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We consider projected Newton-type methods for solving large-scale optimiza-

tion problems arising in machine learning and related fields. We first intro-

duce an algorithmic framework for projected Newton-type methods by review-

ing a canonical projected (quasi-)Newton method. This method, while concep-

tually pleasing, has a high computation cost per iteration. Thus, we discuss

two variants that are more scalable, namely, two-metric projection and in-

exact projection methods. Finally, we show how to apply the Newton-type

framework to handle non-smooth objectives. Examples are provided through-

out the chapter to illustrate machine learning applications of our framework.

11.1 Introduction

We study Newton-type methods for solving the optimization problem

min
x

f(x) + r(x), subject to x ∈ Ω, (1)
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where f : Rn → R is twice continuously differentiable and convex; r : Rn →
R is continuous and convex but not necessarily differentiable everywhere;

while Ω is a “simple” convex constraint-set. This formulation is general

and captures numerous problems in machine learning, especially where f

corresponds to a loss, and r to a regularizer. Let us, however, defer concrete

examples of (1) until we have developed some theoretical background.

We propose to solve (1) via Newton-type methods, a certain class of

second-order methods that are known to often work well for unconstrained

problems. For constrained problems too, we may consider Newton-type

methods that, akin to their unconstrained versions, iteratively minimize a

quadratic approximation to the objective, this time subject to constraints.

This idea dates back to Levitin and Polyak (1966, §7), and it is referred to

as a projected Newton method.

Projected Newton methods for optimization over convex sets share many

of the appealing properties of their unconstrained counterparts. For example,

their iterations are guaranteed to improve the objective function for a small

enough step size; global convergence can be shown under a variant of the

Armijo condition; and rapid local convergence rates can be shown around

local minima satisfying strong convexity (Bertsekas, 1999). In a similar vein,

we may consider projected quasi-Newton methods, where we interpolate

differences in parameter and gradient values to approximate the Hessian

matrix. The resulting Newton-type methods are the subject of this chapter,

and we will particularly focus on the limited-memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) quasi-Newton approximation. The main appeal

of the L-BFGS approximation is its linear-time iteration complexity, and its

strong empirical performance on a variety of problems.

Summary of remainder. We first restrict ourselves to smooth optimiza-

tion, where r(x) = 0. For this setting, we describe projected Newton-type

methods (§11.2), covering basic implementation issues such as Hessian ap-

proximation and line-search. Then, we describe two-metric projection meth-

ods (§11.3), followed by inexact (or truncated) projected-Newton methods

(§11.4). Finally, we discuss the nonsmooth setting, where r(x) 6= 0, for which

we describe two Newton-type methods (§11.5).

11.2 Projected Newton-type Methods

Projected Newton-type methods optimize their objective iteratively. At

iteration k, they first approximate the objective function around the current
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iterate xk by the quadratic model

Qk(x, α) , f(xk) + (x− xk)T∇f(xk) +
1

2α
(x− xk)THk(x− xk). (2)

This model is parametrized by a positive stepsize α, and it uses a positive-

definite matrix Hk to approximate the Hessian ∇2f(xk). To generate the

next iterate that decreases the objective while remaining feasible, the meth-

ods minimize the quadratic model (2) over the (convex ) constraint-set Ω.

Thus, for a fixed α > 0, they compute the unique element

x̄kα = argmin
x∈Ω

Qk(x, α), (3)

which is then used to obtain the new iterate by simply setting

xk+1 ← xk + β(x̄kα − xk), (4)

where β ∈ (0, 1] is another stepsize. To ensure a sufficient decrease in

the objective value, one typically begins by setting α = β = 1, and then

decreases one of them until xk+1 satisfies the following Armijo condition1

f(xk+1) ≤ f(xk) + ν〈∇f(xk), xk+1 − xk〉, ν ∈ (0, 1). (5)

We collect the above described steps into Algorithm 11.1, which we present

as the general framework for projected Newton-type methods.

Algorithm 11.1 A projected Newton-type method.

Given x0 ∈ Ω, H0 � 0
for k = 0, . . . , until some stopping criteria met do

Step I: Build Qk(x, α) using (2)
repeat

Step IIa: Minimize Qk(x, α) over Ω
Step IIb: Update xk+1 ← xk + β(x̄kα − xk)
Step III: Update α and/or β

until descent condition (5) is satisfied
end for

Convergence properties of various forms of this method are discussed, for

example, in Bertsekas (1999, §2.3). In particular, convergence to a stationary

point can be shown under the assumption that the eigenvalues of Hk are

bounded between two positive constants. Also, if x∗ is a minimizer of f(x)

over Ω satisfying certain conditions, and once xk is sufficiently close to x∗,

1. A typical value for the sufficient decrease parameter ν is 10−4.
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then α = 1 and β = 1 are accepted as stepsizes and the sequence ||xk −x∗||
converges to zero at a superlinear rate.

