Homeworks due today
Project questions?
Nonconvexity...
Nonconvex: hardness of global optima

Does there exist a subset of \(\{a_1, \ldots, a_n\} \) that sums to \(s \)?
Nonconvex: hardness of global optima

Does there exist a subset of \(\{a_1, \ldots, a_n\} \) that sums to \(s \)?

\textsc{SubsetSum}, well-known to be NP-Hard
Nonconvex: hardness of global optima

Does there exist a subset of \(\{a_1, \ldots, a_n\} \) that sums to \(s \)?

SUBSETSUM, well-known to be NP-Hard

SUBSETSUM via nonconvex opt

\[
\begin{align*}
\min_z & \quad (\sum_{i=1}^{n} z_i a_i - s)^2 + \sum_i z_i (1 - z_i) \\
\text{s.t.} & \quad 0 \leq z_i \leq 1, \ i = 1, \ldots, n.
\end{align*}
\]
Nonconvex: hardness of global optima

Does there exist a subset of \(\{a_1, \ldots, a_n\} \) that sums to \(s \)?

SUBSETSUM, well-known to be NP-Hard

SUBSETSUM via nonconvex opt

\[
\begin{align*}
\min_z & \quad (\sum_{i=1}^{n} za_i - s)^2 + \sum_i z_i (1 - z_i) \\
\text{s.t.} & \quad 0 \leq z_i \leq 1, \ i = 1, \ldots, n.
\end{align*}
\]

Is the **global min** of above problem equal to 0?
Nonconvex: hardness of global optima

Does there exist a subset of \(\{a_1, \ldots, a_n\} \) that sums to \(s \)?

SUBSETSUM, well-known to be NP-Hard

SUBSETSUM via nonconvex opt

\[
\min_z \left(\sum_{i=1}^{n} z_i a_i - s \right)^2 + \sum_i z_i (1 - z_i)
\]

s.t. \(0 \leq z_i \leq 1, \ i = 1, \ldots, n \).

Is the **global min** of above problem equal to 0?

Concrete proof of intractability

To be pedantic, need to care for model of computing used.
Nonconvex: what about local minima?

Let \(f(x) = (1 - 1/s)^{\max_i |x_i| - \min_i |x_i| + |a^T x|} \) where \(a \in \mathbb{Z}^n_+ \), \(s = \sum_i a_i \geq 1 \).

Clearly \(f(0) = 0 \), but!

NP-Hard to decide if there's an \(x \) s.t. \(f(x) < 0 \)?

Assume \(y \in \{\pm 1\}^n \) satisfies \(a^T y = 0 \). Then, \(f(y) = -1/s \).

Let \(\max_i |x_i| = 1 \) and \(\delta = |a^T x| \).

If \(f(x) < 0 \), then \(|x_i| > 1 - 1/s + \delta \) for \(1 \leq i \leq n \).

If \(y_i = sgn \ x_i \); then \(y_i x_i > 1 - 1/s + \delta \) and \(|y_i - x_i| = 1 - y_i x_i < 1 - \delta \); so \(|a^T y| \leq |a^T x| + |a^T (y - x)| \leq \delta + \max_i |y_i - x_i| < (1 - s) \delta + 1 \leq 1 \).

Since \(a \in \mathbb{Z}^n_+ \), this is possible iff \(a^T y = 0 \) (latter is like subset-sum).
Nonconvex: what about local minima?

Let \(f(x) = (1 - \frac{1}{s}) \max_i |x_i| - \min_i |x_i| + |a^T x| \)
where \(a \in \mathbb{Z}^n_+, s = \sum_i a_i \geq 1. \)

(Ref: Example due to Y. Nesterov.)
Nonconvex: what about local minima?

Let \(f(x) = \left(1 - \frac{1}{s}\right) \max_i |x_i| - \min_i |x_i| + |a^T x| \)

where \(a \in \mathbb{Z}_+^n \), \(s = \sum_i a_i \geq 1 \).

(Ref: Example due to Y. Nesterov.)

Clearly \(f(0) = 0 \), but!
Let \(f(x) = (1 - \frac{1}{s}) \max_i |x_i| - \min_i |x_i| + |a^T x| \)
where \(a \in \mathbb{Z}^n_+, s = \sum_i a_i \geq 1. \)

(Ref: Example due to Y. Nesterov.)

Clearly \(f(0) = 0, \text{ but!} \)

NP-Hard to decide if there's an \(x \) s.t. \(f(x) < 0? \)
Nonconvex: what about local minima?

Let \(f(x) = (1 - \frac{1}{s}) \max_i |x_i| - \min_i |x_i| + |a^T x| \)
where \(a \in \mathbb{Z}_+^n, s = \sum_i a_i \geq 1. \)

(Ref: Example due to Y. Nesterov.)

