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Linear Programming

min cTx
s.t. Ax ≤ b, Cx = d.

Piecewise linear minimization is an LP

min f (x) = max
1≤i≤m

(aT
i x + bi)

f(x)

a
T

i
x
+
b i

min
x,t

t s.t. aT
i x + bi ≤ t, i = 1, . . . ,m.
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Exercises

Formulate minx ‖Ax− b‖1 as an LP (‖x‖1 =
∑

i |xi|)

Formulate minx ‖Ax− b‖∞ as an LP
(‖x‖∞ = max1≤i≤n |xi|)

Explore: LP formulations for Markov Decision Processes
(MDPs). MDPs are frequently used models in Reinforcement
Learning, and in some cases admit nice LP formulations.

Explore: Integer LP: minx cTx,Ax ≤ b, x ∈ Zn.

Open Problem. Can we solve the system of inequalities Ax ≤ b in
strongly polynomial time in the dimensions of the system, indep-
dent of the magnitudes of the coefficients? Best known result (Tar-
dos, 1984) depends on coefficients of A but permits indpendence on
magnitudes of b and the cost vector c.
N. Meggido, On the complexity of linear programing: Click here!
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Quadratic Programming

min 1
2 xTAx + bTx + c s.t. Gx ≤ h.

We assume A � 0 (semidefinite).

Exercise: Suppose no constraints; does QP always have solutions?

Nonnegative least squares (NNLS)

min 1
2‖Ax− b‖2 s.t. x ≥ 0.

Exercise: Prove that NNLS always has a solution.
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Regularized least-squares

Lasso

min 1
2‖Ax− b‖2

2 + λ‖x‖1.

Exercise: How large must λ > 0 so that x = 0 is the optimum?

Total-variation denoising

min 1
2‖Ax− b‖2

2 + λ
∑n−1

i=1
|xi+1 − xi|.

Exercise: Is the total-variation term a norm? Prove or disprove.

Group Lasso

min
x1,...,xT

1
2

∥∥∥∥b−
∑T

j=1
Ajxj

∥∥∥∥2

2
+ λ

∑T

j=1
‖xj‖2.

Exercise: What is the dual norm of the regularizer above?
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Robust LP as an SOCP

min cTx, s.t. aT
i x ≤ bi ∀ai ∈ Ei

Ei := {āi + Piu | ‖u‖2 ≤ 1}

Constraints are uncertain but with bounded uncertainty.

(Adversarially) Robust LP formulation

min
x

max
‖u‖2≤1

{
cTx | aT

i x ≤ bi, ai ∈ Ei

}
Second Order Cone Program

min cTx, s.t. ‖PT
i x‖2 ≤ −āT

i x + bi, i = 1, . . . ,m.

SOCP constraint comes from:

max
‖u‖2≤1

(āi + Piu)Tx = āT
i x + ‖PT

i x‖2

Exercise: Give a quick argument for above equality.
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Semidefinite Program (SDP)

min
x∈Rn

cTx

s.t. A(x) := A0 + x1A1 + x2A2 + . . .+ xnAn � 0.

I A0, . . . ,An are real, symmetric matrices
I Inequality A � B means B− A is semidefinite
I Also a cone program (conic optimization problem)
I SDP ⊃ SOCP ⊃ QP ⊃ LP
I Exercise: Write LPs, QPs, and SOCPs as SDPs
I Feasible set of SDP is {semidefinite cone

⋂
hyperplanes}

Explore: Which convex problems representable as SDPs?
(This is an important topic in optimization theory).
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Examples

♠ Eigenvalue optimization: minx λmax(A(x))

min t s.t. A(x) � tI.

♠ Norm minimization: minx ‖A(x)‖

min t s.t.
[

tI A(x)T

A(x) tI

]
� 0.

♠ More examples – see CVX documentation and BV book

Explore: SDP relaxations of nonconvex probs: important tech-
nique, starting with MAXCUT SDP (Goemans-Williamson).

Explore: Sum-of-squares (SOS) optimization, Lasserre hierar-
chy of relaxations; see also: https://www.sumofsquares.org
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Duality
(Weak duality, strong duality)
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Primal problem

Let fi : Rn → R (1 ≤ i ≤ m). Generic nonlinear program

min f (x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
x ∈{dom f ∩ dom f1 · · · ∩ dom fm} .

(P)

Domain: The set X := {dom f ∩ dom f1 · · · ∩ dom fm}
I We call (P) the primal problem
I The variable x is the primal variable

Lagrangians and Duality
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The reader will find no figures in this work. The
methods which I set forth do not require either
constructions or geometrical or mechanical rea-
sonings: but only algebraic operations, subject to
a regular and uniform rule of procedure.