Algorithm 11.1 is conceptually simple, and thus appealing. It can, however

have numerous variants depending on how each step is implemented. For

example, in Step I, which particular quadratic model is used; in Step II,

how we minimize the model function; and in Step III, how we compute the

stepsizes α and β. For each of these three steps one has multiple possible

choices, and consequently, different combinations lead to methods of differing

character. We describe some popular implementation choices below.

11.2.1 Building a quadratic model

When a positive-definite Hessian is readily available, we can simply set

Hk = ∇2f(xk). By doing so, the quadratic model (2) becomes merely

the approximation obtained via a second-order Taylor expansion of f . This

model leads to computation of an exact Newton-step at each iteration. At the

other extreme, if we select Hk = I, the identity matrix of appropriate size,

then the search direction of the resulting method reduces to the negative

gradient, essentially yielding the projected gradient method. These two

strategies often contrast each other in terms of computing a search (descent)

direction: the Newton-step is considered one of the most sophisticated, while

the gradient-step is regarded as one of the simplest. In cases where we can

efficiently compute the Euclidean projection operator, projected gradient

steps have a low per-iteration computational cost. However, this benefit

comes at the expense of linear convergence speed. The Newton-step is

usually more expensive; Step IIb will typically be costly to solve even if

we can efficiently compute the Euclidean projection onto the constraint

set. However, the more expensive Newton-step generally enjoys a local

superlinear convergence rate.

Despite its theoretical advantages, an exact Newton-step often is resource

intensive, especially when computing the exact Hessian is expensive. To cir-

cumvent some of the associated computational issues, one usually approxi-

mates the Hessian: this idea underlies the well-known quasi-Newton approx-

imation. Let us therefore briefly revisit the BFGS update that approximates

the exact Hessian.

BFGS update. There exist several approximations to the Hessian: e.g., Powell-

Symmetric-Broyden (PSB), Davidson-Fletcher-Powell (DFP), or the Broyden-

Fletcher-Goldfarb-Shanno (BFGS). We focus on BFGS, as it is believed to be

the most effective in general (Gill et al., 1981; Bertsekas, 1999).
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First, define the difference vectors g and s as follows:

g = ∇f(xk+1)−∇f(xk), and s = xk+1 − xk.

Now, assume we already haveHk, the current approximation to the Hessian.

Then, the BFGS update adds a rank-two correction to Hk to obtain

Hk+1 = Hk − H
kssTHk

sTHks
+
ggT

sTg
. (6)

We can plugHk+1 into (2) to obtain an updated model Qk+1. But depending

on the implementation of subsequent steps (3) and (4), it might be more

convenient and computationally efficient to update an estimate to the inverse

ofHk instead. For this case, we can apply the Sherman-Morrison-Woodbury

formula to (6), thus obtaining the update

Sk+1 = Sk +

(
1 +

gTSkg

sTg

)
ssT

sTg
− (SkgsT + sgTSk)

sTg
, (7)

where Sk is the inverse of Hk, also known as the gradient scaling matrix.

Limited memory BFGS update. Though the BFGS update may greatly

relieve the burden of Hessian computation, it still require the same storage:

O(n2) for dense Hk or Sk, which is troublesome for large-scale problems.

This difficulty is addressed by the limited memory BFGS (L-BFGS) update,

where, instead of using full matrices Hk and Sk, a small number of vectors,

say m, are used to approximate the Hessian or its inverse. The standard

L-BFGS approach (Nocedal, 1980) can be implemented using the following

formula (Nocedal and Wright, 2000)

Sk =
sTk−1gk−1

gTk−1gk−1
V̄ T
k−M V̄k−M + ρk−M V̄

T
k−M+1sk−Ms

T
k−M V̄k−M+1

+ ρk−M+1V̄
T
k−M+2sk−M+1s

T
k−M+1V̄k−M+2

+ · · ·
+ ρk−1sk−1s

T
k−1,

(8)

for k ≥ 1; the scalars ρk, and matrices V̄k−M are defined by

ρk = 1/(sTk gk), V̄k−M = [Vk−M · · ·Vk−1] , and Vk = I − ρkskgTk .

