Optimization for Machine Learning

Lecture 7: First-order methods

6.881: MIT

Suvrit Sra
Massachusetts Institute of Technology

11 Mar, 2021
6.881 Optimization for Machine Learning

I. Foundations
 - 1. GradDesc, SGD, Subgradient method
 - 2. Accelerated gradient, mirror descent
 - 3. Faster stochastic methods, variance reduction

II. First-order methods
 - 4. Franke-Wolfe (projection free) methods
 - 5. Operator splitting methods

III. Nonconvex focus
 - 6. Coordinate descent, BCD, Altmin

IV. Other topics
 - 7. CCCP, EM method, and related ideas
First-order methods

\[x \leftarrow x - \eta g(x) \]
First-order methods

\[x \leftarrow x - \eta g(x) \]
First-order methods

\[x \leftarrow x - \eta g(x) \]

\[\nabla f(x) \]

GD
First-order methods

\[x \leftarrow x - \eta g(x) \]

\(\nabla f(x) \)

GD

\[\mathbb{E}[g(x)] = \nabla f(x) \]

SGD
First-order methods

\[x \leftarrow x - \eta g(x) \]

\(\nabla f(x) \)

GD

\[\mathbb{E}[g(x)] = \nabla f(x) \]

SGD

\(g(x) \in \partial f(x) \)

Subgrad
Gradient Descent

\[x \leftarrow x - \eta \nabla f(x) \]
Descent methods

\[\nabla f(x^*) = 0 \]

\[x_k \rightarrow x_{k+1} \rightarrow \cdots \rightarrow x^* \]
Descent methods

- Suppose we have a vector $x \in \mathbb{R}^n$ for which $\nabla f(x) \neq 0$
- Consider updating x using

$$x(\eta) = x + \eta d,$$

where direction $d \in \mathbb{R}^n$ obtuse to $\nabla f(x)$, i.e.,

$$\langle \nabla f(x), d \rangle < 0.$$
Descent methods

Suppose we have a vector $x \in \mathbb{R}^n$ for which $\nabla f(x) \neq 0$

Consider updating x using

$$x(\eta) = x + \eta d,$$

where direction $d \in \mathbb{R}^n$ obtuse to $\nabla f(x)$, i.e.,

$$\langle \nabla f(x), d \rangle < 0.$$

Again, we have the Taylor expansion

$$f(x(\eta)) = f(x) + \eta \langle \nabla f(x), d \rangle + o(\eta),$$

where $\langle \nabla f(x), d \rangle$ dominates $o(\eta)$ for small η.
Descent methods

- Suppose we have a vector $x \in \mathbb{R}^n$ for which $\nabla f(x) \neq 0$
- Consider updating x using
 $$x(\eta) = x + \eta d,$$
 where direction $d \in \mathbb{R}^n$ obtuse to $\nabla f(x)$, i.e.,
 $$\langle \nabla f(x), d \rangle < 0.$$
- Again, we have the Taylor expansion
 $$f(x(\eta)) = f(x) + \eta \langle \nabla f(x), d \rangle + o(\eta),$$
 where $\langle \nabla f(x), d \rangle$ dominates $o(\eta)$ for small η
- Since d is obtuse to $\nabla f(x)$, this implies $f(x(\eta)) < f(x)$
Descent methods
Descent methods

\[\nabla f(x) \]

\[-\nabla f(x) \]
Descent methods

\[x - \alpha \nabla f(x) \]

\[x - \delta \nabla f(x) \]
Descent methods

\[\nabla f(x) \]

\[x - \alpha \nabla f(x) \]

\[x + \alpha_2 d \]

\[x - \delta \nabla f(x) \]
Gradient-based methods

1. Start with some guess x^0;
2. For each $k = 0, 1, \ldots$
 - $x^{k+1} \leftarrow x^k + \eta_k d^k$
 - Stop somehow (e.g., if $\|\nabla f(x^{k+1})\| \leq \varepsilon$)
Gradient based methods

\[x^{k+1} = x^k + \eta_k d^k, \quad k = 0, 1, \ldots \]
Gradient based methods

\[x^{k+1} = x^k + \eta_k d^k, \quad k = 0, 1, \ldots \]

- **stepsizes** \(\eta_k \geq 0 \), usually ensures \(f(x^{k+1}) < f(x^k) \)
Gradient based methods

\[x^{k+1} = x^k + \eta_k d^k, \quad k = 0, 1, \ldots \]

- **stepsize** \(\eta_k \geq 0 \), usually ensures \(f(x^{k+1}) < f(x^k) \)
- **Descent direction** \(d^k \) satisfies

\[\langle \nabla f(x^k), d^k \rangle < 0 \]
Gradient based methods

\[x^{k+1} = x^k + \eta_k d^k, \quad k = 0, 1, \ldots \]

- **Stepsize** \(\eta_k \geq 0 \), usually ensures \(f(x^{k+1}) < f(x^k) \)
- **Descent direction** \(d^k \) satisfies

\[\langle \nabla f(x^k), d^k \rangle < 0 \]

Numerous ways to select \(\eta_k \) and \(d^k \)
Gradient based methods

\[x^{k+1} = x^k + \eta_k d^k, \quad k = 0, 1, \ldots \]

- **stepsize** \(\eta_k \geq 0 \), usually ensures \(f(x^{k+1}) < f(x^k) \)
- **Descent direction** \(d^k \) satisfies

\[\langle \nabla f(x^k), d^k \rangle < 0 \]

Numerous ways to select \(\eta_k \) and \(d^k \)

Many methods **seek monotonic descent**

\[f(x^{k+1}) < f(x^k) \]
Gradient methods – direction

\[x^{k+1} = x^k + \eta_k d^k, \quad k = 0, 1, \ldots \]

- Different choices of direction \(d^k \)
 - **Scaled gradient:** \(d^k = -D^k \nabla f(x^k) \), \(D^k \succ 0 \)
 - **Newton’s method:** \((D^k = [\nabla^2 f(x^k)]^{-1}) \)
 - **Quasi-Newton:** \(D^k \approx [\nabla^2 f(x^k)]^{-1} \)
 - **Steepest descent:** \(D^k = I \)
 - **Diagonally scaled:** \(D^k \) diagonal with \(D^k_{ii} \approx \left(\frac{\partial^2 f(x^k)}{\partial x^2_i} \right)^{-1} \)
 - **Discretized Newton:** \(D^k = [H(x^k)]^{-1}, H \) via finite-diff.
Gradient methods – direction

\[x^{k+1} = x^k + \eta_k d^k, \quad k = 0, 1, \ldots \]

- Different choices of direction \(d^k \)
 - **Scaled gradient**: \(d^k = -D^k \nabla f(x^k), \quad D^k \succ 0 \)
 - **Newton’s method**: \(D^k = [\nabla^2 f(x^k)]^{-1} \)
 - **Quasi-Newton**: \(D^k \approx [\nabla^2 f(x^k)]^{-1} \)
 - **Steepest descent**: \(D^k = I \)
 - **Diagonally scaled**: \(D^k \) diagonal with \(D_{ii}^k \approx \left(\frac{\partial^2 f(x^k)}{\partial x_i^2} \right)^{-1} \)
 - **Discretized Newton**: \(D^k = [H(x^k)]^{-1}, \quad H \text{ via finite-diff.} \)
 - ...

Exercise: Verify that \(\langle \nabla f(x^k), d^k \rangle < 0 \) for above choices
Stepsize selection

- **Constant**: \(\eta_k = 1/L \) (for suitable value of \(L \))
Stepsize selection

- **Constant**: \(\eta_k = 1/L \) (for suitable value of \(L \))
- **Diminishing**: \(\eta_k \to 0 \) but \(\sum_k \eta_k = \infty \).

Exercise: Prove that the latter condition ensures that \(\{x_k\} \) does not converge to nonstationary points.

Sketch: Say, \(x_k \to \bar{x} \); then for sufficiently large \(m \) and \(n \), \(x_m \approx x_n \approx \bar{x} \), \(x_m \approx x_n - (m-1) \sum_{k=n}^{m-1} \eta_k \nabla f(\bar{x}) \).

The sum can be made arbitrarily large, contradicting nonstationarity of \(\bar{x} \).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (03/11/21; Lecture 7)
Stepsize selection

- **Constant**: $\eta_k = 1/L$ (for suitable value of L)
- **Diminishing**: $\eta_k \to 0$ but $\sum_k \eta_k = \infty$.

Exercise: Prove that the latter condition ensures that $\{x^k\}$ does not converge to nonstationary points.
Stepsize selection

- **Constant:** \(\eta_k = 1/L \) (for suitable value of \(L \))
- **Diminishing:** \(\eta_k \to 0 \) but \(\sum_k \eta_k = \infty \).

Exercise: Prove that the latter condition ensures that \(\{x^k\} \) does not converge to nonstationary points.

Sketch: Say, \(x^k \to \bar{x} \); then for sufficiently large \(m \) and \(n \) (\(m > n \)),

\[
x^m \approx x^n \approx \bar{x}, \quad x^m \approx x^n - \left(\sum_{k=n}^{m-1} \eta_k \right) \nabla f(\bar{x}).
\]

The sum can be made arbitrarily large, contradicting nonstationarity of \(\bar{x} \).
Stepsize selection

- **Exact:** \(\eta_k := \arg\min_{\eta \geq 0} f(x_k + \eta d_k) \)

- **Limited min:** \(\eta_k = \arg\min_{0 \leq \eta \leq s} f(x_k + \eta d_k) \)

- **Armijo-rule.** Given fixed scalars, \(s, \beta, \sigma \) with \(0 < \beta < 1 \) and \(0 < \sigma < 1 \) (chosen experimentally). Set

\[
\eta_k = \beta^{m_k} s,
\]

where we try \(\beta^m s \) for \(m = 0, 1, \ldots \) until sufficient descent

\[
f(x_k) - f(x + \beta^m s d_k) \geq -\sigma \beta^m s \langle \nabla f(x_k), d_k \rangle
\]

If \(\langle \nabla f(x_k), d_k \rangle < 0 \), stepsize guaranteed to exist

Usually, \(\sigma \) small \(\in [10^{-5}, 0.1] \), while \(\beta \) from 1/2 to 1/10 depending on how confident we are about initial stepsize \(s \).
Barzilai-Borwein step-size*

- Stepsize computation can be expensive
- Convergence analysis depends on monotonic descent

$$x_{k+1} = x_k - \eta_k \nabla f(x_k), \quad k = 0, 1, 2, \ldots$$

$$\eta_k = \langle u_k, v_k \rangle / \| v_k \|_2$$

$$u_k = x_k - x_{k-1}, \quad v_k = \nabla f(x_k) - \nabla f(x_{k-1})$$

Challenge.