—Joseph-Louis Lagrange
Preface to Mécanique Analytique
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Lagrangian

To primal, associate Lagrangian L : Rn × Rm
+ → (−∞,∞],

L(x, λ) := f (x) +
∑m

i=1
λifi(x).

♠ Variables λ ∈ Rm
+ called Lagrange multipliers

♠ Suppose x feasible, and λ ≥ 0. Lower-bound holds:

f (x) ≥ L(x, λ) ∀x ∈ X , λ ∈ Rm
+.

♠ In other words,

sup
λ∈Rm

+

L(x, λ) =

{
f (x), if x feasible,
+∞ otherwise.

Proof on next slide
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Lagrangian – proof

L(x, λ) := f (x) +
∑m

i=1 λifi(x).

I f (x) ≥ L(x, λ),∀ x ∈ X , λ ∈ Rm
+ ; so primal optimal (value)

p∗ = inf
x∈X

sup
λ≥0

L(x, λ).

I If x is not feasible, then some fi(x) > 0
I In this case, inner sup is +∞, so claim true by definition
I If x is feasible, each fi(x) ≤ 0, so supλ

∑
i λifi(x) = 0
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Dual value

L(x, λ) := f (x) +
∑m

i=1 λifi(x).

Primal value ∈ [−∞,+∞]

p∗ = inf
x∈X

sup
λ≥0

L(x, λ).

Dual value ∈ [−∞,+∞]

d∗ = sup
λ≥0

inf
x∈X

L(x, λ).

Dual function

g(λ) := inf
x∈X
L(x, λ).

Observe that g(λ) is always concave!
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Weak duality theorem

Theorem. (Weak duality). p∗ ≥ d∗. (i.e., WD always holds)

Proof:

1. f (x′) ≥ L(x′, λ) ∀x′ ∈ X
2. Thus, for any x ∈ X , we have f (x) ≥ infx′ L(x′, λ) = g(λ)

3. Now minimize over x on lhs to obtain

∀ λ ∈ Rm
+ p∗ ≥ g(λ).

4. Thus, taking sup over λ ∈ Rm
+ we obtain p∗ ≥ d∗.
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Lagrangians - Exercise

min f (x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m,
hi(x) = 0, i = 1, . . . , p.

Exercise: Show that we get the Lagrangian dual

g : Rm
+ × Rp : (λ, ν) 7→ inf

x
L(x, λ, ν),

Lagrange variable ν corresponds to the equality constraints.

Exercise: Prove that p∗ ≥ supλ≥0,ν∈Rp g(λ, ν) = d∗.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/23/21; Lecture 3) 17



Exercises: Some duals

Derive Lagrangian duals for the following problems
I Least-norm solution of linear equations: min xTx s.t. Ax = b
I Dual of an LP
I Dual of an SOCP
I Dual of an SDP
I Study example (5.7) in BV (binary QP)
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Strong duality
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Duality gap

p∗ − d∗

Strong duality holds if duality gap is zero: p∗ = d∗

Several sufficient conditions known!

“Easy” necessary and sufficient conditions: unknown
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Abstract duality gap theorem?

Theorem. Let v : Rm → R be the primal value function

v(u) := inf {f (x) | fi(x) ≤ ui, 1 ≤ i ≤ m} .

The following relations hold:
1 p∗ = v(0)

2 v∗(−λ) =

{
−g(λ) λ ≥ 0
+∞ otherwise.

3 d∗ = v∗∗(0)

So if v(0) = v∗∗(0) we have strong duality

Remark: Conditions such as Slater’s ensure ∂v(0) 6= ∅, which ensures v is
finite and lsc at 0, whereby v(0) = v∗∗(0) holds.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/23/21; Lecture 3) 21



Slater’s sufficient conditions

min f (x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
Ax = b.

Constraint qualification: There exists x ∈ riX s.t.

fi(x) < 0, Ax = b.

In words: there is a strictly feasible point.

Theorem. Let the primal problem be convex. If there is
a point that is strictly feasible for the non-affine constraints
(merely feasible for affine), then strong duality holds. More-
over, in this case, the dual optimal is attained (i.e., ∂v(0) 6= ∅).

See BV §5.3.2 for a proof; (above, v is the primal value function)
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Example with positive duality-gap

min
x,y

e−x x2/y ≤ 0,

over the domain X = {(x, y) | y > 0}.

Clearly, only feasible x = 0. So p∗ = 1

L(x, y, λ) = e−x + λx2/y,

so dual function is
g(λ) = inf

x,y>0
e−x + λx2y =

{
0 λ ≥ 0
−∞ λ < 0.

Dual problem

d∗ = max
λ

0 s.t. λ ≥ 0.

