Some norms
(cont’d from last time)
Vector norms: recap

Example. The Euclidean or ℓ_2-norm is $\|x\|_2 = \left(\sum_i x_i^2\right)^{1/2}$

Example. Let $p \geq 1$; ℓ_p-norm is $\|x\|_p = \left(\sum_i |x_i|^p\right)^{1/p}$

Exercise: Verify that $\|x\|_p$ is indeed a norm.

Example. (ℓ_∞-norm): $\|x\|_\infty = \max_{1 \leq i \leq n} |x_i|$

Example. (Frobenius-norm): Let $A \in \mathbb{C}^{m \times n}$. The Frobenius norm of A is $\|A\|_F := \sqrt{\sum_{ij} |a_{ij}|^2}$; that is, $\|A\|_F = \sqrt{\text{Tr}(A^*A)}$.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/18/21; Lecture 2)
Important example: Distance function

Claim. Let \mathcal{Y} be a convex set. Let $x \in \mathbb{R}^d$ be some point. The distance of x to the set \mathcal{Y} is defined as

$$
\text{dist}(x, \mathcal{Y}) := \inf_{y \in \mathcal{Y}} \|x - y\|.
$$

Proof. Observe that $\|x - y\|$ is jointly convex in (x, y) (Why?). Thus, the function $\text{dist}(x, \mathcal{Y})$ is a convex function of x using the partial minimization rule.
Matrix Norms: induced norm

Let $A \in \mathbb{R}^{m \times n}$, and let $\| \cdot \|$ be any vector norm. We define an induced matrix norm as

$$
\|A\| := \sup_{\|x\| \neq 0} \frac{\|Ax\|}{\|x\|}.
$$
Matrix Norms: induced norm

Let \(A \in \mathbb{R}^{m \times n} \), and let \(\| \cdot \| \) be any vector norm. We define an
induced matrix norm as

\[
\|A\| := \sup_{\|x\| \neq 0} \frac{\|Ax\|}{\|x\|}.
\]

Verify it is a norm

- Clearly, \(\|A\| = 0 \) iff \(A = 0 \) (definiteness)
- \(\|\alpha A\| = |\alpha| \|A\| \) (homogeneity)
- \(\|A + B\| = \sup \frac{\|(A+B)x\|}{\|x\|} \leq \sup \frac{\|Ax\|+\|Bx\|}{\|x\|} \leq \|A\| + \|B\| \).
Example. Let A be any matrix. Its **operator norm** is

$$
\|A\|_2 := \sup_{\|x\|_2 \neq 0} \frac{\|Ax\|_2}{\|x\|_2}.
$$

It can be shown that $\|A\|_2 = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value of A.
Example. Let A be any matrix. Its operator norm is

$$
\|A\|_2 := \sup_{\|x\|_2 \neq 0} \frac{\|Ax\|_2}{\|x\|_2}.
$$

It can be shown that $\|A\|_2 = \sigma_{\text{max}}(A)$, where σ_{max} is the largest singular value of A.

- **Warning!** Generally, largest eigenvalue **not** a norm!
Example. Let A be any matrix. Its **operator norm** is

$$
\|A\|_2 := \sup_{\|x\|_2 \neq 0} \frac{\|Ax\|_2}{\|x\|_2}.
$$

It can be shown that $\|A\|_2 = \sigma_{\text{max}}(A)$, where σ_{max} is the largest singular value of A.

- **Warning!** Generally, largest eigenvalue **not** a norm!
- $\|A\|_1$ and $\|A\|_\infty$—max-abs-column and max-abs-row sums.
Example. Let A be any matrix. Its **operator norm** is

$$
\|A\|_2 := \sup_{\|x\|_2 \neq 0} \frac{\|Ax\|_2}{\|x\|_2}.
$$

It can be shown that $\|A\|_2 = \sigma_{\text{max}}(A)$, where σ_{max} is the largest singular value of A.

- **Warning!** Generally, largest eigenvalue **not** a norm!
- $\|A\|_1$ and $\|A\|_{\infty}$—max-abs-column and max-abs-row sums.
- $\|A\|_p$ generally NP-Hard to compute for $p \not\in \{1, 2, \infty\}$
Example. Let A be any matrix. Its **operator norm** is

$$
\|A\|_2 := \sup_{\|x\|_2 \neq 0} \frac{\|Ax\|_2}{\|x\|_2}.
$$

It can be shown that $\|A\|_2 = \sigma_{\text{max}}(A)$, where σ_{max} is the largest singular value of A.

- **Warning!** Generally, largest eigenvalue **not** a norm!
- $\|A\|_1$ and $\|A\|_\infty$—max-abs-column and max-abs-row sums.
- $\|A\|_p$ generally NP-Hard to compute for $p \not\in \{1, 2, \infty\}$
- **Schatten p-norm:** ℓ_p-norm of vector of singular values.
Example. Let A be any matrix. Its **operator norm** is

$$
\|A\|_2 := \sup_{\|x\|_2 \neq 0} \frac{\|Ax\|_2}{\|x\|_2}.
$$

It can be shown that $\|A\|_2 = \sigma_{\text{max}}(A)$, where σ_{max} is the largest singular value of A.

- **Warning!** Generally, largest eigenvalue **not** a norm!
- $\|A\|_1$ and $\|A\|_\infty$—max-abs-column and max-abs-row sums.
- $\|A\|_p$ generally NP-Hard to compute for $p \not\in \{1, 2, \infty\}$
- **Schatten p-norm:** ℓ_p-norm of vector of singular values.
- **Exercise:** Let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$ be singular values of a matrix $A \in \mathbb{R}^{m \times n}$. Prove that

$$
\|A\|_{(k)} := \sum_{i=1}^{k} \sigma_i(A),
$$

is a norm; $1 \leq k \leq n$.
Def. Support function: \(\sigma_C(x) = \sup_{z \in C} z^T x \)
Support function and dual norms

Def. Support function: $\sigma_{C}(x) = \sup_{z \in C} z^T x$

Support function for the unit norm ball is called: dual norm.