Analyze convergence of GD using BB stepsizes.
Barzilai-Borwein step-size

- Stepsize computation can be expensive
- Convergence analysis depends on monotonic descent
- Give up search for stepsizes
- Use constants or closed-form formulae for stepsizes
- Don’t insist on monotonic descent?
- (e.g., diminishing stepsizes non-monotonic descent)
Barzilai-Borwein step-size*

- Stepsize computation can be expensive
- Convergence analysis depends on monotonic descent
- Give up search for stepsizes
- Use constants or closed-form formulae for stepsizes
- Don’t insist on monotonic descent?
- (e.g., diminishing stepsizes non-monotonic descent)

Barzilai & Borwein stepsizes

\[x^{k+1} = x^k - \eta^k \nabla f(x^k), \quad k = 0, 1, \ldots \]
Barzilai-Borwein step-size

- Stepsize computation can be expensive
- Convergence analysis depends on monotonic descent
- Give up search for stepsizes
- Use constants or closed-form formulae for stepsizes
- Don’t insist on monotonic descent?
- (e.g., diminishing stepsizes non-monotonic descent)

Barzilai & Borwein stepsizes

$$x^{k+1} = x^k - \eta^k \nabla f(x^k), \quad k = 0, 1, \ldots$$

$$\eta_k = \frac{\langle u^k, v^k \rangle}{\|v^k\|^2}, \quad \eta_k = \frac{\|u^k\|^2}{\langle u^k, v^k \rangle}$$

$$u^k = x^k - x^{k-1}, \quad v^k = \nabla f(x^k) - \nabla f(x^{k-1})$$

Challenge. Analyze convergence of GD using BB stepsizes.
Let D be the $(n - 1) \times n$ differencing matrix

$$D = \begin{pmatrix}
-1 & 1 \\
-1 & 1 \\
\vdots \\
-1 & 1 \\
\end{pmatrix} \in \mathbb{R}^{(n-1) \times n},$$

$$f(x) = \frac{1}{2} \|D^T x - b\|_2^2 = \frac{1}{2} (\|D^T x\|_2^2 + \|b\|_2^2 - 2\langle D^T x, b \rangle)$$

Notice that $\nabla f(x) = D(D^T x - b)$

Try different choices of b, and different initial vectors x_0

Exercise: Experiment to see how large n must be before gradient method starts outperforming CVX

Exercise: Minimize $f(x)$ for large n; e.g., $n = 10^6$, $n = 10^7$

Exercise: Repeat same exercise with constraints: $x_i \in [-1, 1]$.
Convergence

(remarks)
Gradient descent – convergence

Assumption: Lipschitz continuous gradient; denoted $f \in C^1_L$

$$\|\nabla f(x) - \nabla f(y)\|_2 \leq L\|x - y\|_2$$
Assumption: Lipschitz continuous gradient; denoted $f \in C^1_L$

$$\|\nabla f(x) - \nabla f(y)\|_2 \leq L\|x - y\|_2$$

♣ Gradient vectors of closeby points are close to each other
♣ Objective function has “bounded curvature”
♣ Speed at which gradient varies is bounded
♣ Exercise: If $f \in C^1_L$ is twice diff. then $\|\nabla^2 f(x)\|_2 \leq L$.
Gradient descent – convergence

Convergence of gradient norm

Theorem. Let $f \in C^1_L$. \[\| \nabla f(x^k) \|_2 \to 0 \text{ as } k \to \infty \]
Gradient descent – convergence

Convergence of gradient norm

Theorem. Let $f \in C^1_L$. $\|\nabla f(x^k)\|_2 \to 0$ as $k \to \infty$

Theorem. Let $f \in C^1_L$. $\min_{1 \leq k \leq T} \|\nabla f(x^k)\|_2 = O(1/T)$
Gradient descent – convergence

Convergence of gradient norm

Theorem. Let $f \in C^1_L$. $\|\nabla f(x^k)\|_2 \to 0$ as $k \to \infty$

Theorem. Let $f \in C^1_L$. $\min_{1 \leq k \leq T} \|\nabla f(x^k)\|_2 = O(1/T)$

Convergence rate: function suboptimality

Theorem. Let $f \in C^1_L$ be convex; let $\{x^k\}$ be generated as above, with $\eta_k = 1/L$. Then, $f(x^{T+1}) - f(x^*) = O(1/T)$.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (03/11/21; Lecture 7)
Gradient descent – convergence

Convergence of gradient norm

Theorem. Let $f \in C^1_L$. $\|\nabla f(x^k)\|_2 \to 0$ as $k \to \infty$

Theorem. Let $f \in C^1_L$. $\min_{1 \leq k \leq T} \|\nabla f(x^k)\|_2 = O(1/T)$

Convergence rate: function suboptimality

Theorem. Let $f \in C^1_L$ be convex; let $\{x^k\}$ be generated as above, with $\eta_k = 1/L$. Then, $f(x^{T+1}) - f(x^*) = O(1/T)$.

Theorem. If $f \in S^1_{L,\mu}$, $\eta = \frac{2}{L+\mu}$, and $\{x^k\}$ generated by GD. Then, $f(x^T) - f^* \leq \frac{L}{2} \left(\frac{\kappa-1}{\kappa+1} \right)^{2T} \|x^0 - x^*\|_2^2$, where $\kappa := L/\mu$ is the **condition number**.
Proof

(sketches)
Key result: The Descent Lemma

Lemma (Descent lemma). Let \(f \in C^1_L \). Then,

\[
f(x) \leq f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} \|x - y\|^2
\]
Key result: The Descent Lemma

Lemma (Descent lemma). Let $f \in \mathcal{C}^1_L$. Then,

$$f(x) \leq f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} \|x - y\|^2_2$$

Proof. By Taylor’s theorem, for $z_t = y + t(x - y)$ we have

$$f(x) = f(y) + \int_0^1 \langle \nabla f(z_t), x - y \rangle dt.$$

Adding and subtracting $\langle \nabla f(y), x - y \rangle$ we obtain

$$|f(x) - f(y) - \langle \nabla f(y), x - y \rangle| = \left| \int_0^1 \langle \nabla f(z_t) - \nabla f(y), x - y \rangle dt \right|$$

$$\leq \int_0^1 |\langle \nabla f(z_t) - \nabla f(y), x - y \rangle| dt$$

$$\leq \int_0^1 \|\nabla f(z_t) - \nabla f(y)\|_2 \|x - y\|_2 dt$$

$$\leq L \int_0^1 t \|x - y\|_2^2 dt$$

$$= \frac{L}{2} \|x - y\|_2^2.$$

Bounds $f(x)$ above and below with quadratic functions
Coroll. 1 If $f \in C^1_L$, and $0 < \eta_k < 2/L$, then $f(x^{k+1}) < f(x^k)$.
Coroll. 1 If $f \in C^1_L$, and $0 < \eta_k < 2/L$, then $f(x^{k+1}) < f(x^k)$

Proof.

\[
\begin{align*}
 f(x^{k+1}) & \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \| x^{k+1} - x^k \|_2 \\
 & = f(x^k) - \eta_k \| \nabla f(x^k) \|_2^2 + \frac{\eta_k^2 L}{2} \| \nabla f(x^k) \|_2^2 \\
 & = f(x^k) - \eta_k (1 - \frac{\eta_k}{2} L) \| \nabla f(x^k) \|_2^2
\end{align*}
\]

If $\eta_k < 2/L$ we have descent. min over η_k to get best bound, giving $\eta_k = 1/L$.
Descent lemma – corollary

Coroll. 1 If \(f \in C^1_L \), and \(0 < \eta_k < 2/L \), then \(f(x^{k+1}) < f(x^k) \)

Proof.

\[
\begin{align*}
 f(x^{k+1}) &\leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \| x^{k+1} - x^k \|_2 \\
 &= f(x^k) - \eta_k \| \nabla f(x^k) \|_2^2 + \frac{\eta_k^2 L}{2} \| \nabla f(x^k) \|_2^2 \\
 &= f(x^k) - \eta_k (1 - \frac{\eta_k L}{2}) \| \nabla f(x^k) \|_2^2
\end{align*}
\]

If \(\eta_k < 2/L \) we have descent. min over \(\eta_k \) to get best bound, giving \(\eta_k = 1/L \).

Alternative bigger picture

Minimize global upper bound:

\[
\begin{align*}
f(x) &\leq f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} \| x - y \|_2^2 \\
f(x) &\leq F(x, y), \text{ where } F(x, x) = f(x)
\end{align*}
\]

Explore: Other global upper bounds and corresponding algorithms.
We showed that

\[f(x^k) - f(x^{k+1}) \geq \frac{1}{2L} \| \nabla f(x^k) \|_2^2, \]

where \(L \) is the Lipschitz constant of the gradient. Summing up these inequalities for \(k = 0, 1, \ldots, T \) gives:

\[\frac{1}{2L} \sum_{k=0}^{T} \| \nabla f(x^k) \|_2^2 \leq f(x_0) - f(x_T+1) \leq f(x_0) - f^*. \]

We assume \(f^* > -\infty \), so the right-hand side is some fixed positive constant. Thus, as \(k \to \infty \), the left-hand side must converge, implying that \(\| \nabla f(x^k) \|_2 \to 0 \) as \(k \to \infty \).
Convergence of gradient norm

- We showed that
 \[f(x^k) - f(x^{k+1}) \geq \frac{1}{2L} \| \nabla f(x^k) \|_2^2, \]

- Sum up above inequalities for \(k = 0, 1, \ldots, T \) to obtain
 \[\frac{1}{2L} \sum_{k=0}^{T} \| \nabla f(x^k) \|_2^2 \leq f(x^0) - f(x^{T+1}) \]
We showed that
\[f(x^k) - f(x^{k+1}) \geq \frac{1}{2L} \| \nabla f(x^k) \|_2^2, \]

Sum up above inequalities for \(k = 0, 1, \ldots, T \) to obtain
\[\frac{1}{2L} \sum_{k=0}^{T} \| \nabla f(x^k) \|_2^2 \leq f(x^0) - f(x^{T+1}) \leq f(x^0) - f^*. \]
We showed that
\[f(x^k) - f(x^{k+1}) \geq \frac{1}{2L} \| \nabla f(x^k) \|_2^2, \]

Sum up above inequalities for \(k = 0, 1, \ldots, T \) to obtain
\[\frac{1}{2L} \sum_{k=0}^{T} \| \nabla f(x^k) \|_2^2 \leq f(x^0) - f(x^{T+1}) \leq f(x^0) - f^*. \]

We assume \(f^* > -\infty \), so rhs is some fixed positive constant
Convergence of gradient norm

- We showed that
 \[f(x^k) - f(x^{k+1}) \geq \frac{1}{2L} \| \nabla f(x^k) \|^2 \],

- Sum up above inequalities for \(k = 0, 1, \ldots, T \) to obtain
 \[\frac{1}{2L} \sum_{k=0}^{T} \| \nabla f(x^k) \|^2 \leq f(x^0) - f(x^{T+1}) \leq f(x^0) - f^* \].