The L-BFGS approximation only requires O(mn) storage; moreover, multi-

plication of Sk by a vector can also be performed at this cost.

For both BFGS and L-BFGS, a choice that can significantly impact perfor-

mance is the initial approximation H0. A typical strategy to select H0 is
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to first set it to the negative gradient direction on the first iteration, and

then to set H0 = (gTg)/(gTs)I on the next iteration. This choice was pro-

posed by Shanno and Phua (1978) to optimize the condition number of the

approximation. In the L-BFGS method we can reset H0 using this formula

after each iteration (Nocedal and Wright, 2000, §7.2). With this strategy,

the unit stepsizes of α = 1 and β = 1 are typically accepted, which may

remove the need for a line search on most iterations.

Provided that H0 is positive-definite, the subsequent (implicit) Hessian

approximations Hk generated by the L-BFGS update are guaranteed to be

positive-definite as long as gTs is positive (Nocedal and Wright, 2000, §6.1).

This positivity is guaranteed if f(x) is strongly-convex, but when f(x) is

not strongly-convex a more advanced strategy is required, see e.g., (Nocedal

and Wright, 2000, §18.3).

11.2.2 Solving the subproblem

With our quadratic approximation Qk(x, α) in hand, the next step is to solve

the subproblem (3). For α 6= 0, simple rearrangement shows that2

x̄kα = argmin
x∈Ω

Qk(x, α) = argmin
x∈Ω

1

2
||x− yk||2Hk , (9)

where ‖x‖Hk is defined by the norm
√
xTHkx, and yk is the unconstrained

Newton step: yk = xk − α[Hk]−1∇f(xk). In words, x̄kα is obtained by

projecting the Newton-step onto the constraint-set Ω, where projection is

with respect to the metric defined by the Hessian approximation Hk.

One major drawback of (9) is that it can be computationally challenging,

even when Ω has relatively simple structure. To ease the computational

burden, instead of using the metric defined by Hk, we could compute the

projection under the standard Euclidean norm, while slightly modifying the

Newton step to ensure convergence. This is the subject of §11.3. Alternately,

in §11.4 we consider computing an approximate solution to (9) itself.

Remark: If we replace Hk by I both as the projection metric, as well as in

the Newton step, we recover gradient projection methods.

11.2.3 Computing the stepsizes

Consider the stepsizes α and β in (3) and (4). Generally speaking, any

positive α and β that generate xk+1 satisfying the descent-condition (5) are

2. If we use Sk, the inverse of Hessian, then x̄kα may be equivalently obtained by solving
argminx∈Ω

1
2
||x− (xk − αSk∇f(xk))||2[Sk]−1 = argminx∈Ω

1
2
||x− yk||2[Sk]−1 .
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acceptable. Practical choices are discussed below.

Backtracking. Suppose we fix α = 1 for all k, and let dk = x̄k1 −xk. Then

we obtain the following update:

xk+1 ← xk + βdk.

To select β, we can simply start with β = 1 and iteratively decrease β until

the resulting xk+1 satisfies (5).3 More formally, we set β = τ · σm for some

τ > 0 and σ ∈ (0, 1), where m ≥ 0 is the first integer that satisfies

f(xk+1) ≤ f(xk) + τ · σm∇f(xk)(xk+1 − xk).

Several strategies are available to reduce the number of backtracking itera-

tions. For example, rather than simply dividing the stepsize by a constant

we can use information collected about the function during the line search

to make a more intelligent choice. For example, if some trial value of β is

not accepted then we can set the next β to the minimum of the quadratic

polynomial that has a value of f(xk) at zero, f(xk+βdk) at β, and a slope of

∇f(xk)Tdk at zero (Nocedal and Wright, 2000, §3.5). This choice gives the

optimal stepsize if f(x) is a quadratic function, and often drastically reduces

the number of backtracking iterations needed. For some functions, quadratic

interpolation can also be used to give a more intelligent choice than β = 1

for the first trial value of β, while cubic interpolation can be used if we have

tested more than one value of β or if we compute ∇f(xk +βdk) for the trial

values of β (Nocedal and Wright, 2000, §3.5).

Backtracking (Armijo) along projection arc (Bertsekas, 1999) Alterna-

tively, we can set β = 1 for all k to obtain

xk+1 ← x̄kα,

and then determine an α satisfying (5). Similar to simple backtracking, we

compute α = s · σm for some s, τ > 0, and σ ∈ (0, 1), where m ≥ 0 is the

first integer that satisfies

f(x̄ks·σm) ≤ f(xk) + τ∇f(xk)(x̄ks·σm − xk).