Def. Let $\| \cdot \|$ be a norm on \mathbb{R}^d. Its **dual norm** is

$$\| u \|_* := \sup \{ u^T x | \| x \| \leq 1 \} = \sigma_{\| x \| \leq 1}(u).$$

Exercise: Verify that $\| u \|_*$ is a norm.
Support function and dual norms

Def. Support function: \(\sigma_C(x) = \sup_{z \in C} z^T x \)

Support function for the unit norm ball is called: dual norm.

Def. Let \(\| \cdot \| \) be a norm on \(\mathbb{R}^d \). Its dual norm is

\[
\| u \|_\ast := \sup \{ u^T x \mid \| x \| \leq 1 \} = \sigma_{\| x \| \leq 1}(u).
\]

Exercise: Verify that \(\| u \|_\ast \) is a norm.

Exercise: Let \(1/p + 1/q = 1 \), where \(p, q \geq 1 \). Show that \(\| \cdot \|_q \) is dual to \(\| \cdot \|_p \). In particular, the \(\ell_2 \)-norm is self-dual.

Exercise. Verify the generalized Hölder inequality \(u^T x \leq \| u \| \| x \|_\ast \) using the definition of dual norms.
Def. Let $K, L \subseteq \mathbb{R}^d$ be two sets. The **Hausdorff distance** between them is defined as

$$d_H(K, L) := \inf \{ \lambda \geq 0 \mid K \subseteq L + \lambda B(0, 1), L \subseteq K + \lambda B(0, 1) \}.$$

(See e.g., https://en.wikipedia.org/wiki/Hausdorff_distance)
Support functions and Hausdorff distance

Def. Let $K, L \subseteq \mathbb{R}^d$ be two sets. The **Hausdorff distance** between them is defined as

$$d_H(K, L) := \inf \{ \lambda \geq 0 \mid K \subseteq L + \lambda B(0, 1), L \subseteq K + \lambda B(0, 1) \}.$$

(See e.g., https://en.wikipedia.org/wiki/Hausdorff_distance)

Lemma Let K, L be convex bodies in \mathbb{R}^d. Then,

$$d_H(K, L) = \sup_{\|u\|_2 \leq 1} |\sigma_K(u) - \sigma_L(u)|.$$

Explore. Support functions are important in the subject of **convex geometry**; read up on them and explore a bit!
Fenchel conjugates

Convex analysis analog of Fourier transforms:

Def. Fenchel conjugate: \(f^*(y) := \sup_{x \in \text{dom} f} \langle x, y \rangle - f(x) \)
Convex analysis analog of Fourier transforms:

Def. Fenchel conjugate: \(f^*(y) := \sup_{x \in \text{dom}} f\langle x, y \rangle - f(x) \)

Observe: \(f^* \) is convex, even if \(f \) is not. If \(f \) differentiable, then \(f^*(\nabla f(x)) = \langle x, \nabla f(x) \rangle - f(x) \) (Fenchel-Legendre transform).
Fenchel conjugates

Convex analysis analog of Fourier transforms:

Def. Fenchel conjugate: \(f^*(y) := \sup_{x \in \text{dom} f} \langle x, y \rangle - f(x) \)

Observe: \(f^* \) is convex, even if \(f \) is not. If \(f \) differentiable, then \(f^*(\nabla f(x)) = \langle x, \nabla f(x) \rangle - f(x) \) (Fenchel-Legendre transform).

Fenchel-Young inequality: \(f^*(u) + f(x) \geq \langle u, x \rangle \)
Fenchel conjugates

Convex analysis analog of Fourier transforms:

Def. Fenchel conjugate:
\[f^*(y) := \sup_{x \in \text{dom} f} \langle x, y \rangle - f(x) \]

Observe: f^* is convex, even if f is not. If f differentiable, then
\[f^*(\nabla f(x)) = \langle x, \nabla f(x) \rangle - f(x) \] (Fenchel-Legendre transform).

Fenchel-Young inequality:
\[f^*(u) + f(x) \geq \langle u, x \rangle \]

Fenchel transforms satisfy the beautiful *duality* property:

Theorem. Let f be a closed convex function (i.e., epi $f = \{(x, t) \mid f(x) \leq t\}$ is a closed convex set; equivalently, f is lower semi-continuous). Then, $f^{**} = f$.
Fenchel conjugates

Convex analysis analog of Fourier transforms:

Def. Fenchel conjugate: \(f^*(y) := \sup_{x \in \text{dom} f} \langle x, y \rangle - f(x) \)

Observe: \(f^* \) is convex, even if \(f \) is not. If \(f \) differentiable, then \(f^*(\nabla f(x)) = \langle x, \nabla f(x) \rangle - f(x) \) (Fenchel-Legendre transform).

Fenchel-Young inequality: \(f^*(u) + f(x) \geq \langle u, x \rangle \)

Fenchel transforms satisfy the beautiful *duality* property:

Theorem. Let \(f \) be a closed convex function (i.e., \(\text{epi } f = \{ (x,t) \mid f(x) \leq t \} \) is a closed convex set; equivalently, \(f \) is lower semi-continuous). Then, \(f^{**} = f \).

