \eta}{2} \quad \text{as } k \to \infty.
\]

Square summable, not summable: \(\sum_k \eta_k^2 < \infty, \sum_k \eta_k = \infty \)

As \(k \to \infty \), numerator \(< \infty \) but denominator \(\to \infty \); so \(f^k_{\text{min}} \to f^* \)

In practice, fair bit of stepsize tuning needed, e.g. \(\eta_t = a/(b + t) \)
Subgradient method – convergence

- Suppose we want $f_{\text{min}}^k - f^* \leq \varepsilon$, how big should k be?
Suppose we want $f_{\min}^k - f^* \leq \varepsilon$, how big should k be?

Optimize the bound for η_t: want

$$f_{\min}^k - f^* \leq \varepsilon$$
Subgradient method – convergence

- Suppose we want $f_{\text{min}}^k - f^* \leq \varepsilon$, how big should k be?
- Optimize the bound for η_t: want

$$f_{\text{min}}^k - f^* \leq \frac{R^2 + G^2 \sum_{t=1}^{k} \eta_t^2}{2 \sum_{t=1}^{k} \eta_t} \leq \varepsilon$$
Suppose we want $f_{\text{min}}^k - f^* \leq \varepsilon$, how big should k be?

Optimize the bound for η_t: want

$$f_{\text{min}}^k - f^* \leq \frac{R^2 + G^2 \sum_{t=1}^{k} \eta_t^2}{2 \sum_{t=1}^{k} \eta_t} \leq \varepsilon$$

For fixed k: best possible stepsize is constant η

$$\frac{R^2 + G^2 k \eta^2}{2k \eta} \leq \varepsilon \quad \Rightarrow \quad \eta = \frac{R}{G \sqrt{k}}$$
Subgradient method – convergence

- Suppose we want $f_{\min}^k - f^* \leq \varepsilon$, how big should k be?

- Optimize the bound for η_t: want

$$f_{\min}^k - f^* \leq \frac{R^2 + G^2 \sum_{t=1}^k \eta_t^2}{2 \sum_{t=1}^k \eta_t} \leq \varepsilon$$

- For fixed k: best possible stepsize is constant η

$$\frac{R^2 + G^2 k \eta^2}{2k\eta} \leq \varepsilon \quad \Rightarrow \quad \eta = \frac{R}{G \sqrt{k}}$$

- Then, after k steps $f_{\min}^k - f^* \leq RG/\sqrt{k}$.

- For accuracy ε, we need at least $(RG/\varepsilon)^2 = O(1/\varepsilon^2)$ steps
Subgradient method – convergence

▶ Suppose we want $f_{\text{min}}^k - f^* \leq \varepsilon$, how big should k be?

▶ Optimize the bound for η_t: want

$$f_{\text{min}}^k - f^* \leq \frac{R^2 + G^2 \sum_{t=1}^{k} \eta_t^2}{2 \sum_{t=1}^{k} \eta_t} \leq \varepsilon$$

▶ For fixed k: best possible stepsize is constant η

$$\frac{R^2 + G^2 k \eta^2}{2k \eta} \leq \varepsilon \quad \Rightarrow \quad \eta = \frac{R}{G \sqrt{k}}$$

▶ Then, after k steps $f_{\text{min}}^k - f^* \leq RG/\sqrt{k}$.

▶ For accuracy ε, we need at least $(RG/\varepsilon)^2 = O(1/\varepsilon^2)$ steps

▶ (quite slow but already hits the lower bound!)
Exercise: Support vector machines

Let \(\mathcal{D} := \{(x_i, y_i) \mid x_i \in \mathbb{R}^n, y_i \in \{\pm 1\}\} \)

We wish to find \(w \in \mathbb{R}^n \) and \(b \in \mathbb{R} \) such that

\[
\min_{w,b} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^{m} \max[0, 1 - y_i(w^T x_i + b)]
\]

Derive and implement a subgradient method

Plot evolution of objective function

Experiment with different values of \(C > 0 \)

Plot and keep track of \(f_{\text{min}}^k := \min_{0 \leq t \leq k} f(x^t) \)
Exercise: Geometric median