Clearly \(f(0) = 0, \) but!

NP-Hard to decide if there’s an \(x \) s.t. \(f(x) < 0? \)

- Assume \(y \in \{\pm 1\}^n \) satisfies \(a^T y = 0. \) Then, \(f(y) = -1/s. \)
Nonconvex: what about local minima?

Let \(f(x) = (1 - \frac{1}{s}) \max_i |x_i| - \min_i |x_i| + |a^T x| \)

where \(a \in \mathbb{Z}_+^n, s = \sum_i a_i \geq 1. \)

(Ref: Example due to Y. Nesterov.)

Clearly \(f(0) = 0, \) but!

NP-Hard to decide if there’s an \(x \) s.t. \(f(x) < 0? \)

- Assume \(y \in \{ \pm 1 \}^n \) satisfies \(a^T y = 0. \) Then, \(f(y) = -1/s. \)
- Let \(\max_i |x_i| = 1 \) and \(\delta = |a^T x| \)
Nonconvex: what about local minima?

Let \(f(x) = (1 - \frac{1}{s}) \max_i |x_i| - \min_i |x_i| + |a^T x| \)

where \(a \in \mathbb{Z}_+^n, s = \sum_i a_i \geq 1. \)

(Ref: Example due to Y. Nesterov.)

Clearly \(f(0) = 0, \) but!

NP-Hard to decide if there’s an \(x \) s.t. \(f(x) < 0? \)

- Assume \(y \in \{ \pm 1 \}^n \) satisfies \(a^T y = 0. \) Then, \(f(y) = -1/s. \)
- Let \(\max_i |x_i| = 1 \) and \(\delta = |a^T x| \)
- If \(f(x) < 0, \) then \(|x_i| > 1 - \frac{1}{s} + \delta \) for \(1 \leq i \leq n \)
Nonconvex: what about local minima?

Let \(f(x) = (1 - \frac{1}{s}) \max_i |x_i| - \min_i |x_i| + |a^T x| \)

where \(a \in \mathbb{Z}^n_+, s = \sum_i a_i \geq 1. \)

(Ref: Example due to Y. Nesterov.)

Clearly \(f(0) = 0 \), but!

NP-Hard to decide if there’s an \(x \) s.t. \(f(x) < 0? \)

- Assume \(y \in \{\pm 1\}^n \) satisfies \(a^T y = 0 \). Then, \(f(y) = -1/s. \)
- Let \(\max_i |x_i| = 1 \) and \(\delta = |a^T x| \)
- If \(f(x) < 0 \), then \(|x_i| > 1 - \frac{1}{s} + \delta \) for \(1 \leq i \leq n \)
- If \(y_i = \text{sgn} \; x_i \); then \(y_i x_i > 1 - \frac{1}{s} + \delta \) and \(|y_i - x_i| = 1 - y_i x_i < \frac{1}{s} - \delta \); so

\[
|a^T y| \leq |a^T x| + |a^T (y - x)| \leq \delta + s \max_i |y_i - x_i|
\]

\[
< (1 - s)\delta + 1 \leq 1.
\]
Nonconvex: what about local minima?

Let \(f(x) = (1 - \frac{1}{s}) \max_i |x_i| - \min_i |x_i| + |a^T x| \)
where \(a \in \mathbb{Z}_+^n, s = \sum_i a_i \geq 1. \)

(Ref: Example due to Y. Nesterov.)

Clearly \(f(0) = 0, \) but!

NP-Hard to decide if there’s an \(x \) s.t. \(f(x) < 0? \)

- Assume \(y \in \{\pm 1\}^n \) satisfies \(a^T y = 0. \) Then, \(f(y) = -1/s. \)
- Let \(\max_i |x_i| = 1 \) and \(\delta = |a^T x| \)
- If \(f(x) < 0, \) then \(|x_i| > 1 - \frac{1}{s} + \delta \) for \(1 \leq i \leq n \)
- If \(y_i = \text{sgn} \ x_i; \) then \(y_i x_i > 1 - \frac{1}{s} + \delta \) and \(|y_i - x_i| = 1 - y_i x_i < \frac{1}{s} - \delta; \) so
 \[
 |a^T y| \leq |a^T x| + |a^T (y - x)| \leq \delta + s \max_i |y_i - x_i| \\
 < (1 - s)\delta + 1 \leq 1.
 \]
- Since \(a \in \mathbb{Z}_+^n, \) this is possible iff \(a^T y = 0 \) (latter is like subset-sum)
Convex but hard
Hardness due to a fundamental failure

Consider the following subset of real symmetric matrices:

\[CP_n := \{ A \in \mathbb{S}^{n \times n} \mid x^T A x \geq 0 \text{ for all } x \geq 0 \} \]
Consider the following subset of real symmetric matrices:

\[
CP_n := \{ A \in S^{n \times n} \mid x^T A x \geq 0 \text{ for all } x \geq 0 \}
\]

Exercise: Verify that \(CP_n \) is a convex cone.