- We assume \(f^* > -\infty \), so rhs is some fixed positive constant

- Thus, as \(k \to \infty \), lhs must converge; thus
 \[\| \nabla f(x^k) \|_2 \to 0 \quad \text{as} \quad k \to \infty \].
We showed that
\[f(x^k) - f(x^{k+1}) \geq \frac{1}{2L} \| \nabla f(x^k) \|_2^2, \]

Sum up above inequalities for \(k = 0, 1, \ldots, T \) to obtain
\[\frac{1}{2L} \sum_{k=0}^{T} \| \nabla f(x^k) \|_2^2 \leq f(x^0) - f(x^{T+1}) \leq f(x^0) - f^*. \]

We assume \(f^* > -\infty \), so rhs is some fixed positive constant.

Thus, as \(k \to \infty \), lhs must converge; thus
\[\| \nabla f(x^k) \|_2 \to 0 \quad \text{as} \quad k \to \infty. \]

\[\min_{0 \leq k \leq T} \| \nabla f(x^k) \|_2^2 \leq \frac{1}{T+1} \sum_{k=0}^{T} \| \nabla f(x^k) \|_2^2, \]

so \(O\left(\frac{1}{\epsilon}\right) \) for \(\| \nabla f \|_2^2 \leq \epsilon \).

Notice, we did not require \(f \) to be convex …
Theorem. If \(f \in S^1_{L,\mu}, 0 < \eta < 2/(L + \mu) \), then the gradient method generates a sequence \(\{x^k\} \) that satisfies

\[
\|x^k - x^*\|_2^2 \leq \left(1 - \frac{2\eta \mu L}{\mu + L}\right)^k \|x^0 - x^*\|_2.
\]

Moreover, if \(\eta = 2/(L + \mu) \) then

\[
f(x^k) - f^* \leq \frac{L}{2} \left(\frac{\kappa - 1}{\kappa + 1}\right)^{2k} \|x^0 - x^*\|_2^2,
\]

where \(\kappa := L/\mu \) is the *condition number*.
Convergence – strongly convex case

Assumption: *Strong convexity*; denote $f \in S_{L,\mu}^1$

\[f(x) \geq f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} \|x - y\|_2^2 \]
Convergence – strongly convex case

Assumption: Strong convexity; denote $f \in S_{L,\mu}^1$

$$f(x) \geq f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} \|x - y\|_2^2$$

Descent lemma convex corollary

Corollary 2. If f is a convex function $\in C_L^1$, then

$$\frac{1}{L} \|\nabla f(x) - \nabla f(y)\|_2^2 \leq \langle \nabla f(x) - \nabla f(y), x - y \rangle,$$

Exercise: Prove Cor. 2. (Hint: Consider $\phi(y) = f(y) - \langle \nabla f(x_0), y \rangle$).
Convergence – strongly convex case

Assumption: Strong convexity; denote $f \in S_{L,\mu}^1$

$$f(x) \geq f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} \|x - y\|_2^2$$

Descent lemma convex corollary

Corollary 2. If f is a convex function $\in C_L^1$, then

$$\frac{1}{L} \| \nabla f(x) - \nabla f(y) \|_2^2 \leq \langle \nabla f(x) - \nabla f(y), x - y \rangle,$$

Exercise: Prove Cor. 2. *(Hint: Consider $\phi(y) = f(y) - \langle \nabla f(x_0), y \rangle$).*

Valuable refinement for the strongly convex case...
Corollary 2. If f is a convex function $\in C^1_L$, then

$$\frac{1}{L} \| \nabla f(x) - \nabla f(y) \|^2 \leq \langle \nabla f(x) - \nabla f(y), x - y \rangle,$$

Thm 2. Suppose $f \in S^1_{L,\mu}$. Then, for any $x, y \in \mathbb{R}^n$

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq \frac{\mu L}{\mu + L} \| x - y \|^2 + \frac{1}{\mu + L} \| \nabla f(x) - \nabla f(y) \|^2.$$
Corollary 2. If f is a \textbf{convex} function $\in C^1_L$, then
\[
\frac{1}{L} \| \nabla f(x) - \nabla f(y) \|_2^2 \leq \langle \nabla f(x) - \nabla f(y), x - y \rangle,
\]

Thm 2. Suppose $f \in S^{1}_{L,\mu}$. Then, for any $x, y \in \mathbb{R}^n$
\[
\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq \frac{\mu L}{\mu + L} \| x - y \|_2^2 + \frac{1}{\mu + L} \| \nabla f(x) - \nabla f(y) \|_2^2
\]

Consider the \textbf{convex} function $\phi(x) = f(x) - \frac{\mu}{2} \| x \|_2^2$
Convergence – strongly convex case

Corollary 2. If f is a **convex** function $\in C^1_L$, then
\[
\frac{1}{L} \| \nabla f(x) - \nabla f(y) \|_2^2 \leq \langle \nabla f(x) - \nabla f(y), x - y \rangle,
\]

Thm 2. Suppose $f \in S^1_{L,\mu}$. Then, for any $x, y \in \mathbb{R}^n$
\[
\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq \frac{\mu L}{\mu + L} \| x - y \|_2^2 + \frac{1}{\mu + L} \| \nabla f(x) - \nabla f(y) \|_2^2
\]

- Consider the **convex** function $\phi(x) = f(x) - \frac{\mu}{2} \| x \|_2^2$
- If $\mu = L$, then immediate from strong convexity and Cor. 2
Convergence – strongly convex case

Corollary 2. If \(f \) is a **convex** function \(\in C^1_L \), then

\[
\frac{1}{L} \| \nabla f(x) - \nabla f(y) \|_2^2 \leq \langle \nabla f(x) - \nabla f(y), x - y \rangle,
\]

Thm 2. Suppose \(f \in S^1_{L, \mu} \). Then, for any \(x, y \in \mathbb{R}^n \)

\[
\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq \frac{\mu L}{\mu + L} \| x - y \|_2^2 + \frac{1}{\mu + L} \| \nabla f(x) - \nabla f(y) \|_2^2
\]

- Consider the **convex** function \(\phi(x) = f(x) - \frac{\mu}{2} \| x \|_2^2 \)
- If \(\mu = L \), then immediate from strong convexity and Cor. 2
- If \(\mu < L \), then \(\phi \in C^1_{L-\mu} \); now invoke Cor. 2

\[
\langle \nabla \phi(x) - \nabla \phi(y), x - y \rangle \geq \frac{1}{L - \mu} \| \nabla \phi(x) - \nabla \phi(y) \|_2^2
\]
Corollary 2. If f is a convex function $\in C^1_{L}$, then
\[
\frac{1}{L} \|\nabla f(x) - \nabla f(y)\|_2^2 \leq \langle \nabla f(x) - \nabla f(y), x - y \rangle,
\]

Thm 2. Suppose $f \in S^1_{L,\mu}$. Then, for any $x, y \in \mathbb{R}^n$
\[
\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq \frac{\mu L}{\mu + L} \|x - y\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|_2^2
\]

- Consider the convex function $\phi(x) = f(x) - \frac{\mu}{2} \|x\|_2^2$
- If $\mu = L$, then immediate from strong convexity and Cor. 2
- If $\mu < L$, then $\phi \in C^1_{L-\mu}$; now invoke Cor. 2
\[
\langle \nabla \phi(x) - \nabla \phi(y), x - y \rangle \geq \frac{1}{L - \mu} \|\nabla \phi(x) - \nabla \phi(y)\|_2^2
\]

Let’s put this to use now....
Theorem. If $f \in S_{L,\mu}^1$, $0 < \eta < 2/(L + \mu)$, then the gradient method generates a sequence $\{x^k\}$ that satisfies

$$\|x^k - x^*\|_2^2 \leq \left(1 - \frac{2\eta\mu L}{\mu + L}\right)^k \|x^0 - x^*\|_2.$$

Moreover, if $\eta = 2/(L + \mu)$ then

$$f(x^k) - f^* \leq \frac{L}{2} \left(\frac{\kappa - 1}{\kappa + 1}\right)^{2k} \|x^0 - x^*\|_2^2,$$

where $\kappa := L/\mu$ is the condition number.
Key idea: Analyze $r_k = \|x^k - x^*\|_2$ recursively; consider thus,
Key idea: Analyze $r_k = \|x^k - x^*\|_2$ recursively; consider thus,

$$r_{k+1}^2 = \|x^k - x^* - \eta \nabla f(x^k)\|^2_2$$
Key idea: Analyze \(r_k = \|x^k - x^*\|_2 \) recursively; consider thus,

\[
\begin{align*}
 r_{k+1}^2 &= \|x^k - x^* - \eta \nabla f(x^k)\|_2^2 \\
 &= r_k^2 - 2\eta \langle \nabla f(x^k), x^k - x^* \rangle + \eta^2 \|\nabla f(x^k)\|_2^2
\end{align*}
\]

where we used Thm. 2 with \(\nabla f(x^*) = 0 \) for last inequality.

Exercise: Complete the proof of the theorem now.
Key idea: Analyze $r_k = \|x^k - x^*\|_2$ recursively; consider thus,

\[
\begin{align*}
 r_{k+1}^2 &= \|x^k - x^* - \eta \nabla f(x^k)\|_2^2 \\
 &= r_k^2 - 2\eta \langle \nabla f(x^k), x^k - x^* \rangle + \eta^2 \|\nabla f(x^k)\|_2^2 \\
 &= r_k^2 - 2\eta \langle \nabla f(x^k) - \nabla f(x^*), x^k - x^* \rangle + \eta^2 \|\nabla f(x^k)\|_2^2
\end{align*}
\]
Key idea: Analyze $r_k = \|x^k - x^*\|_2$ recursively; consider thus,

$$
\begin{align*}
 r_{k+1}^2 &= \|x^k - x^* - \eta \nabla f(x^k)\|^2_2 \\
 &= r_k^2 - 2\eta \langle \nabla f(x^k), x^k - x^* \rangle + \eta^2 \|\nabla f(x^k)\|^2_2 \\
 &= r_k^2 - 2\eta \langle \nabla f(x^k) - \nabla f(x^*), x^k - x^* \rangle + \eta^2 \|\nabla f(x^k)\|^2_2 \\
 &\leq \left(1 - \frac{2\eta \mu L}{\mu + L}\right) r_k^2 + \eta \left(\eta - \frac{2}{\mu + L}\right) \|\nabla f(x^k)\|^2_2
\end{align*}
$$

where we used Thm. 2 with $\nabla f(x^*) = 0$ for last inequality.
Key idea: Analyze $r_k = \|x^k - x^*\|_2$ recursively; consider thus,

$$r_{k+1}^2 = \|x^k - x^* - \eta \nabla f(x^k)\|_2^2$$
$$= r_k^2 - 2\eta \langle \nabla f(x^k), x^k - x^* \rangle + \eta^2 \|\nabla f(x^k)\|_2^2$$
$$= r_k^2 - 2\eta \langle \nabla f(x^k) - \nabla f(x^*), x^k - x^* \rangle + \eta^2 \|\nabla f(x^k)\|_2^2$$
$$\leq \left(1 - \frac{2\eta \mu L}{\mu + L}\right) r_k^2 + \eta \left(\eta - \frac{2}{\mu + L}\right) \|\nabla f(x^k)\|_2^2$$

where we used Thm. 2 with $\nabla f(x^*) = 0$ for last inequality.