• Let $a \in \mathbb{R}^n$ be a given vector.
• Let $f(x) = \sum_i |x - a_i|$, i.e., $f : \mathbb{R} \rightarrow \mathbb{R}_+$
• Implement different subgradient methods to minimize f
• Also keep track of $f_{\text{best}}^k := \min_{0 \leq i < k} f(x_i)$

Exercise: Implement the above. Plot the $f(x_k)$ values; also try to guess what optimum is being found.
Optimization with simple constraints

\[
\min \ f(x) \quad \text{s.t.} \quad x \in C
\]
Optimization with simple constraints

\[
\begin{array}{l}
\min f(x) \quad \text{s.t.} \quad x \in C
\end{array}
\]

- Previously:
 \[
x^{t+1} = x^t - \eta_t g^t
\]
- This could be infeasible!
Optimization with simple constraints

\[
\begin{aligned}
\min \quad & f(x) \\
\text{s.t.} \quad & x \in C
\end{aligned}
\]

- Previously:
 \[x^{t+1} = x^t - \eta_t g^t\]

- This could be infeasible!

- Use projection
Projected subgradient method

\[x^{k+1} = P_C(x^k - \eta_k g^k) \]

where \(g^k \in \partial f(x^k) \) is any subgradient
Projected subgradient method

\[x^{k+1} = P_C(x^k - \eta_k g^k) \]

where \(g^k \in \partial f(x^k) \) is any subgradient

- **Projection** closest feasible point

\[P_C(x) = \arg \min_{y \in C} \| x - y \|^2 \]

(Assume \(C \) is closed and convex, then projection is unique)
Projected subgradient method

\[x^{k+1} = P_C(x^k - \eta_k g^k) \]

where \(g^k \in \partial f(x^k) \) is any subgradient

- **Projection** closest feasible point

 \[P_C(x) = \arg\min_{y \in C} \| x - y \|^2 \]

 (Assume \(C \) is closed and convex, then projection is unique)

- Great as long as projection is “easy”

- Same questions as before:
 - Does it converge? For which stepsizes? How fast?
Key idea: Projection Theorem

Let C be nonempty, closed and convex.

- **Recall:** Optimality conditions: $y^* = P_C(z)$ iff

 $$\langle z - y^*, y - y^* \rangle \leq 0 \text{ for all } y \in C$$

Verify: Projection is nonexpansive:

$$\|P_C(x) - P_C(z)\| \leq \|x - z\|^2 \text{ for all } x, z \in \mathbb{R}^n.$$
Convergence analysis

Assumptions

- Min is attained: \(f^* := \inf_x f(x) > -\infty \), with \(f(x^*) = f^* \)
- Bounded subgradients: \(\|g\|_2 \leq G \) for all \(g \in \partial f \)
- Bounded domain: \(\|x^0 - x^*\|_2 \leq R \)

Analysis

- Let \(z^{t+1} = P_C(x^t - \eta_t g^t) \).
- Then \(x^{t+1} = P_C(z^{t+1}) \).
- Recall analysis of unconstrained method:
 \[
 \|z^{t+1} - x^*\|_2^2 = \|x^t - \eta_t g^t - x^*\|_2^2 \\
 \leq \|x^t - x^*\|_2^2 + \eta_t^2 \|g^t\|_2^2 - 2\eta_t (f(x^t) - f^*)
 \]
 \[
 \ldots
 \]
- Need to relate to \(\|x^{t+1} - x^*\|_2^2 \), the rest is as before
Convergence analysis: Key idea

- Using nonexpansiveness of projection:

\[
\|x^t - \eta_t g^t - x^*\|_2^2 \\
\leq \|x^t - x^*\|_2^2 + \eta_t^2 \|g^t\|_2^2 - 2\eta_t (f(x^t) - f^*)
\]

\ldots
Convergence analysis: Key idea

- Using nonexpansiveness of projection:

\[\|x^{t+1} - x^*\|_2^2 = \|P_C(x^t - \eta_t g^t) - P_C(x^*)\|_2^2 \]
\[\leq \|x^t - \eta_t g^t - x^*\|_2^2 \]
\[\leq \|x^t - x^*\|_2^2 + \eta_t^2 \|g^t\|_2^2 - 2\eta_t (f(x^t) - f^*) \]

\[\ldots \]

Same convergence results as in unconstrained case:

- within neighborhood of optimal for constant step size
- converges for diminishing non-summable
Examples of simple projections

- **Nonnegativity** $x \geq 0$, $P_C(z) = [z]_+$

- **ℓ_∞-ball** $\|x\|_\infty \leq 1$

 Projection: $\min \|x - z\|^2$ s.t. $x \leq 1$ and $x \geq -1$

 $P_{\|x\|_\infty \leq 1}(z) = y$ where $y_i = \text{sgn}(z_i) \min\{|z_i|, 1\}$

- **Linear equality constraints** $Ax = b$ ($A \in \mathbb{R}^{n \times m}$ has rank n)

 $$P_C(x) = z - A^\top (AA^\top)^{-1} (Az - b)$$
 $$= (I - A^\top (A^\top A)^{-1} A)z + A^\top (AA^\top)^{-1} b$$

- **Simplex**: $x^\top 1 = 1$ and $x \geq 0$

 doable in $O(n)$ time; similarly ℓ_1-norm ball
Some remarks

► Why care?
 ■ simple
 ■ low-memory
 ■ stochastic version possible
Some remarks

Why care?

- simple
- low-memory
- stochastic version possible

Another perspective

\[x^{k+1} = \min_{x \in C} \langle x, g^k \rangle + \frac{1}{2\eta_k} \| x - x_k \|^2 \]

Mirror Descent version

\[x^{k+1} = \min_{x \in C} \langle x, g^k \rangle + \frac{1}{\eta_k} D_\varphi(x, x_k) \]
Accelerated gradient
Theorem. (Upper bound I). Let \(f \in C^1_L \). Then,

\[
\min_k \| \nabla f(x^k) \| \leq \varepsilon \text{ in } O(1/\varepsilon^2) \text{ iterations.}
\]
Theorem. (Upper bound I). Let $f \in C^1_L$. Then,

$$\min_k \|\nabla f(x^k)\| \leq \varepsilon \text{ in } O(1/\varepsilon^2) \text{ iterations.}$$

Theorem. (Upper bound II). Let $f \in S^1_{L,\mu}$. Then,

$$f(x^k) - f(x^*) \leq \frac{L}{2} \left(\frac{\kappa - 1}{\kappa + 1} \right)^{2k} \|x^0 - x^*\|_2^2$$
Gradient methods – upper bounds

Theorem. (Upper bound I). Let $f \in C^1_L$. Then,

$$\min_k \| \nabla f(x^k) \| \leq \varepsilon \text{ in } O\left(\frac{1}{\varepsilon^2}\right) \text{ iterations.}$$

Theorem. (Upper bound II). Let $f \in S^1_{L,\mu}$. Then,

$$f(x^k) - f(x^*) \leq \frac{L}{2} \left(\frac{\kappa - 1}{\kappa + 1} \right)^{2k} \| x^0 - x^* \|_2^2$$

Theorem. (Upper bound III). Let $f \in C^1_L$ be convex. Then,

$$f(x^k) - f(x^*) \leq \frac{2L(f(x^0) - f(x^*))}{k+4} \| x^0 - x^* \|_2^2.$$
Theorem. (Carmon-Duchi-Hinder-Sidford 2017). There's an $f \in C^1_L$, such that $\|\nabla f(x)\| \leq \varepsilon$ requires $\Omega(\varepsilon^{-2})$ gradient evaluations.
Gradient methods – lower bounds

Theorem. (Carmon-Duchi-Hinder-Sidford 2017). There’s an \(f \in C^1_L \), such that \(\|\nabla f(x)\| \leq \varepsilon \) requires \(\Omega(\varepsilon^{-2}) \) gradient evaluations.

Theorem. (Nesterov). There exists \(f \in S^\infty_{L,\mu} (\mu > 0, \kappa > 1) \) s.t.

\[
f(x^k) - f(x^*) \geq \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{2k} \|x^0 - x^*\|_2^2,
\]
Gradient methods – lower bounds

Theorem. (Carmon-Duchi-Hinder-Sidford 2017). There’s an $f \in C^1_L$, such that $\|\nabla f(x)\| \leq \varepsilon$ requires $\Omega(\varepsilon^{-2})$ gradient evaluations.