Challenge. Given matrix \(A \), decide if \(A \in CP_n \)?

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (3/02/21; Lecture 5)
Hardness due to a fundamental failure

Consider the following subset of real symmetric matrices:

\[CP_n := \{ A \in S^{n \times n} \mid x^T A x \geq 0 \text{ for all } x \geq 0 \} \]

Exercise: Verify that \(CP_n \) is a convex cone.

Challenge. Given matrix \(A \), decide if \(A \in CP_n \)?

\[
\begin{align*}
\min_x & \quad x^T A x \\
\text{s.t.} & \quad x \geq 0 \\
\text{Is there an } x \text{ s.t. } x^T A x < 0? \\
\text{Is } x = 0 \text{ a local min?}
\end{align*}
\]

Amounts to checking if \(A \) is copositive, known to be co-NPC (which implies that checking copositivity is NP-Hard).

Explore: the topic "testing copositivity".

Hardness due to a fundamental failure

Consider the following subset of real symmetric matrices:

\[CP_n := \{ A \in S^{n \times n} \mid x^T A x \geq 0 \text{ for all } x \geq 0 \} \]

Exercise: Verify that \(CP_n \) is a convex cone.

Challenge. Given matrix \(A \), decide if \(A \in CP_n \)?

\[
\min_x \quad x^T A x \quad \text{s.t. } x \geq 0
\]

Is there an \(x \) s.t. \(x^T A x < 0 \)?

Is \(x = 0 \) a local min?

Amounts to checking if \(A \) is *copositive*, known to be co-NPC (which implies that checking copositivity is NP-Hard).
Consider the following subset of real symmetric matrices:

$$CP_n := \{ A \in \mathbb{S}^{n \times n} \mid x^T A x \geq 0 \text{ for all } x \geq 0 \}$$

Exercise: Verify that CP_n is a convex cone.

Challenge. Given matrix A, decide if $A \in CP_n$?

$$\min_x \ x^T A x \ \text{s.t.} \ x \geq 0$$

Is there an x s.t. $x^T A x < 0$?

Is $x = 0$ a local min?

Amounts to checking if A is **copositive**, known to be co-NPC (which implies that checking copositivity is NP-Hard).

Explore: the topic “testing copositivity”.

Exercise: Verify that the following matrix is copositive

\[A := \begin{bmatrix} 1 & -1 & 1 & 1 & -1 \\ -1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ -1 & 1 & 1 & -1 & 1 \end{bmatrix}. \]
Exercise: Verify that the following matrix is copositive

\[
A := \begin{bmatrix}
1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1
\end{bmatrix}.
\]

Exercise: Non-negative matrix factorization (NMF) seeks to solve

\[
\min_{B, C \geq 0} \|A - BC\|_F^2,
\]

for a given \(A \geq 0 \) (elementwise). Restricting \(C = B^T \), rewrite NMF as a “copositive programming” problem.
Maximizing convex functions

Theorem. Let \(f \) be a convex function and let \(C = \text{conv} S \), where \(S \) is an arbitrary set of points. Then,

\[
\sup \{ f(x) | x \in C \} = \sup \{ f(x) | x \in S \},
\]

where the first sup is attained only when the second one is.

Theorem. Let \(f \) be convex; \(C \) be a closed convex set in \(\text{dom} f \). Suppose \(C \) contains no lines. Then, if the sup of \(f \) relative to \(C \) is attained at all, it is attained at some extreme point of \(C \).

Example: LP optimum at a vertex (vertices extreme points for polyhedra)

Maximizing convex functions

Theorem. Let f be a convex function and let $C = \text{conv } S$, where S is an arbitrary set of points. Then,

$$\sup \{f(x) \mid x \in C\} = \sup \{f(x) \mid x \in S\},$$

where the first sup is attained only when the second one is.
Maximizing convex functions

Theorem. Let f be a convex function and let $C = \text{conv } S$, where S is an *arbitrary* set of points. Then,

$$\sup \{ f(x) \mid x \in C \} = \sup \{ f(x) \mid x \in S \},$$

where the first sup is attained only when the second one is.

Theorem. Let f be convex; C be a closed convex set in $\text{dom } f$. Suppose C contains no lines. Then, if the sup of f relative to C is attained at all, it is attained at some *extreme point* of C.