Exercise: Complete the proof of the theorem now.
Convergence rate – (weakly) convex

★ Want to prove the well-known $O(1/T)$ rate
★ Let $\eta_k = 1/L$
★ Shorthand notation $g^k = \nabla f(x^k), g^* = \nabla f(x^*)$
★ Let $r_k := \|x^k - x^*\|_2$ (distance to optimum)
Convergence rate – (weakly) convex

★ Want to prove the well-known $O(1/T)$ rate
★ Let $\eta_k = 1/L$
★ Shorthand notation $g^k = \nabla f(x^k)$, $g^* = \nabla f(x^*)$
★ Let $r_k := \|x^k - x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$
Convergence rate – (weakly) convex

* Want to prove the well-known $O(1/T)$ rate
* Let $\eta_k = 1/L$
* Shorthand notation $g^k = \nabla f(x^k), g^* = \nabla f(x^*)$
* Let $r_k := \|x^k - x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

Proof. Descent lemma implies that: $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|^2_2$
Want to prove the well-known $O(1/T)$ rate

Let $\eta_k = 1/L$

Shorthand notation $g^k = \nabla f(x^k)$, $g^* = \nabla f(x^*)$

Let $r_k := \|x^k - x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

Proof. Descent lemma implies that: $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2$

Consider, $r_{k+1}^2 = \|x^{k+1} - x^*\|_2^2 = \|x^k - x^* - \eta_k g^k\|_2^2$.
Convergence rate – (weakly) convex

★ Want to prove the well-known $O(1/T)$ rate
★ Let $\eta_k = 1/L$
★ Shorthand notation $g^k = \nabla f(x^k)$, $g^* = \nabla f(x^*)$
★ Let $r_k := \|x^k - x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

Proof. Descent lemma implies that: $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L}\|g^k\|_2^2$

Consider, $r_{k+1}^2 = \|x^{k+1} - x^*\|_2^2 = \|x^k - x^* - \eta_k g^k\|_2^2$.

$$r_{k+1}^2 = r_k^2 + \eta_k^2 \|g^k\|_2^2 - 2\eta_k \langle g^k, x^k - x^* \rangle$$
Convergence rate – (weakly) convex

★ Want to prove the well-known $O(1/T)$ rate
★ Let $\eta_k = 1/L$
★ Shorthand notation $g^k = \nabla f(x^k), g^* = \nabla f(x^*)$
★ Let $r_k := \|x^k - x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

Proof. Descent lemma implies that: $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|^2$

Consider, $r_{k+1}^2 = \|x^{k+1} - x^*\|^2 = \|x^k - x^* - \eta_k g^k\|^2$.

\[
\begin{align*}
 r_{k+1}^2 &= r_k^2 + \eta_k^2 \|g^k\|^2 - 2\eta_k \langle g^k, x^k - x^* \rangle \\
 &= r_k^2 + \eta_k^2 \|g^k\|^2 - 2\eta_k \langle g^k - g^*, x^k - x^* \rangle \quad \text{as } g^* = 0
\end{align*}
\]
Convergence rate – (weakly) convex

★ Want to prove the well-known $O(1/T)$ rate
★ Let $\eta_k = 1/L$
★ Shorthand notation $g^k = \nabla f(x^k)$, $g^* = \nabla f(x^*)$
★ Let $r_k := \|x^k - x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

Proof. Descent lemma implies that: $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|^2$

Consider, $r_{k+1}^2 = \|x^{k+1} - x^*\|^2 = \|x^k - x^* - \eta_k g^k\|^2$.

\[
r_{k+1}^2 = r_k^2 + \eta_k^2 \|g^k\|^2 - 2\eta_k \langle g^k, x^k - x^* \rangle \\
= r_k^2 + \eta_k^2 \|g^k\|^2 - 2\eta_k \langle g^k - g^*, x^k - x^* \rangle \quad \text{as } g^* = 0 \\
\leq r_k^2 + \eta_k^2 \|g^k\|^2 - \frac{2\eta_k}{L} \|g^k - g^*\|^2 \quad \text{(Coroll. 2, pg. 24)}
\]
Convergence rate – (weakly) convex

★ Want to prove the well-known $O(1/T)$ rate
★ Let $\eta_k = 1/L$
★ Shorthand notation $g^k = \nabla f(x^k)$, $g^* = \nabla f(x^*)$
★ Let $r_k := \|x^k - x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

Proof. Descent lemma implies that: $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|^2_2$

Consider, $r_{k+1}^2 = \|x^{k+1} - x^*\|_2^2 = \|x^k - x^* - \eta_k g^k\|_2^2$.

$$r_{k+1}^2 = r_k^2 + \eta_k^2 \|g^k\|^2_2 - 2\eta_k \langle g^k, x^k - x^* \rangle$$

$$= r_k^2 + \eta_k^2 \|g^k\|^2_2 - 2\eta_k \langle g^k - g^*, x^k - x^* \rangle \quad \text{as } g^* = 0$$

$$\leq r_k^2 + \eta_k^2 \|g^k\|^2_2 - \frac{2\eta_k}{L} \|g^k - g^*\|_2^2 \quad \text{(Coroll. 2, pg. 24)}$$

$$= r_k^2 - \eta_k \left(\frac{2}{L} - \eta_k \right) \|g^*\|_2^2.$$
Convergence rate – (weakly) convex

★ Want to prove the well-known $O(1/T)$ rate
★ Let $\eta_k = 1/L$
★ Shorthand notation $g^k = \nabla f(x^k)$, $g^* = \nabla f(x^*)$
★ Let $r_k := \|x^k - x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

Proof. Descent lemma implies that: $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2$

Consider, $r_{k+1}^2 = \|x^{k+1} - x^*\|_2^2 = \|x^k - x^* - \eta_k g^k\|_2^2$.

\[
\begin{align*}
r_{k+1}^2 &= r_k^2 + \eta_k^2 \|g^k\|_2^2 - 2\eta_k \langle g^k, x^k - x^* \rangle \\
&= r_k^2 + \eta_k^2 \|g^k\|_2^2 - 2\eta_k \langle g^k - g^*, x^k - x^* \rangle \quad \text{as } g^* = 0 \\
&\leq r_k^2 + \eta_k^2 \|g^k\|_2^2 - \frac{2\eta_k}{L} \|g^k - g^*\|_2^2 \quad \text{(Coroll. 2, pg. 24)} \\
&= r_k^2 - \eta_k (\frac{2}{L} - \eta_k) \|g^k\|_2^2.
\end{align*}
\]

Since $\eta_k < 2/L$, it follows that $r_{k+1} \leq r_k$
Lemma Let $\Delta_k := f(x^k) - f(x^*)$. Then, $\Delta_{k+1} \leq \Delta_k (1 - \beta_k)$
Lemma Let $\Delta_k := f(x^k) - f(x^*)$. Then, $\Delta_{k+1} \leq \Delta_k (1 - \beta_k)$

\[
\begin{aligned}
f(x^k) - f(x^*) &= \Delta_k \leq \langle g^k, x^k - x^* \rangle \\
&\leq \|g^k\|_2 \|x^k - x^*\|_2
\end{aligned}
\]
Lemma Let \(\Delta_k := f(x^k) - f(x^*) \). Then, \(\Delta_{k+1} \leq \Delta_k (1 - \beta_k) \)

\[
f(x^k) - f(x^*) = \Delta_k \leq \langle g^k, x^k - x^* \rangle \leq \|g^k\|_2 \|x^k - x^*\|_2 \leq \frac{\Delta_k}{r_k}.
\]

That is, \(\|g^k\|_2 \geq \frac{\Delta_k}{r_k} \).

In particular, since \(r_k \leq r_0 \), we have \(\|g^k\|_2 \geq \frac{\Delta_k}{r_0} \).

Now we have a bound on the gradient norm...
Lemma Let $\Delta_k := f(x^k) - f(x^*)$. Then, $\Delta_{k+1} \leq \Delta_k (1 - \beta_k)$.

\[
f(x^k) - f(x^*) = \Delta_k \leq \langle g^k, x^k - x^* \rangle \overset{\text{CS}}{\leq} \|g^k\|_2 \|x^k - x^*\|_2.
\]

That is, $\|g^k\|_2 \geq \Delta_k/r_k$.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (03/11/21; Lecture 7)
Lemma Let $\Delta_k := f(x^k) - f(x^*)$. Then, $\Delta_{k+1} \leq \Delta_k (1 - \beta_k)$.

\[
f(x^k) - f(x^*) = \Delta_k \leq \langle g^k, x^k - x^* \rangle \overset{\text{CS}}{\leq} \|g^k\|_2 \|x^k - x^*\|_2.
\]

That is, $\|g^k\|_2 \geq \Delta_k / r_k$. In particular, since $r_k \leq r_0$, we have

\[
\|g^k\|_2 \geq \frac{\Delta_k}{r_0}.
\]
Convergence rate

Lemma Let \(\Delta_k := f(x^k) - f(x^*) \). Then, \(\Delta_{k+1} \leq \Delta_k (1 - \beta_k) \)

\[
f(x^k) - f(x^*) = \Delta_k \leq \langle g^k, x^k - x^* \rangle \overset{\text{CS}}{\leq} \|g^k\|_2 \|x^k - x^*\|_2 / r_k.
\]

That is, \(\|g^k\|_2 \geq \Delta_k / r_k \). In particular, since \(r_k \leq r_0 \), we have

\[
\|g^k\|_2 \geq \frac{\Delta_k}{r_0}.
\]