Exercise: Show that \(f^* = f \iff f = \frac{1}{2} \| \cdot \|_2^2 \).
Example. $f(x) = ax + b$; then,

$$f^*(z) = \sup_x z x - (ax + b)$$
Example. \(f(x) = ax + b \); then,

\[
\begin{align*}
 f^*(z) &= \sup_x zx - (ax + b) \\
 &= \infty, \quad \text{if } (z - a) \neq 0.
\end{align*}
\]
Example. \(f(x) = ax + b; \) then,

\[
f^*(z) = \sup_x zx - (ax + b) = \infty, \quad \text{if} \ (z - a) \neq 0.
\]

Thus, \(\text{dom} f^* = \{a\} \), and \(f^*(a) = -b \).
Example. $f(x) = ax + b$; then,

$$f^*(z) = \sup_x z x - (ax + b)$$

$$= \infty, \quad \text{if } (z - a) \neq 0.$$

Thus, $\text{dom} f^* = \{a\}$, and $f^*(a) = -b$.

Example. Let $a \geq 0$, and set $f(x) = -\sqrt{a^2 - x^2}$ if $|x| \leq a$, and $+\infty$ otherwise. Then, $f^*(z) = a\sqrt{1 + z^2}$.
Fenchel conjugate – examples

Example. \(f(x) = ax + b; \) then,
\[
f^*(z) = \sup_x zx - (ax + b)
\]
\[
= \infty, \quad \text{if } (z - a) \neq 0.
\]

Thus, \(\text{dom } f^* = \{a\}, \) and \(f^*(a) = -b. \)

Example. Let \(a \geq 0, \) and set \(f(x) = -\sqrt{a^2 - x^2} \) if \(|x| \leq a, \) and \(+\infty \) otherwise. Then, \(f^*(z) = a\sqrt{1 + z^2}. \)

Example. \(f(x) = \frac{1}{2} x^T Ax, \) where \(A \succ 0. \) Then, \(f^*(z) = \frac{1}{2} z^T A^{-1} z. \)
Example. \(f(x) = ax + b; \) then,

\[
 f^*(z) = \sup_x z x - (ax + b) \\
 = \infty, \quad \text{if } (z - a) \neq 0.
\]

Thus, \(\text{dom} f^* = \{a\} \), and \(f^*(a) = -b \).

Example. Let \(a \geq 0 \), and set \(f(x) = -\sqrt{a^2 - x^2} \) if \(|x| \leq a \), and \(+\infty \) otherwise. Then, \(f^*(z) = a\sqrt{1 + z^2} \).

Example. \(f(x) = \frac{1}{2} x^T A x, \) where \(A \succ 0 \). Then, \(f^*(z) = \frac{1}{2} z^T A^{-1} z \).

Exercise: If \(f(x) = \max(0, 1 - x) \), then \(\text{dom} f^* \) is \([-1, 0]\), and within this domain, \(f^*(z) = z \).
Fenchel conjugate of norms

Recall: Dual norm

\[\|u\|_* := \sup \{ u^T x \mid \|x\| \leq 1 \} . \]
Fenchel conjugate of norms

Recall: Dual norm

\[\|u\|_* := \sup \{ u^T x \mid \|x\| \leq 1 \}. \]

Example. Let \(f(x) = \|x\| \). We have \(f^*(z) = \delta_{\|\cdot\|_* \leq 1}(z) \). Thus, conjugate of a norm is the *indicator of unit dual norm ball*.
Fenchel conjugate of norms

Recall: Dual norm

\[\|u\|_* := \sup \{ u^T x | \|x\| \leq 1 \} \].

Example. Let \(f(x) = \|x\| \). We have \(f^*(z) = \delta_{\|\cdot\|_* \leq 1}(z) \). Thus, conjugate of a norm is the **indicator of unit dual norm ball**.

Proof.

- Consider two cases: (i) \(\|z\|_* > 1 \); (ii) \(\|z\|_* \leq 1 \)
- (i): by def. of dual norm there is a \(u \) s.t. \(\|u\| \leq 1 \) and \(z^T u > 1 \)
- \(f^*(z) = \sup_x x^T z - f(x) \). **Rewrite** \(x = \alpha u \), and let \(\alpha \to \infty \)
- Then, \(z^T x - \|x\| = \alpha z^T u - \|\alpha u\| = \alpha (z^T u - \|u\|) \); \(\to \infty \)
- Case (ii): Since \(z^T x \leq \|x\| \|z\|_* \), \(x^T z - \|x\| \leq \|x\| (\|z\|_* - 1) \leq 0 \).
- \(x = 0 \) maximizes \(\|x\| (\|z\|_* - 1) \), hence \(f(z) = 0 \).
- Thus, \(f^*(z) = +\infty \) if (i), and 0 if (ii), completing the proof.
In Fourier analysis, we discover that convolution can be described via the product of Fourier transforms.

In convex analysis, the counterpart is infimal convolution $(f \Box g)(x) := \inf_{y \in X} f(y) + g(x - y)$, where both f and g are (suitable) convex functions.

Then, under appropriate hypotheses one has $(f \Box g)^* = f^* + g^*$, and $(f + g)^* = f^* \Box g^*$.
Fenchel conjugates – analogies

- In Fourier analysis, we discover that *convolution* can be described via the product of Fourier transforms.
- In convex analysis, the counterpart is *infimal convolution*

\[(f \square g)(x) := \inf_{y \in X} f(y) + g(x - y),\]

where both \(f\) and \(g\) are (suitable) convex functions.
In Fourier analysis, we discover that *convolution* can be described via the product of Fourier transforms.

In convex analysis, the counterpart is *infimal convolution*

\[
(f \boxplus g)(x) := \inf_{y \in X} f(y) + g(x - y),
\]

where both \(f\) and \(g\) are (suitable) convex functions.

Then, under appropriate hypotheses one has

\[
(f \boxplus g)^* = f^* + g^*, \quad \text{and} \quad (f + g)^* = f^* \boxplus g^*.
\]
In Fourier analysis, we discover that *convolution* can be described via the product of Fourier transforms.