Theorem. (Nesterov). There exists $f \in S^\infty_{L,\mu}$ ($\mu > 0, \kappa > 1$) s.t.

$$f(x^k) - f(x^*) \geq \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{2k} \|x^0 - x^*\|_2^2,$$

Theorem. (Nesterov). For any $x^0 \in \mathbb{R}^n$, and $1 \leq k \leq \frac{1}{2}(n - 1)$, there is a convex $f \in C^1_L$, s.t.

$$f(x^k) - f(x^*) \geq \frac{3L\|x^0 - x^*\|_2^2}{32(k + 1)^2} \quad \|x^k - x^0\|_2^2 \geq \frac{1}{8}\|x^0 - x^*\|_2^2.$$
Accelerated gradient methods

Upper bounds: (i) $O(1/k)$; and (ii) linear rate involving κ

Lower bounds: (i) $O(1/k^2)$; and (ii) linear rate involving $\sqrt{\kappa}$

Challenge: Close this gap!
Accelerated gradient methods

Upper bounds: (i) \(O(1/k)\); and (ii) linear rate involving \(\kappa\)

Lower bounds: (i) \(O(1/k^2)\); and (ii) linear rate involving \(\sqrt{\kappa}\)

Challenge: Close this gap!

Nesterov (1983) closed the gap.
Background: ravine method

- Long, narrow ravines slow down GD

\[x_{k+1} = y_k - \alpha \nabla f(y_k), \quad y_{k+1} = x_k + 1 + \beta (x_{k+1} - x_k) \]
Background: ravine method

- Long, narrow **ravines** slow down GD
- Gel’fand-Tsetlin (1961): **Ravine method**
- Long, narrow **ravines** slow down GD

- Gel’fand-Tsetlin (1961): **Ravine method**

- Intuition: descent to bottom of ravine not hard, but moving along narrow ravine harder. Thus, *mix two types of steps*: gradient step and a “ravine step”
Background: ravine method

- Long, narrow **ravines** slow down GD
- Gel’fand-Tsetlin (1961): **Ravine method**
- Intuition: descent to bottom of ravine not hard, but moving along narrow ravine harder. Thus, mix two types of steps: gradient step and a “ravine step”

Simplest form of ravine method

\[
x^{k+1} = y^k - \alpha \nabla f(y^k), \quad y^{k+1} = x^{k+1} + \beta(x^{k+1} - x^k)
\]
Background: Heavy-ball method

Polyak's Momentum Method (1964)

\[x^{k+1} = x^k - \eta_k \nabla f(x^k) + \beta_k (x^k - x^{k-1}) \]

Theorem. Let \(f = \frac{1}{2} x^T Ax + b^T x \in S_{L,\mu}^1 \). Then, choose

\[\eta_k = \frac{4}{(\sqrt{L} + \sqrt{\mu})}, \quad \beta_k = q^2, \quad q = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \]

the heavy-ball method satisfies \(\|x^k - x^*\| = O(q^k) \).
Background: Heavy-ball method

Polyak’s Momentum Method (1964)

\[x^{k+1} = x^k - \eta_k \nabla f(x^k) + \beta_k (x^k - x^{k-1}) \]

Theorem. Let \(f = \frac{1}{2} x^T A x + b^T x \in S^1_{L,\mu} \). Then, choose

\[
\eta_k = \frac{4}{(\sqrt{L} + \sqrt{\mu})}, \quad \beta_k = q^2, \quad q = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}
\]

the heavy-ball method satisfies \(\|x^k - x^*\| = O(q^k) \).

Motivated originally from so-called “Ravine method” of Gelfand-Tsetlin (1961), that runs the iteration

\[
z^k = x^k - \eta_k \nabla f(x^k), \quad x^{k+1} = z^k + \beta_k (z^k - z^{k-1})
\]
Background: Heavy-ball method

Polyak’s Momentum Method (1964)

\[x^{k+1} = x^k - \eta_k \nabla f(x^k) + \beta_k (x^k - x^{k-1}) \]

Can view it as a discretization of 2nd-order ODE:

\[\ddot{x} + a \dot{x} + b \nabla f(x) = 0 \]

(analogy: movement of a heavy-ball in a potential field \(f(x) \) governed not only by \(\nabla f(x) \) but by a \textit{momentum} term)
Background: Heavy-ball method

Polyak’s Momentum Method (1964)

\[x^{k+1} = x^k - \eta_k \nabla f(x^k) + \beta_k (x^k - x^{k-1}) \]

Can view it as a discretization of 2nd-order ODE:

\[\ddot{x} + a \dot{x} + b \nabla f(x) = 0 \]

(analogy: movement of a heavy-ball in a potential field \(f(x) \) governed not only by \(\nabla f(x) \) but by a momentum term)

Why does momentum help?