Now we have a bound on the gradient norm...
Recall $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2$; subtracting f^* from both sides

$$\Delta_{k+1} \leq \Delta_k - \frac{\Delta_k^2}{2Lr_0^2} = \Delta_k \left(1 - \frac{\Delta_k}{2Lr_0^2}\right)$$
Convergence rate

Recall $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2$; subtracting f^* from both sides

$$
\Delta_{k+1} \leq \Delta_k - \frac{\Delta_k^2}{2Lr^2_0} = \Delta_k \left(1 - \frac{\Delta_k}{2Lr^2_0}\right) = \Delta_k \left(1 - \beta_k\right).
$$
Recall $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|^2_2$; subtracting f^* from both sides

$$\Delta_{k+1} \leq \Delta_k - \frac{\Delta_k^2}{2Lr_0^2} = \Delta_k \left(1 - \frac{\Delta_k}{2Lr_0^2}\right) = \Delta_k (1 - \beta_k).$$

But we want to bound: $f(x^{T+1}) - f(x^*)$
Convergence rate

Recall $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2$; subtracting f^* from both sides

$$\Delta_{k+1} \leq \Delta_k - \frac{\Delta_k^2}{2L r_0^2} = \Delta_k \left(1 - \frac{\Delta_k}{2L r_0^2}\right) = \Delta_k \left(1 - \beta_k\right).$$

But we want to bound: $f(x^{T+1}) - f(x^*)$

$$\Delta_{k+1} \leq \Delta_k \left(1 - \beta_k\right) \implies \frac{1}{\Delta_{k+1}} \geq \frac{1}{\Delta_k} \left(1 + \beta_k\right) = \frac{1}{\Delta_k} + \frac{1}{2L r_0^2}.$$
Recall \(f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|^2 \); subtracting \(f^* \) from both sides

\[
\Delta_{k+1} \leq \Delta_k - \frac{\Delta_k^2}{2L r_0^2} = \Delta_k (1 - \frac{\Delta_k}{2L r_0^2}) = \Delta_k (1 - \beta_k).
\]

But we want to bound: \(f(x^{T+1}) - f(x^*) \)

\[
\Delta_{k+1} \leq \Delta_k (1 - \beta_k) \implies \frac{1}{\Delta_{k+1}} \geq \frac{1}{\Delta_k} (1 + \beta_k) = \frac{1}{\Delta_k} + \frac{1}{2Lr_0^2}.
\]

▶ Sum both sides over \(k = 0, \ldots, T \) (telescoping) to obtain

\[
\frac{1}{\Delta_{T+1}} \geq \frac{1}{\Delta_0} + \frac{T + 1}{2Lr_0^2}.
\]
Convergence rate

\[
\frac{1}{\Delta_{T+1}} \geq \frac{1}{\Delta_0} + \frac{T + 1}{2Lr_0^2}
\]
Convergence rate

\[
\frac{1}{\Delta_{T+1}} \geq \frac{1}{\Delta_0} + \frac{T + 1}{2Lr_0^2}
\]

Rearrange to conclude

\[
f(x^T) - f^* \leq \frac{2L\Delta_0 r_0^2}{2Lr_0^2 + T\Delta_0}
\]
Convergence rate

\[
\frac{1}{\Delta_{T+1}} \geq \frac{1}{\Delta_0} + \frac{T + 1}{2 L r_0^2}
\]

- Rearrange to conclude

\[
f(x^T) - f^* \leq \frac{2 L \Delta_0 r_0^2}{2 L r_0^2 + T \Delta_0}
\]

- Use descent lemma to bound \(\Delta_0 \leq (L/2)\|x^0 - x^*\|_2^2\); simplify

\[
f(x^T) - f(x^*) \leq \frac{2 L \Delta_0 \|x^0 - x^*\|_2^2}{T + 4} = O(1/T).
\]
SGD

\[x \leftarrow x - \eta g \]
Why SGD?

Regularized Empirical Risk Minimization

\[
\min_x \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, x^T a_i) + \lambda r(x).
\]

(e.g., logistic regression, deep learning, SVMs, etc.)
Why SGD?

Regularized Empirical Risk Minimization

$$\min_x \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, x^T a_i) + \lambda r(x).$$

(e.g., logistic regression, deep learning, SVMs, etc.)

- **training data:** \((a_i, y_i) \in \mathbb{R}^d \times \mathcal{Y} \) (i.i.d.)
Why SGD?

Regularized Empirical Risk Minimization

\[
\min_x \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, x^T a_i) + \lambda r(x).
\]

(e.g., logistic regression, deep learning, SVMs, etc.)

- **training data**: \((a_i, y_i) \in \mathbb{R}^d \times \mathbb{Y}\) (i.i.d.)

- **large-scale ML**: Both \(d\) and \(n\) are large:
 - \(d\): dimension of each input sample
 - \(n\): number of training data points / samples

- Assume training data “sparse”; so total datasize \(\ll dn\).

- Running time \(O(\#\text{nnz})\)
Finite-sum problems

\[\min_{x \in \mathbb{R}^d} f(x) = \]

If \(n \) is large, each iteration above is expensive.
Finite-sum problems

$$\min_{x \in \mathbb{R}^d} f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x).$$
Finite-sum problems

$$\min_{x \in \mathbb{R}^d} f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x).$$

Gradient / subgradient methods

$$x_{k+1} = x_k - \eta_k \nabla f(x_k)$$
$$x_{k+1} = x_k - \eta_k g(x_k), \quad g \in \partial f(x_k)$$

If n is large, each iteration above is expensive
Stochastic gradients

At iteration k, we randomly pick an integer $i(k) \in \{1, 2, \ldots, n\}$

$$x_{k+1} = x_k - \eta_k \nabla f_{i(k)}(x_k)$$

- The update requires only gradient for $f_{i(k)}$
- Uses unbiased estimate $\mathbb{E}[\nabla f_{i(k)}] = \nabla f$
- One iteration now n times faster using $\nabla f(x)$
- Can such a method work? If so, how fast? Why?
Assume all variables involved are **scalars**.

\[
\min f(x) = \frac{1}{2} \sum_{i=1}^{n} (a_i x - b_i)^2
\]
Assume all variables involved are **scalars**.

\[
\min f(x) = \frac{1}{2} \sum_{i=1}^{n} (a_i x - b_i)^2
\]

Solving \(f'(x) = 0 \) we obtain

\[
x^* = \frac{\sum_i a_i b_i}{\sum_i a_i^2}
\]
Assume all variables involved are **scalars**.

\[
\min f(x) = \frac{1}{2} \sum_{i=1}^{n} (a_i x - b_i)^2
\]

Solving \(f'(x) = 0 \) we obtain

\[
x^* = \frac{\sum_i a_i b_i}{\sum_i a_i^2}
\]

Minimum of a single \(f_i(x) = \frac{1}{2} (a_i x - b_i)^2 \) is \(x_i^* = b_i/a_i \)
Assume all variables involved are **scalars**.

\[
\min f(x) = \frac{1}{2} \sum_{i=1}^{n} (a_i x - b_i)^2
\]

Solving \(f'(x) = 0 \) we obtain

\[
x^* = \frac{\sum_i a_i b_i}{\sum_i a_i^2}
\]

Minimum of a single \(f_i(x) = \frac{1}{2} (a_i x - b_i)^2 \) is \(x_i^* = b_i/a_i \)

Notice now that

\[
x^* \in [\min_i x_i^*, \max_i x_i^*] =: R
\]

(Use: \(\sum_i a_i b_i = \sum_i a_i^2(b_i/a_i) \))
Assume all variables involved are scalars.

\[
\min f(x) = \frac{1}{2} \sum_{i=1}^{n} (a_i x - b_i)^2
\]

Notice: \(x^* \in [\min_i x_i^*, \max_i x_i^*] =: R \)
Intuition – (Bertsekas)

▸ Assume all variables involved are **scalars**.

\[
\min f(x) = \frac{1}{2} \sum_{i=1}^{n} (a_i x - b_i)^2
\]

▸ Notice: \(x^* \in [\min_i x_i^*, \max_i x_i^*] =: R \)

▸ If we have a scalar \(x \) that lies outside \(R \)?

▸ We see that

\[
\nabla f_i(x) = a_i (a_i x - b_i)
\]

\[
\nabla f(x) = \sum_i a_i (a_i x - b_i)
\]
Intuition – (Bertsekas)

► Assume all variables involved are **scalars**.

\[
\min f(x) = \frac{1}{2} \sum_{i=1}^{n} (a_i x - b_i)^2
\]

► Notice: \(x^* \in [\min_i x_i^*, \max_i x_i^*] =: R\)
► If we have a scalar \(x\) that lies outside \(R\)?
► We see that

\[
\nabla f_i(x) = a_i(a_i x - b_i)
\]

\[
\nabla f(x) = \sum_i a_i(a_i x - b_i)
\]

► \(\nabla f_i(x)\) has **same sign** as \(\nabla f(x)\). So using \(\nabla f_i(x)\) **instead** of \(\nabla f(x)\) also ensures progress.
Assume all variables involved are scalars.

\[
\min f(x) = \frac{1}{2} \sum_{i=1}^{n} (a_i x - b_i)^2
\]

Notice: \(x^* \in [\min_i x^*_i, \max_i x^*_i] =: R \)

If we have a scalar \(x \) that lies outside \(R \)?

We see that

\[
\nabla f_i(x) = a_i(a_i x - b_i)
\]

\[
\nabla f(x) = \sum_i a_i(a_i x - b_i)
\]

\(\nabla f_i(x) \) has same sign as \(\nabla f(x) \). So using \(\nabla f_i(x) \) instead of \(\nabla f(x) \) also ensures progress.