Example: LP optimum at a vertex (vertices extreme points for polyhedra)

Ref. See Section 32 of R. T. Rockafellar, Convex Analysis.
How hard is global opt?
Complexity of global optimization

How much computation required to ensure $f(x) - f^* \leq \epsilon$?

How to measure complexity?
How much computation required to ensure
\[f(x) - f^* \leq \epsilon? \]

How to measure complexity?

Oracle based complexity: count number of calls to an “oracle”
How much computation required to ensure $f(x) - f^* \leq \epsilon$?

How to measure complexity?

Oracle based complexity: count number of calls to an “oracle”

- **Zeroth order** oracle: inputs a point x, outputs $f(x)$
- **First-order** oracle: inputs a point x, outputs $f(x), \nabla f(x)$

Higher order oracles can also be considered; also, later, we’ll consider other oracles (stochastic, inexact, etc.)
Complexity of global optimization

How much computation required to ensure

\[f(x) - f^* \leq \epsilon \]
Complexity of global optimization

How much computation required to ensure $f(x) - f^* \leq \epsilon$?

Problem: $f^* = \min_x \{f(x) \mid x \in [0, 1]^n\}$
Complexity of global optimization

How much computation required to ensure
\[f(x) - f^* \leq \epsilon? \]

Problem: \[f^* = \min_{x} \{ f(x) \mid x \in [0, 1]^n \} \]

Problem class: \(f \) is **L-Lipschitz** on \([0, 1]^n\)
\[
|f(x) - f(y)| \leq L\|x - y\|_\infty \quad \text{for constant } L \text{ and } x, y \in [0, 1]^n.
\]
Complexity of global optimization

How much computation required to ensure

\[f(x) - f^* \leq \epsilon? \]

Problem: \(f^* = \min_x \{ f(x) \mid x \in [0, 1]^n \} \)

Problem class: \(f \) is \(L \)-Lipschitz on \([0, 1]^n\)

\[|f(x) - f(y)| \leq L \|x - y\|_{\infty} \]

for constant \(L \) and \(x, y \in [0, 1]^n \).

Algorithm: Brute force search.

- Pick integer \(p \geq 1 \) and place a uniform grid (width \(1/2p \))
 over \([0, 1]^n\) centered around \(p^n \) points
Complexity of global optimization

How much computation required to ensure
\[f(x) - f^* \leq \epsilon? \]

Problem: \[f^* = \min_x \{ f(x) \mid x \in [0, 1]^n \} \]

Problem class: \(f \) is \(L \)-Lipschitz on \([0, 1]^n \)
\[|f(x) - f(y)| \leq L\|x - y\|_\infty \] for constant \(L \) and \(x, y \in [0, 1]^n \).

Algorithm: Brute force search.

- Pick integer \(p \geq 1 \) and place a uniform grid (width \(1/2p \)) over \([0, 1]^n \) centered around \(p^n \) points
- We can ensure \(f(\bar{x}) - f^* \leq L/2p \) in \(O(p^n) \) calls of oracle \(f(x) \)
Complexity of global optimization

How much computation required to ensure
\[f(x) - f^* \leq \epsilon? \]

Problem: \(f^* = \min_x \{ f(x) \mid x \in [0, 1]^n \} \)

Problem class: \(f \) is \(L \)-Lipschitz on \([0, 1]^n\)

\[|f(x) - f(y)| \leq L \|x - y\|_{\infty} \] for constant \(L \) and \(x, y \in [0, 1]^n \).

Algorithm: Brute force search.

- Pick integer \(p \geq 1 \) and place a uniform grid (width \(1/2p \)) over \([0, 1]^n\) centered around \(p^n \) points
- We can ensure \(f(\bar{x}) - f^* \leq L/2p \) in \(O(p^n) \) calls of oracle \(f(x) \)
- (this translates into \(O((L/2\epsilon)^n) \) for \(p \geq L/2\epsilon \))
Complexity of global optimization

How much computation required to ensure $f(x) - f^* \leq \epsilon$?

Problem: $f^* = \min_x \{ f(x) \mid x \in [0, 1]^n \}$

Problem class: f is L-Lipschitz on $[0, 1]^n$

$|f(x) - f(y)| \leq L\|x - y\|_\infty$ for constant L and $x, y \in [0, 1]^n$.

Algorithm: Brute force search.