In convex analysis, the counterpart is *infimal convolution*

\[(f \square g)(x) := \inf_{y \in X} f(y) + g(x - y),\]

where both \(f\) and \(g\) are (suitable) convex functions.

Then, under appropriate hypotheses one has

\[(f \square g)^* = f^* + g^*, \quad \text{and} \quad (f + g)^* = f^* \square g^*.\]

Challenge. Recall: \(f(x) = \frac{1}{2}x^T Ax (A \succ 0)\) then \(f^*(z) = \frac{1}{2}z^T A^{-1}z\). Let \(f_i(x) := x^T A_i x\) for \(A_i \succ 0\) and \(1 \leq i \leq n\). Consider,

\[F(z) := \sum_i f_i^*(z) - \sum_{i<j} (f_i + f_j)^*(z) + \cdots + (-1)^{n+1}(f_1 + \cdots + f_n)^*(z).\]

Prove or disprove that \(F\) is convex.
Fenchel conjugates are special

Let $\Gamma_0(\mathbb{R}^d)$ denote class of closed, convex functions on \mathbb{R}^d. The (Legendre)-Fenchel transform of $f \in \Gamma_0$ is defined as

$$\mathcal{L} : f \mapsto \sup_{y} \langle \cdot, y \rangle - f(y)$$

(so that $(\mathcal{L}f)(x) = f^*(x)$).

Theorem.

Let T be a transform that maps $\Gamma_0(\mathbb{R}^d)$ to $\Gamma_0(\mathbb{R}^d)$ and satisfies: (i) $T(Tf) = f$ (closure); and (ii) $f \leq g \Rightarrow Tf \geq Tg$.

Then, T must "essentially" be the Fenchel transform. More precisely, there exists $c \in \mathbb{R}$, $v \in \mathbb{R}^d$ and $B \in \text{GL}_n(\mathbb{R})$ such that

$$(Tf)(x) = (\mathcal{L}f)(Bx + v) + \langle v, x \rangle + c$$

Explore:

Study other classes instead of $\Gamma_0(\mathbb{R}^d)$ for which similar theorems can be proved.
Fenchel conjugates are special

Let $\Gamma_0(\mathbb{R}^d)$ denote class of closed, convex functions on \mathbb{R}^d. The (Legendre)-Fenchel transform of $f \in \Gamma_0$ is defined as

$$\mathcal{L} : f \mapsto \sup_y \langle \cdot, y \rangle - f(y)$$

(so that $(\mathcal{L}f)(x) = f^*(x)$).

Theorem. Let \mathcal{T} be a transform that maps $\Gamma_0 \rightarrow \Gamma_0$ and satisfies: (i) $\mathcal{T}(\mathcal{T}f) = f$ (closure); and (ii) $f \leq g \implies \mathcal{T}f \geq \mathcal{T}g$.

Then, \mathcal{T} must “essentially” be the Fenchel transform. More precisely, there exists $c \in \mathbb{R}, v \in \mathbb{R}^d$ and $B \in GL_n(\mathbb{R})$ such that

$$(\mathcal{T}f)(x) = (\mathcal{L}f)(Bx + v) + \langle v, x \rangle + c$$

Explore: Study other classes instead of $\Gamma_0(\mathbb{R}^d)$ for which similar theorems can be proved.
Subdifferentials

DO: (Read S. Boyd’s EE364B notes)
First order global underestimator

\[f(x) \geq f(y) + \langle \nabla f(y), x - y \rangle \]
First order global underestimator

\[f(x) \geq f(y) + \langle g, x - y \rangle \]
Subgradients

g_1, g_2, g_3 are subgradients at y
Subgradients – basic facts

- f is convex, differentiable: $\nabla f(y)$ the **unique** subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y) + \langle g, x - y \rangle$ is **globally** smaller than $f(x)$.
- Often **one** subgradient costs approx as much as $f(x)$
Subgradients – basic facts

- f is convex, differentiable: $\nabla f(y)$ the \textit{unique} subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y) + \langle g, x - y \rangle$ is \textit{globally} smaller than $f(x)$.
- Often \textit{one} subgradient costs approx as much as $f(x)$
- Determining \textit{all} subgradients at a given point — \textit{difficult}.
- Subgradient calculus: great achievement in convex analysis
Subgradients – basic facts

- f is convex, differentiable: $\nabla f(y)$ the unique subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y) + \langle g, x - y \rangle$ is globally smaller than $f(x)$.
- Often one subgradient costs approx as much as $f(x)$
- Determining all subgradients at a given point — difficult.
- Subgradient calculus: great achievement in convex analysis
- Without convexity, things become wild (e.g., chain rule fails!)
Subgradients – example

\[f(x) := \max(f_1(x), f_2(x)); \text{ both } f_1, f_2 \text{ convex, differentiable} \]
Subgradients – example

\[f(x) := \max(f_1(x), f_2(x)); \text{ both } f_1, f_2 \text{ convex, differentiable} \]
Subgradients – example

\[f(x) := \max(f_1(x), f_2(x)); \text{ both } f_1, f_2 \text{ convex, differentiable} \]
Subgradients – example

\(f(x) := \max(f_1(x), f_2(x)) \); both \(f_1, f_2 \) convex, differentiable
Subgradients – example

\[f(x) := \max(f_1(x), f_2(x)); \text{ both } f_1, f_2 \text{ convex, differentiable} \]
Subgradients – example

\[f(x) := \max(f_1(x), f_2(x)) ; \text{both } f_1, f_2 \text{ convex, differentiable} \]

\[f_1(x) \]
\[f_2(x) \]
\[f(x) \]

\[\star f_1(x) > f_2(x) : \text{unique subgradient of } f \text{ is } f'_1(x) \]
$$f(x) := \max(f_1(x), f_2(x));\ \text{both } f_1, f_2 \text{ convex, differentiable}$$

\[f(x) \]
\[f_1(x) \]
\[f_2(x) \]