Explore: Check out: https://distill.pub/2017/momentum/

What about the general convex case?
Nesterov’s AGM
Nesterov’s AGM

Nesterov’s (1983) method

\[x^{k+1} = y^k - \frac{1}{L} \nabla f(y^k) \]
\[y^{k+1} = x^{k+1} + \beta_k (x^{k+1} - x^k) \]
Nesterov’s AGM

Nesterov’s (1983) method

\[x^{k+1} = y^k - \frac{1}{L} \nabla f(y^k) \]
\[y^{k+1} = x^{k+1} + \beta_k (x^{k+1} - x^k) \]

Essentially same as the ravine method!!
Nesterov’s AGM

Nesterov’s (1983) method

\[x^{k+1} = y^k - \frac{1}{L} \nabla f(y^k) \]
\[y^{k+1} = x^{k+1} + \beta_k (x^{k+1} - x^k) \]

Essentially same as the ravine method!!

\[\beta_k = \frac{\alpha_k - 1}{\alpha_{k+1}}, \quad 2\alpha_{k+1} = 1 + \sqrt{4\alpha_k^2 + 1}, \quad \alpha_0 = 1 \]

\[f(x^k) - f(x^*) \leq \frac{2L \|y_0 - x^*\|^2}{(k + 2)^2}. \]

In the strongly convex case, instead we use \(\beta_k = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \). This leads to \(O(\sqrt{\kappa} \log(1/\varepsilon)) \) iterations to ensure \(f(x^k) - f(x^*) \leq \varepsilon \).

(Remark: Nemirovski proposed a method that achieves optimal complexity, but it required 2D line-search. Nesterov’s method was the real breakthrough and remains a fascinating topic to study even today.)
Analyzing Nesterov’s method

Ravine method worked well and sparked numerous heuristics for selecting its parameters and improving its behavior. However, its convergence was never proved. Inspired Polyak’s heavy-ball method, which seems to have inspired Nesterov’s AGM.)
Ravine method worked well and sparked numerous heuristics for selecting its parameters and improving its behavior. However, its convergence was never proved. Inspired Polyak’s heavy-ball method, which seems to have inspired Nesterov’s AGM.

Some ways to analyze AGM

- Nesterov’s Estimate sequence method
- Approaches based on potential (Lyapunov) functions
- Derivation based on viewing AGM as approximate PPM
- Using “linear coupling,” mixing a primal-dual view
- Analysis based on SDPs
Ravine method worked well and sparked numerous heuristics for selecting its parameters and improving its behavior. However, its convergence was never proved. Inspired Polyak’s heavy-ball method, which seems to have inspired Nesterov’s AGM.

Some ways to analyze AGM

- Nesterov’s Estimate sequence method
- Approaches based on potential (Lyapunov) functions
- Derivation based on viewing AGM as approximate PPM
- Using “linear coupling,” mixing a primal-dual view
- Analysis based on SDPs

See discussion in the paper

From Nesterov’s Estimate Sequence to Riemannian Acceleration

Kwangjun Ahn

Suvrit Sra

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
Potential analysis – sketch

- Choose potential: judge closeness of iterates to the optimal
- Ensure the potential is decreasing with iteration
- AGM does not satisfy $f(x^{k+1}) \leq f(x^k)$, so...

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (3/16/21; Lecture 8)
Potential analysis – sketch

- Choose potential: judge closeness of iterates to the optimal
- Ensure the potential is decreasing with iteration
- AGM does not satisfy $f(x^{k+1}) \leq f(x^k)$, so...