But once inside region \(R \), no guarantee that SGD will make progress towards optimum.
SGD: two variants

\[
\min \frac{1}{n} \sum_{i} f_i(x)
\]
SGD: two variants

\[
\min \frac{1}{n} \sum_i f_i(x)
\]

- Start with feasible \(x_0\)
- For \(k = 0, 1, \ldots\),
 - **Option 1**: Randomly pick an index \(i\) (with replacement)
SGD: two variants

\[\min \frac{1}{n} \sum_i f_i(x) \]

- Start with feasible \(x_0 \)
- For \(k = 0, 1, \ldots, \)
 - Option 1: Randomly pick an index \(i \) (with replacement)
 - Option 2: Pick index \(i \) without replacement
 - Use \(g_k = \nabla f_i(x) \) as the “stochastic gradient”
 - Update \(x_{k+1} = x_k - \eta_k g_k \)

Explore. Which version would you use? Why?
SGD: two variants

\[
\min \frac{1}{n} \sum_i f_i(x)
\]

- Start with feasible \(x_0 \)
- For \(k = 0, 1, \ldots \),
 - **Option 1:** Randomly pick an index \(i \) (with replacement)
 - **Option 2:** Pick index \(i \) without replacement
 - Use \(g_k = \nabla f_i(x) \) as the “stochastic gradient”
 - Update \(x_{k+1} = x_k - \eta_k g_k \)

Explore. Which version would you use? Why?
SGD: mini-batches

\[
\min_x f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)
\]

Idea: Use a mini-batch of stochastic gradients

\[
x_{k+1} = x_k - \frac{\eta_k}{|I_k|} \sum_{j \in I_k} \nabla f_j(x_k)
\]
SGD: mini-batches

\[\min_x f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \]

Idea: Use a mini-batch of stochastic gradients

\[x_{k+1} = x_k - \frac{\eta_k}{|I_k|} \sum_{j \in I_k} \nabla f_j(x_k) \]

- Iteration \(k \) samples set \(I_k \), and uses \(|I_k| \) stochastic gradients
- Increases parallelism, reduces communication

Explore: Large mini-batches not that “favorable” for DNNs. (also known as: “large-batch training”)
SGD: some theoretical challenges

$$x_{k+1} = x_k - \eta_k \nabla f_i(k)(x_k)$$

- Proving that it “works”
- Theoretical results lagging behind practice (without replacement SGD widely used, most published theory studies with replacement)
SGD: some theoretical challenges

\[x_{k+1} = x_k - \eta_k \nabla f_i(k)(x_k) \]

- Proving that it "works"
- Theoretical results lagging behind practice (without replacement SGD widely used, most published theory studies with replacement)

Explore: Why does SGD work so well for neural networks? (i.e., why does it deliver such low training losses despite non-convexity, and how does it influence generalization behavior of neural networks?)
SGD for empirical risk / finite sums

\[\min_{x \in \mathbb{R}^d} f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \]

- **Iteration**: \(x^{k+1} = x^k - \eta_k f_{i(t)}'(x^k) \)
 - Sampling with replacement: \(i(k) \sim \text{Unif}\{1, \ldots, n\} \)
 - Polyak-Ruppert averaging: \(\bar{x}_k = \frac{1}{k+1} \sum_{j=0}^{k} x^j \)

- **Convergence rate** if each \(f_i \) convex \(L \)-smooth, and \(f \) is \(\mu \)-strongly-convex:

\[\mathbb{E}[f(\bar{x}_k) - f(x^*)] \leq \begin{cases}
 O(1/\sqrt{k}) & \text{if } \eta_k = 1/(L \sqrt{k}) \\
 O(L/(\mu k)) = O(\kappa/k) & \text{if } \eta_k = 1/(\mu k)
\end{cases} \]
SGD vs GD (strongly convex case)

Batch GD:
- Linear (e.g., exponential) convergence rate in $O(e^{-k/\kappa})$
- Iteration complexity is linear in $n (O(n \log 1/\epsilon))$

SGD:
- Sampling with replacement: $i(k)$ random element of $\{1,...,n\}$
- Convergence rate $O(\kappa/k)$
- Iteration complexity independent of $n (O(1/\epsilon^2))$
SGD vs GD (strongly convex case)

▶ **Batch GD:**
- Linear (e.g., exponential) convergence rate in $O(e^{-k/\kappa})$
- Iteration complexity is linear in n ($O(n \log 1/\varepsilon)$)

SGD:
- Sampling with replacement: $i(k)$ random element of $\{1, \ldots, n\}$
- Convergence rate $O(\kappa/k)$
- Iteration complexity independent of n ($O(1/\varepsilon^2)$)
SGD vs GD (strongly convex case)

- **Batch GD:**
 - Linear (e.g., exponential) convergence rate in $O(e^{-k/\kappa})$
 - Iteration complexity is linear in n ($O(n \log 1/\varepsilon)$)

- **SGD:**
 - Sampling with replacement: $i(k)$ random element of $\{1, \ldots, n\}$
 - Convergence rate $O(\kappa/k)$
 - Iteration complexity independent of n ($O(1/\varepsilon^2)$)
Convergence

(some theory)
SGD: nonconvex (smooth) case

\[f(x) = \frac{1}{n} \sum i f_i(x) \text{ and } x_{k+1} = x_k - \eta_k \nabla f_k(x_k) \]
SGD: nonconvex (smooth) case

\[f(x) = \frac{1}{n} \sum_i f_i(x) \text{ and } x_{k+1} = x_k - \eta_k \nabla f_{i_k}(x_k) \]

- **Assumption 1**: L-smooth components \(f_i \in C^1_L \)
- **Assumption 2**: Unbiased gradients \(\mathbb{E}[\nabla f_{i_t}(x) - \nabla f(x)] = 0 \)
- **Assumption 3**: Bounded noise: \(\mathbb{E}[\|\nabla f_{i_k}(x) - \nabla f(x)\|^2] = \sigma^2 \)
- **Assumption 4**: Bounded gradient: \(\|\nabla f_i(x)\| \leq G \)
SGD: nonconvex (smooth) case

\[f(x) = \frac{1}{n} \sum_i f_i(x) \] and \[x_{k+1} = x_k - \eta_k \nabla f_i(x_k) \]

- **Assumption 1**: L-smooth components \(f_i \in C^1_L \)
- **Assumption 2**: Unbiased gradients \(\mathbb{E}[\nabla f_i(x) - \nabla f(x)] = 0 \)
- **Assumption 3**: Bounded noise: \(\mathbb{E}[\|\nabla f_i(x) - \nabla f(x)\|^2] = \sigma^2 \)
- **Assumption 4**: Bounded gradient: \(\|\nabla f_i(x)\| \leq G \)

Theorem. Under above assumptions, for suitable stepsize SGD satisfies

\[\frac{1}{T} \sum_{k=1}^{T} \mathbb{E}[\|\nabla f(x_k)\|^2] \leq \frac{1}{\sqrt{T}} \left(\frac{f(x_1) - f(x^*)}{c} + \frac{Lc}{2} G^2 \right), \]

for some constant \(c \); hence \(\min_k \mathbb{E}[\|\nabla f(x_k)\|^2] = O(1/\sqrt{T}) \).
Proof: Using L-smoothness of f_i and taking expectations we obtain

$$
\mathbb{E}[f(x_{k+1})] \leq \mathbb{E}[f(x_k)] + \mathbb{E}[\langle \nabla f(x_k), -\eta_k \nabla f_i(x_k) \rangle + \frac{L}{2} \|\eta_k \nabla f_i(x_k)\|^2]
$$
Proof: Using L-smoothness of f_i and taking expectations we obtain

$$
\mathbb{E}[f(x_{k+1})] \leq \mathbb{E}[f(x_k)] + \mathbb{E}[\langle \nabla f(x_k), -\eta_k \nabla f_i(x_k) \rangle] + \frac{L}{2} \eta_k \nabla f_i(x_k)^2
$$

$$
\leq \mathbb{E}[f(x_k)] - \eta_k \mathbb{E}[\|\nabla f(x_k)\|^2] + \frac{L \eta_k^2}{2} G^2.
$$
Proof: Using L-smoothness of f_i and taking expectations we obtain

\[
\mathbb{E}[f(x_{k+1})] \leq \mathbb{E}[f(x_k)] + \mathbb{E}[\langle \nabla f(x_k), -\eta_k \nabla f_{i_k}(x_k) \rangle] + \frac{L}{2} \|\eta_k \nabla f_{i_k}(x_k)\|^2
\]

\[
\leq \mathbb{E}[f(x_k)] - \eta_k \mathbb{E}[\|\nabla f(x_k)\|^2] + \frac{L \eta_k^2}{2} G^2.
\]

Rearranging the terms above we obtain

\[
\mathbb{E}[\|\nabla f(x_k)\|^2] \leq \frac{1}{\eta_k} \mathbb{E}[f(x_k) - f(x_{k+1})] + \frac{L \eta_k}{2} G^2.
\]
Proof: Using L-smoothness of f_i and taking expectations we obtain

\[
\mathbb{E}[f(x_{k+1})] \leq \mathbb{E}[f(x_k)] + \mathbb{E}[\langle \nabla f(x_k), -\eta_k \nabla f_i(x_k) \rangle] + \frac{L}{2} \|\eta_k \nabla f_i(x_k)\|^2
\]

\[
\leq \mathbb{E}[f(x_k)] - \eta_k \mathbb{E}[\|\nabla f(x_k)\|^2] + \frac{L \eta_k^2}{2} G^2.
\]

Rearranging the terms above we obtain

\[
\mathbb{E}[\|\nabla f(x_k)\|^2] \leq \frac{1}{\eta_k} \mathbb{E}[f(x_k) - f(x_{k+1})] + \frac{L \eta_k}{2} G^2.
\]

Choose $\eta_k = \frac{c}{\sqrt{T}}$ for some constant c and sum over $k = 0$ to $T - 1$ to obtain

\[
\frac{1}{T} \sum_{k=1}^{T} \mathbb{E}[\|\nabla f(x_k)\|^2] \leq \frac{1}{\sqrt{T} c} \mathbb{E}[f(x_1) - f(x_{T+1})] + \frac{L c}{2 \sqrt{T}} G^2
\]

\[
\leq \frac{1}{\sqrt{T}} \left(\frac{f(x_1) - f(x^*)}{c} + \frac{L c}{2} G^2 \right).
\]
SGD: convex case

\[
\min_{x \in \mathcal{X}} f(x) := \mathbb{E}[F(x, \xi)]
\]
SGD: convex case

- \(\min_{x \in X} f(x) := \mathbb{E}[F(x, \xi)] \)
- Let \(\xi_k \) denote the randomness at step \(k \)
- \(x_k \) depends on rvs \(\xi_1, \ldots, \xi_{k-1} \), so itself random
- Of course, \(x_k \) does not depend on \(\xi_k \)
- SGD analysis hinges upon: \(\mathbb{E}[\|x_k - x^*\|^2] \)
- SGD iteration: \(x_{k+1} \leftarrow P_X(x_k - \eta_k g_k) \) (\(P_X \): projection)
SGD: convex case

- \(\min_{x \in X} f(x) := \mathbb{E}[F(x, \xi)] \)
- Let \(\xi_k \) denote the randomness at step \(k \)
- \(x_k \) depends on rvs \(\xi_1, \ldots, \xi_{k-1} \), so itself random
- Of course, \(x_k \) does not depend on \(\xi_k \)
- SGD analysis hinges upon: \(\mathbb{E}[\|x_k - x^*\|^2] \)
- SGD iteration: \(x_{k+1} \leftarrow P_X(x_k - \eta_k g_k) \) (\(P_X \): projection)