$\blackstar f_1(x) > f_2(x)$: unique subgradient of f is $f_1'(x)$

$\blackstar f_1(x) < f_2(x)$: unique subgradient of f is $f_2'(x)$
Subgradients – example

\[f(x) := \max(f_1(x), f_2(x)); \text{ both } f_1, f_2 \text{ convex, differentiable} \]

\[f_1(x) \]
\[f_2(x) \]
\[f(x) \]

\[y \]

\[f_1(x) > f_2(x): \text{ unique subgradient of } f \text{ is } f_1'(x) \]

\[f_1(x) < f_2(x): \text{ unique subgradient of } f \text{ is } f_2'(x) \]

\[f_1(y) = f_2(y): \text{ subgradients, the segment } [f_1'(y), f_2'(y)] \]
\[(\text{imagine all supporting lines turning about point } y) \]
Def. A vector $g \in \mathbb{R}^n$ is called a subgradient at a point y, if for all $x \in \text{dom} f$, it holds that
\[f(x) \geq f(y) + \langle g, x - y \rangle \]

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y
Subgradients and the Subdifferential (Set)

Def. A vector \(g \in \mathbb{R}^n \) is called a **subgradient** at a point \(y \), if for all \(x \in \text{dom} \, f \), it holds that

\[
f(x) \geq f(y) + \langle g, x - y \rangle
\]

Def. The set of all subgradients at \(y \) denoted by \(\partial f(y) \). This set is called **subdifferential** of \(f \) at \(y \)

If \(f \) is convex, \(\partial f(x) \) is nice:

♣ If \(x \in \text{relative interior of} \, \text{dom} \, f \), then \(\partial f(x) \) nonempty
Def. A vector $g \in \mathbb{R}^n$ is called a subgradient at a point y, if for all $x \in \text{dom } f$, it holds that

$$f(x) \geq f(y) + \langle g, x - y \rangle$$

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y.

If f is convex, $\partial f(x)$ is nice:

♣ If $x \in$ relative interior of $\text{dom } f$, then $\partial f(x)$ nonempty

♣ If f differentiable at x, then $\partial f(x) = \{\nabla f(x)\}$
Subgradients and the Subdifferential (Set)

Def. A vector \(g \in \mathbb{R}^n \) is called a **subgradient** at a point \(y \), if for all \(x \in \text{dom} \ f \), it holds that

\[
f(x) \geq f(y) + \langle g, x - y \rangle
\]

Def. The set of all subgradients at \(y \) denoted by \(\partial f(y) \). This set is called **subdifferential** of \(f \) at \(y \)

If \(f \) is convex, \(\partial f(x) \) is nice:

- ✦ If \(x \in \text{relative interior of} \ \text{dom} \ f \), then \(\partial f(x) \) nonempty
- ✦ If \(f \) differentiable at \(x \), then \(\partial f(x) = \{ \nabla f(x) \} \)
- ♦ If \(\partial f(x) = \{ g \} \), then \(f \) is differentiable and \(g = \nabla f(x) \)
Subdifferential – example

\[f(x) = |x| \]
Subdifferential – example

\[f(x) = |x| \]
Subdifferential – example

\[f(x) = |x| \]

\[\partial f(x) = \begin{cases}
-1 & \text{if } x < 0, \\
+1 & \text{if } x > 0, \\
[-1, 1] & \text{if } x = 0.
\end{cases} \]
More examples

Example. $f(x) = \|x\|_2$. Then,

$$
\partial f(x) := \begin{cases}
\|x\|_2^{-1} x & x \neq 0, \\
\{z \mid \|z\|_2 \leq 1\} & x = 0.
\end{cases}
$$
More examples

Example. $f(x) = \|x\|_2$. Then,

\[
\partial f(x) := \begin{cases}
\|x\|_2^{-1}x & x \neq 0, \\
\{z \mid \|z\|_2 \leq 1\} & x = 0.
\end{cases}
\]

Proof.

\[
\begin{align*}
\|z\|_2 & \geq \|x\|_2 + \langle g, z - x \rangle \\
\|z\|_2 & \geq \langle g, z \rangle \\
\implies & \|g\|_2 \leq 1.
\end{align*}
\]
Calculus rules
If f and k are differentiable, we know that

- **Addition:** $\nabla (f + k)(x) = \nabla f(x) + \nabla k(x)$
- **Scaling:** $\nabla (\alpha f(x)) = \alpha \nabla f(x)$
Recall basic calculus

If f and k are differentiable, we know that

- **Addition**: $\nabla (f + k)(x) = \nabla f(x) + \nabla k(x)$
- **Scaling**: $\nabla (\alpha f(x)) = \alpha \nabla f(x)$

Chain rule

If $f : \mathbb{R}^n \to \mathbb{R}^m$, and $k : \mathbb{R}^m \to \mathbb{R}^p$. Let $h : \mathbb{R}^n \to \mathbb{R}^p$ be the composition $h(x) = (k \circ f)(x) = k(f(x))$. Then,

$$Dh(x) = Dk(f(x))Df(x).$$
Recall basic calculus

If f and k are differentiable, we know that

- **Addition:** $\nabla (f + k)(x) = \nabla f(x) + \nabla k(x)$
- **Scaling:** $\nabla (\alpha f(x)) = \alpha \nabla f(x)$