- Pick integer $p \geq 1$ and place a uniform grid (width $1/2p$) over $[0, 1]^n$ centered around p^n points
- We can ensure $f(\bar{x}) - f^* \leq L/2p$ in $O(p^n)$ calls of oracle $f(x)$
- (this translates into $O((L/2\epsilon)^n)$ for $p \geq L/2\epsilon$)

The brute force method is worst-case optimal!
Constructing the lower bound

Idea: Create “resisting” oracles.

\[p = \lfloor L_2 \varepsilon \rfloor. \]

Suppose, we have a method that needs \(N < p \) oracle calls to solve problems to accuracy \(\varepsilon \) in problem class.

◦ Resisting oracle

Return \(f(x) = 0 \) at any test point \(x \)

(\(\text{s.t.} \) \(f(\bar{x}) = 0 \))

But \(N < p \), so there's a box with no test points.

Thus, put \(x^* \) inside this box of width \(\varepsilon / L \) and set \(f(x) = \min\{0, L \|x - x^*\| - \varepsilon\} \)
Constructing the lower bound

Idea: Create “resisting” oracles.

Let \(p = \lfloor \frac{L}{2\epsilon} \rfloor \). Suppose, we have a method that needs \(N < p^n \) oracle calls to solve problems to accuracy \(\epsilon \) in problem class.
Constructing the lower bound

Idea: Create “resisting” oracles.
Let \(p = \left\lfloor \frac{L}{2\epsilon} \right\rfloor \). Suppose, we have a method that needs \(N < p^n \) oracle calls to solve problems to accuracy \(\epsilon \) in problem class.

Resisting oracle

Return \(f(x) = 0 \) at any test point \(x \)

(so method can only find \(\bar{x} \in [0, 1]^n \) s.t. \(f(\bar{x}) = 0 \))

But \(N < p^n \), so there’s a box with no test points.
Constructing the lower bound

Idea: Create “resisting” oracles.
Let \(p = \left\lfloor \frac{L}{2\epsilon} \right\rfloor \). Suppose, we have a method that needs \(N < p^n \) oracle calls to solve problems to accuracy \(\epsilon \) in problem class.

Resisting oracle

<table>
<thead>
<tr>
<th>Return (f(x) = 0) at any test point (x)</th>
</tr>
</thead>
</table>

(so method can only find \(\bar{x} \in [0, 1]^n \) s.t. \(f(\bar{x}) = 0 \))

But \(N < p^n \), so there’s a box with no test points.

Thus, put \(x^* \) inside this box of width \(\epsilon/L \) and set

\[
f(x) = \min \{ 0, L\|x - x^*\| - \epsilon \}
\]
Lower bound for global optimization

\[f(x) = \min \{0, L\|x - x^*\| - \epsilon\} \]

This function is L-Lipschitz, its accuracy is ϵ.

Thus, without at least p^n points, accuracy cannot be better than ϵ.
Lower bound for global optimization

\[f(x) = \min \{ 0, L\|x - x^*\| - \epsilon \} \]

This function is \(L \)-Lipschitz, its accuracy is \(\epsilon \).

Thus, without at least \(p^n \) points, accuracy cannot be better than \(\epsilon \).

In general, brute force (exponential time) method the best. Moreover, vastly worse than “just” \(2^n \)!

Exercise: Provide similar lower bounds for \(C^1 \) functions.

Ref. Section 1.1 of *Yu. Nesterov, “Lectures on Convex Optimization”*
Stationarity

(More modest goal)
More modest goal: stationarity

First-order necessary condition

Assuming \(f \in C^1, \nabla f(x) = 0 \) necessary

Weak requirement: \(\|\nabla f(x)\| \leq \epsilon \)
More modest goal: stationarity

First-order necessary condition

Assuming $f \in C^1$, $\nabla f(x) = 0$ necessary

Weak requirement: $||\nabla f(x)|| \leq \epsilon$

Consider $f(x) = x^3$ on the set $[-1, 1]$. Global opt is at -1, while $f'(x) = 3x^2 = 0$ as $x = 0$.
More modest goal: stationarity

First-order necessary condition

Assuming \(f \in C^1 \), \(\nabla f(x) = 0 \) necessary

Weak requirement: \(\|\nabla f(x)\| \leq \epsilon \)

Consider \(f(x) = x^3 \) on the set \([-1, 1]\). Global opt is at \(-1\), while \(f'(x) = 3x^2 = 0 \) as \(x = 0 \).

Second-order necessary conditions

Assume \(f \in C^2 \). Then, \(\nabla f(x) = 0 \) and \(\nabla^2 f(x) \succeq 0 \)
More modest goal: stationarity

First-order necessary condition

Assuming $f \in C^1$, $\nabla f(x) = 0$ necessary

Weak requirement: $\|\nabla f(x)\| \leq \epsilon$

Consider $f(x) = x^3$ on the set $[-1, 1]$. Global opt is at -1, while $f'(x) = 3x^2 = 0$ as $x = 0$.