Thus, d∗ = 0, and gap is p∗ − d∗ = 1.
Here, we had no strictly feasible solution.
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Example: Support Vector Machine (SVM)

min
x,ξ

1
2‖x‖

2
2 + C

∑
i
ξi

s.t. Ax ≥ 1− ξ, ξ ≥ 0.

L(x, ξ, λ, ν) = 1
2‖x‖

2
2 + C1Tξ − λT(Ax− 1 + ξ)− νTξ

g(λ, ν) := inf L(x, ξ, λ, ν)

=

{
λT1− 1

2‖A
Tλ‖2

2 λ+ ν = C1
+∞ otherwise

d∗ = max
λ≥0,ν≥0

g(λ, ν)

Exercise: Using ν ≥ 0, eliminate ν from above dual and obtain
the canonical dual SVM formulation.
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Example: norm regularized problems

min f (x) + ‖Ax‖

Dual problem

min
y

f ∗(−ATy) s.t. ‖y‖∗ ≤ 1.

Say ‖ȳ‖∗ < 1, such that ATȳ ∈ ri(dom f ∗), then we have strong
duality—for instance if 0 ∈ ri(dom f ∗)

Exercise. Write the constrained form of group-lasso:

min
x1,...,xT

1
2

∥∥∥∥b−
∑T

j=1
Ajxj

∥∥∥∥2

2
+ λ

∑T

j=1
‖xj‖2.
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Say ‖ȳ‖∗ < 1, such that ATȳ ∈ ri(dom f ∗), then we have strong
duality—for instance if 0 ∈ ri(dom f ∗)

Exercise. Write the constrained form of group-lasso:

min
x1,...,xT

1
2

∥∥∥∥b−
∑T

j=1
Ajxj

∥∥∥∥2

2
+ λ

∑T

j=1
‖xj‖2.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/23/21; Lecture 3) 25



Example: Dual via Fenchel conjugates

min
x

f0(x) s.t. fi(x) ≤ 0 (1 ≤ i ≤ m), Ax = b.

Introduce ν and λ as dual variables; consider Lagrangian

L(x, λ, ν) := f0(x) +
∑

i
λifi(x) + νT(Ax− b)

g(λ, ν) = inf
x
L(x, λ, ν)

g(λ, ν) = −νTb + inf
x

xTATν + F(x)

F(x) := f0(x) +
∑

i
λifi(x)

g(λ, ν) = −νTb− sup
x
〈x, −ATν〉 − F(x)

g(λ, ν) = −νTb− F∗(−ATν).

F∗ seems rather opaque...
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Example: Dual via Fenchel conjugates

Important trick: “variable splitting”

min
x

f0(x) s.t. fi(xi) ≤ 0,Ax = b

x = xi, i = 1, . . . ,m.

L(x, xi, λ, ν, πi)

:= f0(x) +
∑

i
λifi(xi) + νT(Ax− b) +

∑
i
πT

i (xi − x)

g(λ, ν, πi) = inf
x,xi
L(x, xi, λ, ν, πi)

= −νTb + inf
x

(
f0(x) + νTAx−

∑
i
πT

i x
)

+
∑

i
inf
xi

(
πT

i xi + λifi(xi)
)
,

= −νTb− f ∗
(
−ATν +

∑
i
πi

)
−
∑

i
(λifi)∗(−πi).

(you may want to write
∑

i πi = s)
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Exercise: the variable splitting trick

min
x

f (x) + h(x).

Exercise: Fill in the details for the following steps

min
x,z

f (x) + h(z) s.t. x = z

L(x, z, ν) = f (x) + h(z) + νT(x− z)

g(ν) = inf
x,z

L(x, z, ν)
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Strong duality: nonconvex example

Trust region subproblem (TRS)

min xTAx + 2bTx xTx ≤ 1.

A is symmetric but not necessarily semidefinite!

Theorem. TRS always has zero duality gap.

Proof: Read Section 5.2.4 of BV.

See the challenge problems on pg 18, Lect1
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von Neumann minmax theorem?

(Simplified.) Let A be linear, C,D be compact convex sets.

min
x∈C

max
y∈D
〈Ax, y〉 = max

y∈D
min
x∈C
〈Ax, y〉.

von Neumann proved this via fixed-point theory. By
considering the Fenchel problem

min
x

1C(x) + 1∗D(Ax),

we can conclude the theorem (some work required).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/23/21; Lecture 3) 30



von Neumann minmax theorem?

(Simplified.) Let A be linear, C,D be compact convex sets.

min
x∈C

max
y∈D
〈Ax, y〉 = max

y∈D
min
x∈C
〈Ax, y〉.

von Neumann proved this via fixed-point theory. By
considering the Fenchel problem

min
x

1C(x) + 1∗D(Ax),

we can conclude the theorem (some work required).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/23/21; Lecture 3) 30