Chain rule

If $f : \mathbb{R}^n \to \mathbb{R}^m$, and $k : \mathbb{R}^m \to \mathbb{R}^p$. Let $h : \mathbb{R}^n \to \mathbb{R}^p$ be the composition $h(x) = (k \circ f)(x) = k(f(x))$. Then,

$$Dh(x) = Dk(f(x))Df(x).$$

Example. If $f : \mathbb{R}^n \to \mathbb{R}$ and $k : \mathbb{R} \to \mathbb{R}$, then using the fact that $\nabla h(x) = [Dh(x)]^T$, we obtain

$$\nabla h(x) = k'(f(x))\nabla f(x).$$
Finding one subgradient within $\partial f(x)$
Subgradient calculus

♠ Finding one subgradient within $\partial f(x)$
♠ Determining entire subdifferential $\partial f(x)$ at a point x
Subgradient calculus

♠ Finding one subgradient within $\partial f(x)$
♠ Determining entire subdifferential $\partial f(x)$ at a point x
♠ Do we have the chain rule?
Subgradient calculus

♠ Finding one subgradient within $\partial f(x)$
♠ Determining entire subdifferential $\partial f(x)$ at a point x
♠ Do we have the chain rule?
♠ Usually not easy!
If f is differentiable, $\partial f(x) = \{\nabla f(x)\}$
If \(f \) is differentiable, \(\partial f(x) = \{ \nabla f(x) \} \)

Scaling \(\alpha > 0, \partial(\alpha f)(x) = \alpha \partial f(x) = \{ \alpha g \mid g \in \partial f(x) \} \)
Subgradient calculus

If f is differentiable, $\partial f(x) = \{\nabla f(x)\}$

Scaling $\alpha > 0$, $\partial (\alpha f)(x) = \alpha \partial f(x) = \{\alpha g \mid g \in \partial f(x)\}$

Addition*: $\partial (f + k)(x) = \partial f(x) + \partial k(x)$ (set addition)
Subgradient calculus

- If f is differentiable, $\partial f(x) = \{\nabla f(x)\}$

- **Scaling** $\alpha > 0$, $\partial (\alpha f)(x) = \alpha \partial f(x) = \{\alpha g \mid g \in \partial f(x)\}$

- **Addition***: $\partial (f + k)(x) = \partial f(x) + \partial k(x)$ (set addition)

- **Chain rule***: Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $f : \mathbb{R}^m \to \mathbb{R}$, and $h : \mathbb{R}^n \to \mathbb{R}$ be given by $h(x) = f(Ax + b)$. Then,

$$\partial h(x) = A^T \partial f(Ax + b).$$
Subgradient calculus

- If f is differentiable, $\partial f(x) = \{\nabla f(x)\}$
- **Scaling** $\alpha > 0$, $\partial (\alpha f)(x) = \alpha \partial f(x) = \{\alpha g \mid g \in \partial f(x)\}$
- **Addition***: $\partial (f + k)(x) = \partial f(x) + \partial k(x)$ (set addition)
- **Chain rule***: Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $f : \mathbb{R}^m \to \mathbb{R}$, and $h : \mathbb{R}^n \to \mathbb{R}$ be given by $h(x) = f(Ax + b)$. Then,
 \[
 \partial h(x) = A^T \partial f(Ax + b).
 \]
- **Chain rule***: $h(x) = f \circ k$, where $k : X \to Y$ is diff.
 \[
 \partial h(x) = \partial f(k(x)) \circ Dk(x) = [Dk(x)]^T \partial f(k(x))
 \]
Subgradient calculus

- If f is differentiable, $\partial f(x) = \{\nabla f(x)\}$
- **Scaling** $\alpha > 0$, $\partial (\alpha f)(x) = \alpha \partial f(x) = \{\alpha g \mid g \in \partial f(x)\}$
- **Addition***: $\partial (f + k)(x) = \partial f(x) + \partial k(x)$ (set addition)
- **Chain rule***: Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, f : \mathbb{R}^m \to \mathbb{R}$, and $h : \mathbb{R}^n \to \mathbb{R}$ be given by $h(x) = f(Ax + b)$. Then,
 $$\partial h(x) = A^T \partial f(Ax + b).$$
- **Chain rule***: $h(x) = f \circ k$, where $k : X \to Y$ is diff.
 $$\partial h(x) = \partial f(k(x)) \circ Dk(x) = [Dk(x)]^T \partial f(k(x))$$
- **Max function***: If $f(x) := \max_{1 \leq i \leq m} f_i(x)$, then
 $$\partial f(x) = \text{conv} \bigcup \{\partial f_i(x) \mid f_i(x) = f(x)\},$$
 convex hull over subdifferentials of “active” functions at x
Subgradient calculus

- If \(f \) is differentiable, \(\partial f(x) = \{ \nabla f(x) \} \)
- Scaling \(\alpha > 0 \), \(\partial (\alpha f)(x) = \alpha \partial f(x) = \{ \alpha g \mid g \in \partial f(x) \} \)
- Addition*: \(\partial (f + k)(x) = \partial f(x) + \partial k(x) \) (set addition)
- Chain rule*: Let \(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, f : \mathbb{R}^m \to \mathbb{R} \), and \(h : \mathbb{R}^n \to \mathbb{R} \) be given by \(h(x) = f(Ax + b) \). Then,
 \[
 \partial h(x) = A^T \partial f(Ax + b).
 \]
- Chain rule*: \(h(x) = f \circ k \), where \(k : X \to Y \) is diff.
 \[
 \partial h(x) = \partial f(k(x)) \circ Dk(x) = [Dk(x)]^T \partial f(k(x))
 \]
- Max function*: If \(f(x) := \max_{1 \leq i \leq m} f_i(x) \), then
 \[
 \partial f(x) = \text{conv} \bigcup \{ \partial f_i(x) \mid f_i(x) = f(x) \},
 \]
 convex hull over subdifferentials of “active” functions at \(x \)
- Conjugation: \(z \in \partial f(x) \) if and only if \(x \in \partial f^*(z) \)
Failure of addition rule