Unlike simple backtracking that searches along a line segment as β varies,

this strategy searches along a potentially non-linear path as α varies. Be-

cause of this, polynomial interpolation to select trial values of α is more

3. Also known as Armijo backtracking along feasible direction.
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tenuous than for simple backtracking, but on many problems polynomial in-

terpolation still significantly decreases the number of trial values evaluated.

This stepsize computation might be more involved when computing pro-

jections onto Ω is expensive, since it requires solving an optimization problem

to compute x̄kα for each trial value of α. However, it can still be appealing

because it is more likely to yield iterates that lie on the boundaries of the

constraints. This property is especially useful when the boundaries of the

constraints represent a solution of interest, e.g., sparse solutions with the

constraint set Ω = Rn+.

In the sequel, we consider a few specific instantiations of the general frame-

work introduced in this section. Specifically, we first consider two-metric pro-

jection methods for the specific case of bound-constrained problems (§11.3).

Subsequently, we consider inexact projected-Newton methods for optimiza-

tion over more general simple convex sets (§11.4). Finally, we explore the

versatility of the framework by extending it to problems with non-smooth

objective functions (§11.5).

11.3 Two-metric Projection Methods

As mentioned earlier, computing the projection with respect to a quadratic

norm defined by Hk can be computationally challenging. However, we often

encounter problems with simple convex domains, onto which we can effi-

ciently compute Euclidean projections. For optimization over such domains,

we might therefore prefer projecting the Newton-step under the Euclidean

norm. Indeed, this choice is made by the well-known two-metric projection

method, named so, because it uses a different matrices (metrics) for scaling

the gradient and for computing the projection.

In two-metric projection algorithms, we can benefit from low iteration

complexity if we use L-BFGS approximations. However, some problems still

persist: the “obvious” procedure with an unmodified Newton-step may not

improve on the objective function, even for an arbitrarily small positive

stepsize. Nevertheless, there are many cases where one can derive a two-

metric projection method that can dodge this drawback without giving

up the attractive properties of its unconstrained counterpart. A particular

example is Bertsekas’ projected-Newton method (Bertsekas, 1982), and we

discuss it below for the case where Ω consists of bound constraints.

The projected-Newton method may be viewed in light of Algorithm 11.1.

Specifically, it takes the Hessian ∇2f(xk) and modifies its inverse so that

the gradient scaling matrix Sk has a special structure. It subsequently
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invokes orthogonal projection in Step II, and then in Step III, it computes

its stepsize using backtracking along the projection arc. The key variation

from Algorithm 11.1 lies in how to modify the inverse Hessian to obtain a

valid gradient scaling; the details follow below.

11.3.1 Bound constrained smooth convex problems

Consider the following special case of (1)

min
x∈Rn

f(x), subject to l ≤ x ≤ u, (10)

where l and u are fixed vectors, and inequalities are taken componentwise

(which can be set to ∞ or −∞ if the variables are unbounded). The

function f is assumed to be convex and twice continuously differentiable.

Such bound-constrained problems arise when we have natural restrictions

(e.g., nonnegativity) on the variables, or as Lagrangian duals of problems

with convex inequality constraints. For bound-constrained problems the

projection under the Euclidean norm is the standard orthogonal projection

obtained by taking componentwise medians among li, ui and xi,

[P(x)]i , mid{li, xi, ui}.

At each iteration, we partition the variables into two groups: free and

restricted. Restricted variables are defined as a particular subset of the

variables close to their bounds, based on the sign of the corresponding

components in the gradient. Formally, the set of restricted variables is:

Ik ,
{
i
∣∣xki ≤ li + ε ∧ ∂if(xk) > 0, or xki ≥ ui − ε ∧ ∂if(xk) < 0

}
,

for some small positive ε. The set Ik collects variables that are near their

bounds, and for which the objective f(x) can be decreased by moving the

variables towards (or past) their bounds. The set of free variables, denoted

Fk, is simply defined as the complement of Ik in the set {1, 2, . . . , n}.
Without loss of generality, let us assume that Fk = {1, 2, · · · , N} and

Ik = {N + 1, · · · , n}. Now define a diagonal matrix Dk ∈ Rn−N×n−N that

scales the restricted variables, a typical choice being the identity matrix. We

denote the scaling with respect to the free variables as S̄k ∈ RN×N , which,

for the projected-Newton method, is given by the principal sub-matrix of the

inverse of the Hessian ∇2f(xk), as induced by the free variables. In symbols,

S̄k ← [∇2f(xk)]−1
Fk . (11)