Second-order necessary conditions

Assume $f \in C^2$. Then, $\nabla f(x) = 0$ and $\nabla^2 f(x) \succeq 0$

Second-order sufficient conditions (local opt)

Assume $f \in C^2$. Then, $\nabla f(x) = 0$ and $\nabla^2 f(x) \succ 0$
Second-order necessary conditions

Assume $f \in C^2$. Then, $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succeq 0$.

Taylor expand $f(x^* + td)$, where d is arbitrary and $t > 0$:

$$f(x^* + td) = f(x^*) + t\nabla f(x^*)^T d + \frac{t^2}{2} d^T \nabla^2 f(x^*) d + o(t^2).$$
Assume $f \in C^2$. Then, $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succeq 0$.

Taylor expand $f(x^* + td)$, where d is arbitrary and $t > 0$:

$$f(x^* + td) = f(x^*) + t\nabla f(x^*)^T d + \frac{t^2}{2} d^T \nabla^2 f(x^*) d + o(t^2).$$

Since x^* is a local min, $\nabla f(x^*) = 0$ holds. Thus,

$$\frac{f(x^* + td) - f(x^*)}{t^2} = \frac{1}{2} d^T \nabla^2 f(x^*) d + \frac{o(t^2)}{t^2}.$$
Second-order necessary conditions

Assume $f \in C^2$. Then, $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succeq 0$

Taylor expand $f(x^* + td)$, where d is arbitrary and $t > 0$:

$$f(x^* + td) = f(x^*) + t\nabla f(x^*)^T d + \frac{t^2}{2} d^T \nabla^2 f(x^*) d + o(t^2).$$

Since x^* is a local min, $\nabla f(x^*) = 0$ holds. Thus,

$$\frac{f(x^* + td) - f(x^*)}{t^2} = \frac{1}{2} d^T \nabla^2 f(x^*) d + \frac{o(t^2)}{t^2}$$

Since x^* is local min, for small enough t lhs above is ≥ 0. Thus,

$$0 \leq \lim_{t \downarrow 0} \frac{1}{2} d^T \nabla^2 f(x^*) d + \frac{o(t^2)}{t^2} \implies d^T \nabla^2 f(x^*) d \geq 0 \iff \nabla^2 f(x^*) \succeq 0.$$
Sufficient condition

Assume $f \in C^2$, $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succ 0$.

Exercise: Prove that x^* is a local minimum. (*Hint:* Analyze $f(x^* + y) - f(x^*)$ via Taylor series, use $\nabla^2 f(x^*) \succeq \delta I$ for some $\delta > 0$.)
Sufficient condition

Assume \(f \in C^2, \nabla f(x^*) = 0 \) and \(\nabla^2 f(x^*) \succ 0 \).

Exercise: Prove that \(x^* \) is a local minimum. (*Hint:* Analyze \(f(x^* + y) - f(x^*) \) via Taylor series, use \(\nabla^2 f(x^*) \succeq \delta I \) for some \(\delta > 0 \)).

Remark: It can still happen that \(\nabla^2 f(x^*) \not \succ 0 \) but \(x^* \) is a local min (e.g., consider \(f(x) = x^4 + 2 \) at \(x = 0 \)). Such critical points are called *degenerate*; functions without degenerate critical points called “Morse functions” (*Explore!*).
Sufficient condition

Assume \(f \in C^2, \nabla f(x^*) = 0 \) and \(\nabla^2 f(x^*) \succ 0 \).

Exercise: Prove that \(x^* \) is a local minimum. (*Hint:* Analyze \(f(x^* + y) - f(x^*) \) via Taylor series, use \(\nabla^2 f(x^*) \succeq \delta I \) for some \(\delta > 0 \).)

Remark: It can still happen that \(\nabla^2 f(x^*) \not\succ 0 \) but \(x^* \) is a local min (e.g., consider \(f(x) = x^4 + 2 \) at \(x = 0 \)). Such critical points are called *degenerate*; functions without degenerate critical points called “Morse functions” (*Explore!*).

Useful convergence criterion: \((\epsilon, \delta)\)-stationarity

\[
\|\nabla f(x)\|_2 \leq \epsilon \text{ and } \nabla^2 f(x) \succeq -\sqrt{\delta} I
\]
Nonsmooth & Nonconvex

(Introduction)
First-order conditions

- For convex, $0 \in \partial f$ necessary and sufficient for global opt.
First-order conditions

- For convex, $0 \in \partial f$ necessary and sufficient for global opt.
- For nonconvex, we hope for only (first-order) stationarity.
First-order conditions

► For convex, $0 \in \partial f$ necessary and sufficient for global opt.
► For nonconvex, we hope for only (first-order) stationarity.