It can happen that $\partial (f_1 + f_2) \neq \partial f_1 + \partial f_2$
Failure of addition rule

It can happen that $\partial(f_1 + f_2) \neq \partial f_1 + \partial f_2$

Example. Define f_1 and f_2 by

$$f_1(x) := \begin{cases}
-2\sqrt{x} & \text{if } x \geq 0, \\
+\infty & \text{if } x < 0,
\end{cases} \quad \text{and} \quad f_2(x) := \begin{cases}
+\infty & \text{if } x > 0, \\
-2\sqrt{-x} & \text{if } x \leq 0.
\end{cases}$$

Then, $f = f_1 + f_2 = 1_0$, whereby $\partial f(0) = \mathbb{R}$

But $\partial f_1(0) = \partial f_2(0) = \emptyset.$
Failure of addition rule

It can happen that $\partial(f_1 + f_2) \neq \partial f_1 + \partial f_2$

Example. Define f_1 and f_2 by

$$f_1(x) := \begin{cases}
-2\sqrt{x} & \text{if } x \geq 0, \\
+\infty & \text{if } x < 0,
\end{cases}$$

and $f_2(x) := \begin{cases}
+\infty & \text{if } x > 0, \\
-2\sqrt{-x} & \text{if } x \leq 0.
\end{cases}$

Then, $f = f_1 + f_2 = 1_0$, whereby $\partial f(0) = \mathbb{R}$
But $\partial f_1(0) = \partial f_2(0) = \emptyset$.

However, $\partial f_1(x) + \partial f_2(x) \subset \partial(f_1 + f_2)(x)$ always holds.

Exercise: Prove the above statement.
Example. $f(x) = \|x\|_\infty$. Then,

$$\partial f(0) = \text{conv} \{\pm e_1, \ldots, \pm e_n\},$$

where e_i is i-th canonical basis vector.
Subdifferential: two examples

Example. $f(x) = \|x\|_\infty$. Then,

$$\partial f(0) = \text{conv} \{ \pm e_1, \ldots, \pm e_n \},$$

where e_i is i-th canonical basis vector

To prove, notice that $f(x) = \max_{1 \leq i \leq n} \{|e_i^T x|\}$; apply max rule.
Example. $f(x) = \|x\|_\infty$. Then,

$$\partial f(0) = \text{conv} \left\{ \pm e_1, \ldots, \pm e_n \right\},$$

where e_i is i-th canonical basis vector

To prove, notice that $f(x) = \max_{1 \leq i \leq n} \{ |e_i^T x| \}$; apply max rule.

Example. Let f_1, f_2, \ldots, f_m be differentiable and convex. Let

$$f(x) := \max(f_1(x), \ldots, f_m(x))$$

$$\partial f(x) = \text{co} \left\{ \nabla f_i(x) \mid f_i(x) = f(x) \right\}$$
Computing subgradients
Subgradient for pointwise sup

\[f(x) := \sup_{y \in Y} h(x, y) \]

Getting \(\partial f(x) \) is complicated!
Subgradient for pointwise sup

\[f(x) := \sup_{y \in \mathcal{Y}} h(x, y) \]

Getting \(\partial f(x) \) is complicated!

Simple way to obtain some \(g \in \partial f(x) \):
Subgradient for pointwise sup

\[f(x) := \sup_{y \in \mathcal{Y}} h(x, y) \]

Getting \(\partial f(x) \) is complicated!

Simple way to obtain some \(g \in \partial f(x) \):

- Pick any \(y^* \) for which \(h(x, y^*) = f(x) \)
Subgradient for pointwise sup

\[f(x) := \sup_{y \in \mathcal{Y}} h(x, y) \]

Getting \(\partial f(x) \) is complicated!

Simple way to obtain some \(g \in \partial f(x) \):

- Pick any \(y^* \) for which \(h(x, y^*) = f(x) \)
- Pick any subgradient \(g \in \partial h(x, y^*) \)
Subgradient for pointwise sup

\[f(x) := \sup_{y \in \mathcal{Y}} h(x, y) \]

Getting $\partial f(x)$ is complicated!

Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^* for which $h(x, y^*) = f(x)$
- Pick any subgradient $g \in \partial h(x, y^*)$
- This $g \in \partial f(x)$
Subgradient for pointwise sup

\[f(x) := \sup_{y \in \mathcal{Y}} h(x, y) \]

Getting \(\partial f(x) \) is complicated!

Simple way to obtain some \(g \in \partial f(x) \):

- Pick any \(y^* \) for which \(h(x, y^*) = f(x) \)
- Pick any subgradient \(g \in \partial h(x, y^*) \)
- This \(g \in \partial f(x) \)

\[
\begin{align*}
 h(z, y^*) & \geq h(x, y^*) + g^T (z - x) \\
 h(z, y^*) & \geq f(x) + g^T (z - x)
\end{align*}
\]
Subgradient for pointwise sup

\[f(x) := \sup_{y \in \mathcal{Y}} h(x, y) \]

Getting \(\partial f(x) \) is complicated!