Slightly more general AGM iteration

$$
\begin{align*}
x^{k+1} &\leftarrow y^k + \alpha_{k+1} (z^k - y^k) \\
y^{k+1} &\leftarrow x^{k+1} - \gamma_{k+1} \nabla f(x^{k+1}) \\
z^{k+1} &\leftarrow x^{k+1} + \beta_{k+1} (z^k - x^{k+1}) - \eta_{k+1} \nabla f(x^{k+1})
\end{align*}
$$

Mixing intuition from “descent” and “ravines”

$$
\Phi_k := A_k (f(y^k) - f(x^*)) + B_k \|z^k - x^*\|^2
$$

Pick parameters $A_k, B_k, \eta_k, \gamma_k, \alpha_k, \beta_k$ to ensure that we have $\Phi_k - \Phi_{k-1} \leq 0$. Turns out a “simple” choice does that job!
Potential analysis – sketch

Using the shorthand:

\(\Delta_\gamma := \gamma (1 - L \gamma / 2) \), \(\nabla := \nabla f(x_{t+1}) \), \(X := x_{t+1} - x_* \), and \(W := z_t - x_{t+1} \),

using smoothness and convexity, show that \(\Phi_{k+1} - \Phi_k \) is upper-bounded by

\[
\begin{align*}
&c_1 \|W\|^2 + c_2 \|X\|^2 + c_3 \|\nabla\|^2 + c_4 \langle W, X \rangle + c_5 \langle W, \nabla \rangle + c_6 \langle X, \nabla \rangle, \\
&\quad \left\{ \begin{array}{ll}
&c_1 := \beta^2 B_{k+1} - B_k - \frac{\mu}{2} \frac{\alpha^2}{(1-\alpha)^2} A_k, \\
&c_2 := B_{k+1} - B_k - \frac{\mu}{2} (A_{k+1} - A_k), \\
&c_3 := \eta^2 B_{k+1} - \Delta_\gamma \cdot A_{k+1}, \\
&c_4 := 2 \cdot (\beta B_{k+1} - B_k), \\
&c_5 := \frac{\alpha}{1-\alpha} A_k - 2 \beta \eta B_{k+1}, \quad \text{and} \quad c_6 := (A_{k+1} - A_k) - 2 \eta B_{k+1}.
\end{array} \right.
\]

Now choose parameters to ensure \(\Phi_{k+1} - \Phi_k \leq 0 \). Finally, leads to a bound of the form

\[
\begin{align*}
&f(y_k) - f(x_*) = O\left((1 - \xi_1) \cdots (1 - \xi_k) \right),
\end{align*}
\]

where the sequence \(\{\xi_k\} \) fully characterizes convergence.

Potential analysis – sketch

Using the shorthand:

\[\Delta \gamma := \gamma (1 - L\gamma /2), \quad \nabla := \nabla f(x_{t+1}), \quad X := x_{t+1} - x^*, \quad \text{and} \quad W := z_t - x_{t+1}, \]

using smoothness and convexity, show that \(\Phi_{k+1} - \Phi_k \) is upper-bounded by

\[
\begin{aligned}
c_1 \| W \|^2 + c_2 \| X \|^2 + c_3 \| \nabla \|^2 + c_4 \langle W, X \rangle + c_5 \langle W, \nabla \rangle + c_6 \langle X, \nabla \rangle, \\
c_1 := \beta^2 B_{k+1} - B_k - \frac{\mu}{2} \frac{\alpha^2}{(1 - \alpha)^2} A_k, \quad c_2 := B_{k+1} - B_k - \frac{\mu}{2} (A_{k+1} - A_k), \\
c_3 := \eta^2 B_{k+1} - \Delta \gamma \cdot A_{k+1}, \quad c_4 := 2 \cdot (\beta B_{k+1} - B_k), \\
c_5 := \frac{\alpha}{1 - \alpha} A_k - 2 \beta \eta B_{k+1}, \quad \text{and} \quad c_6 := (A_{k+1} - A_k) - 2 \eta B_{k+1}.
\end{aligned}
\]

Now choose parameters to ensure \(\Phi_{k+1} - \Phi_k \leq 0 \). Finally, leads to a bound of the form

\[f(y^k) - f(x^*) = O((1 - \xi_1) \cdots (1 - \xi_k)), \]

where the sequence \(\{\xi_k\} \) fully characterizes convergence.

Ref: See details in the paper: Ahn, Sra (2020). *From Nesterov’s Estimate Sequence to Riemannian Acceleration.*