Denote: \(R_k := \|x_k - x^*\|^2 \) and \(r_k := \mathbb{E}[R_k] = \mathbb{E}[\|x_k - x^*\|^2] \)
SGD: convex case

- \(\min_{x \in X} f(x) := \mathbb{E}[F(x, \xi)] \)
- Let \(\xi_k \) denote the randomness at step \(k \)
- \(x_k \) depends on rvs \(\xi_1, \ldots, \xi_{k-1} \), so itself random
- Of course, \(x_k \) does not depend on \(\xi_k \)
- SGD analysis hinges upon: \(\mathbb{E}[\|x_k - x^*\|^2] \)
- SGD iteration: \(x_{k+1} \leftarrow P_X(x_k - \eta_k g_k) \) (\(P_X \): projection)

Denote: \(R_k := \|x_k - x^*\|^2 \) and \(r_k := \mathbb{E}[R_k] = \mathbb{E}[\|x_k - x^*\|^2] \)

Bounding \(R_{k+1} \)

\[
R_{k+1} = \|x_{k+1} - x^*\|_2^2 = \|P_X(x_k - \eta_k g_k) - P_X(x^*)\|_2^2 \leq \|x_k - x^* - \eta_k g_k\|_2^2
\]
SGD: convex case

- \(\min_{x \in \mathbf{X}} f(x) := \mathbb{E}[F(x, \xi)] \)
- Let \(\xi_k \) denote the randomness at step \(k \)
- \(x_k \) depends on rvs \(\xi_1, \ldots, \xi_{k-1} \), so itself random
- Of course, \(x_k \) does not depend on \(\xi_k \)
- SGD analysis hinges upon: \(\mathbb{E}[\|x_k - x^*\|^2] \)
- SGD iteration: \(x_{k+1} \leftarrow P_{\mathbf{X}}(x_k - \eta_k g_k) \) (\(P_{\mathbf{X}} \): projection)

Denote: \(R_k := \|x_k - x^*\|^2 \) and \(r_k := \mathbb{E}[R_k] = \mathbb{E}[\|x_k - x^*\|^2] \)

Bounding \(R_{k+1} \)

\[
R_{k+1} = \|x_{k+1} - x^*\|^2 = \|P_{\mathbf{X}}(x_k - \eta_k g_k) - P_{\mathbf{X}}(x^*)\|^2 \\
\leq \|x_k - x^* - \eta_k g_k\|^2 \\
= R_k + \eta_k^2 \|g_k\|^2 - 2\eta_k \langle g_k, x_k - x^* \rangle.
\]
SGD – analysis for strongly cvx

\[R_{k+1} \leq R_k + \eta_k^2 \| g_k \|^2_2 - 2\eta_k \langle g_k, x_k - x^* \rangle \]
\[R_{k+1} \leq R_k + \eta_k^2 \|g_k\|_2^2 - 2\eta_k \langle g_k, x_k - x^* \rangle \]

Assume: \(\|g_k\|_2 \leq G \), and take expectation:
\[
r_{k+1} \leq r_k + \eta_k^2 G^2 - 2\eta_k \mathbb{E}[\langle g_k, x_k - x^* \rangle].
\]

Unbiasedness \(\mathbb{E}[g_k] = \nabla f(x_k) \) and \(\mu \)-strong convexity give
\[
r_{k+1} \leq r_k + \eta_k^2 G^2 - 2\eta_k \mathbb{E}[f(x_k) - f(x^*) + \frac{\mu}{2} \|x_k - x^*\|^2].
\]
\[R_{k+1} \leq R_k + \eta_k^2 \|g_k\|^2_2 - 2\eta_k \langle g_k, x_k - x^* \rangle \]

Assume: \(\|g_k\|_2 \leq G \), and take expectation:

\[r_{k+1} \leq r_k + \eta_k^2 G^2 - 2\eta_k \mathbb{E}[\langle g_k, x_k - x^* \rangle]. \]

Unbiasedness \(\mathbb{E}[g_k] = \nabla f(x_k) \) and \(\mu \)-strong convexity give

\[r_{k+1} \leq r_k + \eta_k^2 G^2 - 2\eta_k \mathbb{E}[f(x_k) - f(x^*) + \frac{\mu}{2} \|x_k - x^*\|^2]. \]

Rearranging and dividing by \(2\eta_k \) we get

\[\mathbb{E}[f(x_k) - f(x^*)] \leq \frac{\eta_k G^2}{2} + \frac{\eta_k^{-1} - \mu}{2} r_k - \frac{1}{2\eta_k} r_{k+1}. \]
\[R_{k+1} \leq R_k + \eta_k^2 \|g_k\|_2^2 - 2\eta_k \langle g_k, x_k - x^* \rangle \]

Assume: \(\|g_k\|_2 \leq G \), and take expectation:

\[r_{k+1} \leq r_k + \eta_k^2 G^2 - 2\eta_k \mathbb{E}[\langle g_k, x_k - x^* \rangle]. \]

Unbiasedness \(\mathbb{E}[g_k] = \nabla f(x_k) \) and \(\mu \)-strong convexity give

\[r_{k+1} \leq r_k + \eta_k^2 G^2 - 2\eta_k \mathbb{E}[f(x_k) - f(x^*) + \frac{\mu}{2} \|x_k - x^*\|^2]. \]

Rearranging and dividing by \(2\eta_k \) we get

\[\mathbb{E}[f(x_k) - f(x^*)] \leq \frac{\eta_k G^2}{2} + \frac{\eta_k^{-1} - \mu}{2} r_k - \frac{1}{2\eta_k} r_{k+1}. \]

Put \(\eta_k = 1/\mu k \), and telescope (and one more trick...)
SGD – analysis for strongly cvx

\[\mathbb{E}[f(x_k) - f(x^*)] \leq \frac{G^2}{2\mu k} + \frac{\mu(k-1)}{2} r_k - \frac{\mu k}{2} r_{k+1}. \] (**)

Using convexity, observe that

\[\mathbb{E}f\left(\frac{1}{T} \sum_{k=1}^{T} x_k\right) - f(x^*) \leq \frac{1}{T} \sum_{k=1}^{T} \mathbb{E}[f(x_k) - f(x^*)] \]

Using (**), after telescoping, clearing junk **Verify!** we get

\[\frac{1}{T} \sum_{k=1}^{T} \mathbb{E}[f(x_k) - f(x^*)] \leq \frac{G^2}{2\mu T} \sum_{k=1}^{T} \frac{1}{k} \leq \frac{G^2}{2\mu T} (1 + \log T). \]

We’ve obtained the rate \(O\left(\frac{G^2 \log T}{2\mu T}\right)\)
Exercise: Suppose f_i is convex and $f(x)$ is μ-strongly convex. Let $\bar{x}_k := \sum_{i=0}^{k} \theta_i x_i$, where $\theta_i = \frac{2(i+1)}{(k+1)(k+2)}$, we obtain

$$\mathbb{E}[f(\bar{x}_k) - f(x^*)] \leq \frac{2G^2}{\mu(k+1)}.$$

Question: What if we want to not use averaged iterates?
SGD: weakly convex case

\[R_{k+1} \leq R_k + \eta_k^2 \|g_k\|^2 - 2\eta_k \langle g_k, x_k - x^* \rangle \]
SGD: weakly convex case

\[R_{k+1} \leq R_k + \eta_k^2 \|g_k\|^2_2 - 2\eta_k \langle g_k, x_k - x^* \rangle \]

- **Assume:** \(\|g_k\|_2 \leq G \) on compact set \(\mathcal{X} \)
- **Taking expectation:**
 \[r_{k+1} \leq r_k + \eta_k^2 M^2 - 2\eta_k \mathbb{E}[\langle g_k, x_k - x^* \rangle]. \]
SGD: weakly convex case

\[R_{k+1} \leq R_k + \eta_k^2 \|g_k\|_2^2 - 2\eta_k \langle g_k, x_k - x^* \rangle \]

- **Assume:** \(\|g_k\|_2 \leq G \) on compact set \(\mathcal{X} \)
- **Taking expectation:**
 \[r_{k+1} \leq r_k + \eta_k^2 M^2 - 2\eta_k \mathbb{E}[\langle g_k, x_k - x^* \rangle]. \]
- **We need to now get a handle on the last term**
SGD: weakly convex case

\[R_{k+1} \leq R_k + \eta_k^2 \|g_k\|_2^2 - 2\eta_k \langle g_k, x_k - x^* \rangle \]

- **Assume:** \(\|g_k\|_2 \leq G \) on compact set \(\mathcal{X} \)
- Taking expectation:
 \[r_{k+1} \leq r_k + \eta_k^2 M^2 - 2\eta_k \mathbb{E}[\langle g_k, x_k - x^* \rangle]. \]
- We need to now get a handle on the last term
- Since \(x_k \) is independent of \(\xi_k \), we have
 \[\mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle] = \]
SGD: weakly convex case

\[R_{k+1} \leq R_k + \eta_k^2 \|g_k\|^2_2 - 2\eta_k \langle g_k, x_k - x^* \rangle \]

- **Assume:** \(\|g_k\|_2 \leq G \) on compact set \(\mathcal{X} \)
- **Taking expectation:**
 \[r_{k+1} \leq r_k + \eta_k^2 M^2 - 2\eta_k \mathbb{E}[\langle g_k, x_k - x^* \rangle]. \]
- **We need to now get a handle on the last term**
- **Since** \(x_k \) **is independent of** \(\xi_k \), **we have**

\[
\mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle] = \mathbb{E}\left\{ \mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle | \xi_{[1..(k-1)]}] \right\}
= \]
\[R_{k+1} \leq R_k + \eta_k^2 \|g_k\|^2 - 2\eta_k \langle g_k, x_k - x^* \rangle \]

- **Assume**: \(\|g_k\|_2 \leq G \) on compact set \(\mathcal{X} \)

- **Taking expectation**:
 \[r_{k+1} \leq r_k + \eta_k^2 M^2 - 2\eta_k \mathbb{E}[\langle g_k, x_k - x^* \rangle]. \]

- **We need to now get a handle on the last term**

- **Since** \(x_k \) **is independent of** \(\xi_k \), **we have**

\[
\mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle] = \mathbb{E} \left\{ \mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle \mid \xi_{[1..(k-1)]}] \right\} \\
= \mathbb{E} \left\{ \langle x_k - x^*, \mathbb{E}[g(x_k, \xi_k) \mid \xi_{[1..(k-1)]}] \rangle \right\} \\
= \]
\[
R_{k+1} \leq R_k + \eta_k^2 \|g_k\|_2^2 - 2\eta_k \langle g_k, x_k - x^* \rangle
\]