How should we define ∂f?
How to generalize ∂f?

- If f is nonsmooth, nonconvex, ∂f defined via

 $\partial f(x) := \{g \mid f(y) \geq f(x) + \langle g, y - x \rangle \ \forall \ y\}$ not helpful!

- It is a global notion; we seek a local one.

- Regularity assumption: locally Lipschitz functions

For convex functions, ∂f intimately related to directional derivative $f'(x; d) := \lim_{t \downarrow 0} \frac{f(x + td) - f(x)}{t}$.

A key property of $f'(x; d)$ and ∂f: $f'(x; d) = \max \{\langle g, d \rangle \mid g \in \partial f(x)\}$.

Thus, generalize ∂f via directional derivatives.
How to generalize ∂f?

- If f is nonsmooth, nonconvex, ∂f defined via $\partial f(x) := \{g \mid f(y) \geq f(x) + \langle g, y - x \rangle \ \forall \ y\}$ is not helpful!
- It is a global notion; we seek a local one.
- Regularity assumption: locally Lipschitz functions
How to generalize ∂f?

- If f is nonsmooth, nonconvex, ∂f defined via
 $$\partial f(x) := \{g \mid f(y) \geq f(x) + \langle g, y - x \rangle \ \forall \ y\}$$ not helpful!
- It is a global notion; we seek a local one.
- Regularity assumption: locally Lipschitz functions

For convex functions, ∂f intimately related to *directional derivative*

$$f'(x; d) := \lim_{t \downarrow 0} \frac{f(x + td) - f(x)}{t}.$$
How to generalize ∂f?

- If f is nonsmooth, nonconvex, ∂f defined via

 \[
 \partial f(x) := \{g \mid f(y) \geq f(x) + \langle g, y - x \rangle \ \forall \ y \} \text{ not helpful!}
 \]

- It is a global notion; we seek a local one.

- Regularity assumption: locally Lipschitz functions

For convex functions, ∂f intimately related to *directional derivative*

\[
f'(x; d) := \lim_{t \downarrow 0} \frac{f(x + td) - f(x)}{t}.
\]

A key property of $f'(x; d)$ and ∂f

\[
f'(x; d) = \max \{ \langle g, d \rangle \mid g \in \partial f(x) \}\]
How to generalize ∂f?

► If f is nonsmooth, nonconvex, ∂f defined via
$\partial f(x) := \{g \mid f(y) \geq f(x) + \langle g, y - x \rangle \ \forall \ y\}$ not helpful!
► It is a global notion; we seek a local one.
► Regularity assumption: locally Lipschitz functions

For convex functions, ∂f intimately related to directional derivative

$$f'(x; d) := \lim_{t \downarrow 0} \frac{f(x + td) - f(x)}{t}.$$

A key property of $f'(x; d)$ and ∂f

$$f'(x; d) = \max \{ \langle g, d \rangle \mid g \in \partial f(x) \}$$

Thus, generalize ∂f via directional derivatives.
Clarke directional derivative

\[f^\circ(x; d) := \limsup_{y \to x, t \downarrow 0} \frac{f(y + td) - f(y)}{t} \]
Clarke directional derivative

\[f^\circ(x; d) := \limsup_{y \to x, t \downarrow 0} \frac{f(y + td) - f(y)}{t} \]

Prop. \(f^\circ(x; \cdot) \) is positively homogeneous and subadditive.

Proof sketch: homogeneity is clear; we prove subadditivity.

\[
\begin{align*}
f^\circ(x; u + v) &= \limsup_{y \to x} \frac{f(y + t(u + v)) - f(y)}{t} \\
&\leq \limsup_{y \to x} \frac{f(y + tu + tv) - f(y + tv)}{t} + \limsup_{y \to x} \frac{f(y + tv) - f(y)}{t} \\
&= f^\circ(x; u) + f^\circ(x; v).
\end{align*}
\]

(first limsup is \(f^\circ(x; u) \) since \(y + tv \) essentially dummy var converging to \(x \))

Exercises

Exercise: Let \(f(x) = x^2 \sin(1/x) \). This function is Lipschitz near 0. Show that \(f^\circ(0; v) = |v| \).

Exercise: What should \(\partial_o f(0) \) be? (Answer: \([-1, 1]\); why?)