Simple way to obtain some \(g \in \partial f(x) \):

\> Pick any \(y^* \) for which \(h(x, y^*) = f(x) \)

\> Pick any subgradient \(g \in \partial h(x, y^*) \)

\> This \(g \in \partial f(x) \)

\[
\begin{align*}
 h(z, y^*) & \geq h(x, y^*) + g^T(z - x) \\
 h(z, y^*) & \geq f(x) + g^T(z - x) \\
 f(z) & \geq h(z, y^*) \quad \text{(because of sup)} \\
 f(z) & \geq f(x) + g^T(z - x).
\end{align*}
\]
Example

Suppose $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$. And

$$f(x) := \max_{1 \leq i \leq n} (a_i^T x + b_i).$$

This f a max (in fact, over a finite number of terms)
Example

Suppose \(a_i \in \mathbb{R}^n \) and \(b_i \in \mathbb{R} \). And

\[
f(x) := \max_{1 \leq i \leq n} (a_i^T x + b_i).
\]

This \(f \) a max (in fact, over a finite number of terms)

| ➤ Suppose \(f(x) = a_k^T x + b_k \) for some index \(k \) |
Example

Suppose $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$. And

$$f(x) := \max_{1 \leq i \leq n} (a_i^T x + b_i).$$

This f a max (in fact, over a finite number of terms)

- Suppose $f(x) = a_k^T x + b_k$ for some index k
- Here $f(x; y) = f_k(x) = a_k^T x + b_k$, and $\partial f_k(x) = \{\nabla f_k(x)\}$
Suppose $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$. And

$$f(x) := \max_{1 \leq i \leq n} (a_i^T x + b_i).$$

This f a max (in fact, over a finite number of terms)

- Suppose $f(x) = a_k^T x + b_k$ for some index k
- Here $f(x; y) = f_k(x) = a_k^T x + b_k$, and $\partial f_k(x) = \{\nabla f_k(x)\}$
- Hence, $a_k \in \partial f(x)$ works!
Suppose $f = \mathbb{E}f(x, u)$, where f is convex in x for each u (an r.v.)

$$f(x) := \int f(x, u)p(u)du$$
Subgradient of expectation

Suppose $f = \mathbf{E} f(x, u)$, where f is convex in x for each u (an r.v.)

$$f(x) := \int f(x, u)p(u)du$$

- For each u choose any $g(x, u) \in \partial_x f(x, u)$
Subgradient of expectation

Suppose $f = \mathbb{E} f(x, u)$, where f is convex in x for each u (an r.v.)

$$f(x) := \int f(x, u)p(u)du$$

- For each u choose any $g(x, u) \in \partial_x f(x, u)$
- Then, $g = \int g(x, u)p(u)du = \mathbb{E}g(x, u) \in \partial f(x)$

Subgradient of composition

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ is convex and increasing; each f_i is convex

$$f(x) := h(f_1(x), f_2(x), \ldots, f_n(x)).$$
Subgradient of composition

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and increasing; each f_i cvx.

$$f(x) := h(f_1(x), f_2(x), \ldots, f_n(x)).$$

We can find a vector $g \in \partial f(x)$ as follows:

\[g_i \in \partial f_i(x) \]
\[u \in \partial h(f_1(x), \ldots, f_n(x)) \]
\[g = u_1 g_1 + u_2 g_2 + \cdots + u_n g_n; \]
\[g \in \partial f(x) \]

Exercise: Verify $g \in \partial f(x)$ by showing $f(z) \geq f(x) + g^T(z - x)$.
Subgradient of composition

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and increasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \ldots, f_n(x)).$$

We can find a vector $g \in \partial f(x)$ as follows:

- For $i = 1$ to n, compute $g_i \in \partial f_i(x)$
Suppose $h : \mathbb{R}^n \to \mathbb{R}$ is convex and increasing; each f_i is convex

$$f(x) := h(f_1(x), f_2(x), \ldots, f_n(x)).$$

We can find a vector $g \in \partial f(x)$ as follows:

- For $i = 1$ to n, compute $g_i \in \partial f_i(x)$
- Compute $u \in \partial h(f_1(x), \ldots, f_n(x))$
Suppose $h : \mathbb{R}^n \to \mathbb{R}$ is convex and increasing; each f_i is convex.

Define $f(x) := h(f_1(x), f_2(x), \ldots, f_n(x))$.

We can find a vector $g \in \partial f(x)$ as follows:

- For $i = 1$ to n, compute $g_i \in \partial f_i(x)$.
- Compute $u \in \partial h(f_1(x), \ldots, f_n(x))$.
- Set $g = u_1 g_1 + u_2 g_2 + \cdots + u_n g_n$; this $g \in \partial f(x)$.

Compare with $\nabla f(x) = J \nabla h(x)$, where J is the gradient matrix of $f_i(x)$.
Suppose \(h : \mathbb{R}^n \rightarrow \mathbb{R} \) cvx and increasing; each \(f_i \) cvx

\[
f(x) := h(f_1(x), f_2(x), \ldots, f_n(x)).
\]

We can find a vector \(g \in \partial f(x) \) as follows:

- For \(i = 1 \) to \(n \), compute \(g_i \in \partial f_i(x) \)
- Compute \(u \in \partial h(f_1(x), \ldots, f_n(x)) \)
- Set \(g = u_1g_1 + u_2g_2 + \cdots + u_ng_n \); this \(g \in \partial f(x) \)
- Compare with \(\nabla f(x) = J\nabla h(x) \), where \(J \) matrix of \(\nabla f_i(x) \)
Subgradient of composition

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and increasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \ldots, f_n(x)).$$

We can find a vector $g \in \partial f(x)$ as follows:

- For $i = 1$ to n, compute $g_i \in \partial f_i(x)$
- Compute $u \in \partial h(f_1(x), \ldots, f_n(x))$
- Set $g = u_1 g_1 + u_2 g_2 + \cdots + u_n g_n$; this $g \in \partial f(x)$
- Compare with $\nabla f(x) = J \nabla h(x)$, where J matrix of $\nabla f_i(x)$

Exercise: Verify $g \in \partial f(x)$ by showing $f(z) \geq f(x) + g^T(z - x)$