- **Assume:** \(\|g_k\|_2 \leq G\) on compact set \(\mathcal{X}\)
- Taking expectation:
 \[
r_{k+1} \leq r_k + \eta_k^2 M^2 - 2\eta_k \mathbb{E}[\langle g_k, x_k - x^* \rangle].
\]
- We need to now get a handle on the last term
- Since \(x_k\) is independent of \(\xi_k\), we have

\[
\mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle] = \mathbb{E}\left\{\mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle \mid \xi_{[1..(k-1)]}]\right\}
\]
\[
= \mathbb{E}\left\{\langle x_k - x^*, \mathbb{E}[g(x_k, \xi_k) \mid \xi_{[1..(k-1)]}] \rangle\right\}
\]
\[
= \mathbb{E}[\langle x_k - x^*, G_k \rangle], \quad G_k \in \partial F(x_k).
\]
It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$
SGD: weakly convex case

It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

▶ Since F is cvx, $F(x) \geq F(x_k) + \langle G_k, x - x_k \rangle$ for any $x \in \mathcal{X}$.
SGD: weakly convex case

It remains to bound: \(\mathbb{E}[\langle x_k - x^*, G_k \rangle] \)

- Since \(F \) is cvx, \(F(x) \geq F(x_k) + \langle G_k, x - x_k \rangle \) for any \(x \in \mathcal{X} \).
- Thus, in particular

\[
2\eta_k \mathbb{E}[F(x^*) - F(x_k)] \geq 2\eta_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]
\]
SGD: weakly convex case

It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

- Since F is cvx, $F(x) \geq F(x_k) + \langle G_k, x - x_k \rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular

$$2\eta_k \mathbb{E}[F(x^*) - F(x_k)] \geq 2\eta_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$

Plug this bound back into the r_{k+1} inequality:

$$r_{k+1} \leq r_k + \eta_k^2 M^2 - 2\eta_k \mathbb{E}[\langle G_k, x_k - x^* \rangle]$$
SGD: weakly convex case

It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

- Since F is cvx, $F(x) \geq F(x_k) + \langle G_k, x - x_k \rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular

$$2\eta_k \mathbb{E}[F(x^*) - F(x_k)] \geq 2\eta_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$

Plug this bound back into the r_{k+1} inequality:

$$r_{k+1} \leq r_k + \eta_k^2 M^2 - 2\eta_k \mathbb{E}[\langle G_k, x_k - x^* \rangle]$$

$$2\eta_k \mathbb{E}[\langle G_k, x_k - x^* \rangle] \leq r_k - r_{k+1} + \eta_k M^2$$
SGD: weakly convex case

It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

- Since F is cvx, $F(x) \geq F(x_k) + \langle G_k, x - x_k \rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular

$$2\eta_k \mathbb{E}[F(x^*) - F(x_k)] \geq 2\eta_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$

Plug this bound back into the r_{k+1} inequality:

$$r_{k+1} \leq r_k + \eta_k^2 M^2 - 2\eta_k \mathbb{E}[\langle G_k, x_k - x^* \rangle]$$
$$2\eta_k \mathbb{E}[\langle G_k, x_k - x^* \rangle] \leq r_k - r_{k+1} + \eta_k M^2$$
$$2\eta_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \eta_k M^2.$$
SGD: weakly convex case

It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

- Since F is cvx, $F(x) \geq F(x_k) + \langle G_k, x - x_k \rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular

$$2\eta_k \mathbb{E}[F(x^*) - F(x_k)] \geq 2\eta_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$

Plug this bound back into the r_{k+1} inequality:

$$r_{k+1} \leq r_k + \eta_k^2 M^2 - 2\eta_k \mathbb{E}[\langle G_k, x_k - x^* \rangle]$$

$$2\eta_k \mathbb{E}[\langle G_k, x_k - x^* \rangle] \leq r_k - r_{k+1} + \eta_k M^2$$

$$2\eta_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \eta_k M^2.$$

We’ve bounded the expected progress; What now?
SGD: weakly convex case

\[2\eta_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \eta_k M^2. \]
SGD: weakly convex case

\[2\eta_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \eta_k M^2. \]

Sum up over \(i = 1, \ldots, k \), to obtain

\[\sum_{i=1}^{k} (2\eta_i \mathbb{E}[F(x_i) - f(x^*)]) \leq r_1 - r_{k+1} + M^2 \sum_i \eta_i^2 \]
2\eta_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \eta_k M^2.

Sum up over \(i = 1, \ldots, k\), to obtain

\[
\sum_{i=1}^{k} (2\eta_i \mathbb{E}[F(x_i) - f(x^*)]) \leq r_1 - r_{k+1} + M^2 \sum_i \eta_i^2
\leq r_1 + M^2 \sum_i \eta_i^2.
\]
\[2\eta_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \eta_k M^2. \]

Sum up over \(i = 1, \ldots, k \), to obtain

\[
\sum_{i=1}^{k} (2\eta_i \mathbb{E}[F(x_i) - f(x^*)]) \leq r_1 - r_{k+1} + M^2 \sum_i \eta_i^2 \\
\leq r_1 + M^2 \sum_i \eta_i^2.
\]

Divide both sides by \(\sum_i \eta_i \), so
SGD: weakly convex case

\[2\eta_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \eta_k M^2. \]

Sum up over \(i = 1, \ldots, k \), to obtain

\[\sum_{i=1}^k (2\eta_i \mathbb{E}[F(x_i) - f(x^*)]) \leq r_1 - r_{k+1} + M^2 \sum_i \eta_i^2 \]
\[\leq r_1 + M^2 \sum_i \eta_i^2. \]

Divide both sides by \(\sum_i \eta_i \), so

- Set \(\gamma_i = \frac{\eta_i}{\sum_i \eta_i} \).
- Thus, \(\gamma_i \geq 0 \) and \(\sum_i \gamma_i = 1 \).
2\eta_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \eta_k M^2.

Sum up over \(i = 1, \ldots, k\), to obtain

\[
\sum_{i=1}^{k} (2\eta_i \mathbb{E}[F(x_i) - f(x^*)]) \leq r_1 - r_{k+1} + M^2 \sum_i \eta_i^2 \\
\leq r_1 + M^2 \sum_i \eta_i^2.
\]

Divide both sides by \(\sum_i \eta_i\), so

\begin{itemize}
 \item Set \(\gamma_i = \frac{\eta_i}{\sum_i \eta_i}\).
 \item Thus, \(\gamma_i \geq 0\) and \(\sum_i \gamma_i = 1\)
\end{itemize}

\[
\mathbb{E} \left[\sum_i \gamma_i (F(x_i) - F(x^*)) \right] \leq \frac{r_1 + M^2 \sum_i \eta_i^2}{2 \sum_i \eta_i}
\]
SGD: weakly convex case

- Bound looks similar to bound in subgradient method

\[f(\bar{x}_k) \leq \sum_i \gamma_i F(x_i) \text{ due to convexity} \]

So we finally obtain the inequality

\[E[F(\bar{x}_k) - F(x^*)] \leq r_1 + M_2 \sum_i \eta_i^2 \sum_i \eta_i. \]
SGD: weakly convex case

- Bound looks similar to bound in subgradient method
- But we wish to say something about x_k
SGD: weakly convex case

- Bound looks similar to bound in subgradient method
- But we wish to say something about x_k
- Since $\gamma_i \geq 0$ and $\sum_i^k \gamma_i = 1$, and we have $\gamma_i F(x_i)$
SGD: weakly convex case

- Bound looks similar to bound in subgradient method
- But we wish to say something about \(x_k \)
- Since \(\gamma_i \geq 0 \) and \(\sum_i^k \gamma_i = 1 \), and we have \(\gamma_i F(x_i) \)
- Easier to talk about averaged

\[
\bar{x}_k := \sum_i^k \gamma_i x_i.
\]
SGD: weakly convex case

- Bound looks similar to bound in subgradient method
- But we wish to say something about x_k
- Since $\gamma_i \geq 0$ and $\sum_i^k \gamma_i = 1$, and we have $\gamma_i F(x_i)$
- Easier to talk about **averaged**

$$\bar{x}_k := \sum_i^k \gamma_i x_i.$$

- $f(\bar{x}_k) \leq \sum_i \gamma_i F(x_i)$ due to convexity
SGD: weakly convex case

- Bound looks similar to bound in subgradient method
- But we wish to say something about x_k
- Since $\gamma_i \geq 0$ and $\sum_i^k \gamma_i = 1$, and we have $\gamma_i F(x_i)$
- Easier to talk about averaged $\bar{x}_k := \sum_i^k \gamma_i x_i$.

- $f(\bar{x}_k) \leq \sum_i \gamma_i F(x_i)$ due to convexity

So we finally obtain the inequality

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{r_1 + M^2 \sum_i \eta_i^2}{2 \sum_i \eta_i}.$$
SGD: weakly convex case

♠ Let $D_x := \max_{x \in \mathcal{X}} \|x - x^*\|_2$ (act. only need $\|x_1 - x^*\| \leq D_x$)

♠ Assume $\eta_i = \eta$ is a constant. Observe that

\[
\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{D_x^2 + M^2 k \eta^2}{2k\eta}
\]

♠ Minimize the rhs over $\eta > 0$ to obtain

\[
\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{D_x M}{\sqrt{k}}
\]

♠ If k is not fixed in advance, then choose

\[
\eta_i = \frac{\theta D_x}{M \sqrt{i}}, \quad i = 1, 2, \ldots
\]

♠ Analyze $\mathbb{E}[F(\bar{x}_k) - F(x^*)]$ with this choice of stepsize
SGD: weakly convex case

♠ Let $D_X := \max_{x \in X} \|x - x^*\|_2$ (act. only need $\|x_1 - x^*\| \leq D_X$)
♠ Assume $\eta_i = \eta$ is a constant. Observe that

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{D_X^2 + M^2k\eta^2}{2k\eta}$$

♠ Minimize the rhs over $\eta > 0$ to obtain

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{D_XM}{\sqrt{k}}$$

♠ If k is not fixed in advance, then choose

$$\eta_i = \frac{\theta D_X}{M\sqrt{i}}, \quad i = 1, 2, \ldots$$

♠ Analyze $\mathbb{E}[F(\bar{x}_k) - F(x^*)]$ with this choice of stepsize

We showed $O(1/\sqrt{k})$ rate
Exercise: Assuming the cost (and component functions) are L-smooth and convex, study the convergence rate of SGD.

Hint: Use bounded noise: $\mathbb{E}[\|\nabla f_i(x) - \nabla f(x)\|^2] = \sigma^2$.