Exercise: What is \(f^\circ(0; v) \) for \(f = -|x| \)? (Verify it is \(|v| \).)
Clarke subdifferential

\[\partial f(x) := \{ g \in X \mid \langle g, d \rangle \leq f^\circ(x; d) \text{ for all } d \in X \}. \]

Exercise: Prove that \(\partial f(x) \) is a convex, compact set.
Clarke subdifferential

Clarke subdifferential

\[\partial_\circ f(x) := \{ g \in X \mid \langle g, d \rangle \leq f^\circ(x; d) \text{ for all } d \in X \} . \]

Exercise: Prove that \(\partial_\circ f(x) \) is a convex, compact set.

Theorem.

A. When \(f \) is \(C^1 \), \(\partial_\circ f(x) = \{ \nabla f(x) \} \).

B. If \(f \) is convex, then \(\partial_\circ f(x) = \partial f(x) \).
Clarke subdifferential

Theorem. A. When f is C^1, $\partial \circ f(x) = \{\nabla f(x)\}$.

B. If f is convex, then $\partial \circ f(x) = \partial f(x)$.

Prop. Let $f \in C^0_L$. $f^\circ(x; d) = \max \{\langle g, d \rangle | g \in \partial \circ f(x)\}$

Proof: Assume $\exists v$ s.t. $f^\circ(x; v)$ exceeds the given max. Then, there exists (why?) a linear functional ζ majorized by $f^\circ(x; v)$ agreeing with it at v. It follows that $\zeta \in \partial \circ f(x)$, leading to a contradiction.

(we used definition of $\partial \circ f$ along with sublinearity of $f^\circ(x; \cdot)$)

Exercise: Prove that for a locally Lipschitz function, $f'(x; d)$ is the support function of the (convex) set $\partial \circ f(x)$.

Exercise: Prove that $\partial \circ f(x)$ is a convex, compact set.
Theorem. Necessary condition for optimality: $0 \in \partial f(x)$
Theorem. Necessary condition for optimality: $0 \in \partial f(x)$

Proof: Since $\partial(-f) = -\partial f$, suffices to consider when x is a local minimum. When x is a local min, as before, starting from

$$ \frac{f(y + td) - f(y)}{t} $$

evident that $f^\circ(x; d) \geq 0$. Thus, $\zeta = 0$ belongs to $\partial f(x)$ because of the “max-rule” which implies that

$$ \zeta \in \partial f(x) \iff f^\circ(x; d) \geq \langle \zeta, d \rangle \quad \forall d \in X. $$
Theorem. Necessary condition for optimality: $0 \in \partial \circ f(x)$

Proof: Since $\partial(-f) = -\partial f$, suffices to consider when x is a local minimum. When x is a local min, as before, starting from

$$\frac{f(y + td) - f(y)}{t}$$

evident that $f\circ(x; d) \geq 0$. Thus, $\zeta = 0$ belongs to $\partial \circ f(x)$ because of the “max-rule” which implies that

$$\zeta \in \partial \circ f(x) \quad \text{iff} \quad f\circ(x; d) \geq \langle \zeta, d \rangle \quad \forall \, d \in X.$$

Could use $\text{dist}(0, \partial \circ f(x)) \leq \epsilon$ as stationarity criterion
Theorem. Let $f \in C^1$ and g convex. Then, $\partial(f + g) = \nabla f + \partial g$
Theorem. Let \(f \in C^1 \) and \(g \) convex. Then, \(\partial(f + g) = \nabla f + \partial g \)

Theorem. If \(f \) and \(g \) are LL around a point \(x \in X \), then \(\partial(f + g)(x) \subset \partial f(x) + \partial g(x) \)
Clarke subdifferential – key properties

Theorem. Let \(f \in C^1 \) and \(g \) convex. Then, \(\partial (f + g) = \nabla f + \partial g \)

Theorem. If \(f \) and \(g \) are LL around a point \(x \in X \), then
\[
\partial (f + g)(x) \subset \partial f(x) + \partial g(x)
\]

Recalling Rademacher’s theorem, we can “simplify” \(\partial f \)

Theorem. An LL function is a.e. differentiable
Clarke subdifferential – key properties

Theorem. Let $f \in C^1$ and g convex. Then, $\partial_\circ (f + g) = \nabla f + \partial g$

Theorem. If f and g are LL around a point $x \in X$, then $\partial_\circ (f + g)(x) \subset \partial f(x) + \partial g(x)$

Recalling Rademacher’s theorem, we can “simplify” $\partial_\circ f$

Theorem. An LL function is a.e. differentiable

Theorem. Let f be LL around $x \in X$ and let $S \subset X$ have measure zero. Then, $\partial_\circ f(x) = \text{conv} \{ \lim_r \nabla f(x^r) \mid x^r \to x, x^r \notin S \}$

Corollary. Approximate $\partial_\circ f(x)$ using “gradient sampling”