With these definitions, we are now ready to present the main step of the

two-metric projection algorithm. This step can be written as the Euclidean
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projection of a Newton-step that uses a gradient scaling Sk of the form

Sk ,

[
S̄k 0

0 Dk

]
. (12)

The associated stepsize α can be selected by backtracking along the projec-

tion arc until the Armijo condition is satisfied. Note that this choice of the

stepsize computation does not increase the computational complexity of the

method, since computing the orthogonal projection after each backtracking

step is trivial. Combining this gradient scaling with orthogonal projection,

we obtain the projected-Newton update:

xk+1 ← x̄kα = argmin
l≤x≤u

1

2
||x− (xk − αSk∇f(xk))||2[Sk]−1

≈ argmin
l≤x≤u

1

2
||x− (xk − αSk∇f(xk))||2I

= P[xk − αkSk∇f(xk)], (13)

where αk is computed by backtracking along the projection arc.

This algorithm has been shown to be globally convergent (Bertsekas, 1982;

Gafni and Bertsekas, 1984), and under certain conditions achieves local

superlinear convergence.

Theorem 11.1 (Convergence). Assume that ∇f is Lipschitz continuous

on Ω, and ∇2f has bounded eigenvalues. Then every limit point of {xk}
generated by iteration (13) is a stationary point of (10).

Theorem 11.2 (Convergence rate). Let f be strictly convex and twice

continuously differentiable. Let x∗ be the non-degenerate optimum of Prob-

lem (13) and assume that for some δ > 0, ∇2f(x) has bounded eigenvalues

for all x that satisfy ‖x− x∗‖ < δ. Then the sequence {xk} generated by

iteration (13) converges to x∗, and the rate of convergence in {‖xk − x∗‖}
is superlinear.

We remark that though the convergence rate of the two-metric projection

method has been shown for Sk derived from the Hessian, the convergence

itself merely requires a positive-definite gradient scaling Sk with bounded

eigenvalues for all k (Bertsekas, 1982). Thus, the quasi-Newton approxima-

tions introduced in §11.2 are viable choices to derive convergent methods,4

we present such variations of the two-metric method in the following exam-

4. In a simpler but still globally-convergent variation of the two-metric projection method,
we could simply set Sk to be a diagonal matrix with positive diagonal elements.
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ple.

Example 11.3 (Nonnegative least-squares). A problem of considerable

importance in the applied sciences is the nonnegative least-squares (NNLS):

min
x

1
2‖Ax− b‖22, subject to x ≥ 0, (14)

where A ∈ Rm×n. This problem is essentially an instance of (10).

Given Algorithm 11.1, one can simply implement the update (13) and then

use BFGS or L-BFGS to obtain Sk. However, we can further exploit the simple

constraint x ≥ 0 and improve the computational (empirical) efficiency of the

algorithm. To see how, consider the restricted variables in the update (13).

When variable i ∈ Ik and ε becomes sufficiently small, we obtain

P[xk − αkSk∇f(xk)]i = P[xki − αk[Dk]ii · ∂if(xk)] = 0.

In other words, if i ∈ Ik, then xk+1
i = 0, whereby we can safely ignore these

variables throughout the update. In an implementation, this means that we

can confine computations to free variables, which can save a large number

of floating point operations especially when |Fk| � |Ik|.
Example 11.4 (Linear SVM). Consider the standard binary classification

task with inputs (xi, yi)
m
i=1, where xi ∈ Rn and yi ∈ ±1. Assume for sim-

plicity that we wish to learn a bias-free decision function f(x) = sgn(wTx)

by solving either the SVM primal

minimize
w

1
2w

Tw + C
∑m

i=1
ξi

subject to yi(w
Txi) ≥ 1− ξi, ξi ≥ 0, 1 ≤ i ≤ m,

(15)

or its (more familiar) dual

minimize
α

1
2α

TY XTXY α−αT1

subject to 0 ≤ αi ≤ C,
(16)

where Y = Diag(y1, . . . , ym) and X = [x1, . . . ,xm] ∈ Rn×m. The dual (16)

is a special case of (10), and can be solved by adapting the two-metric

projection method in a manner similar to that for NNLS.

Example 11.5 (Sparse Gaussian Graphical Models). The dual to a stan-

dard formulation for learning sparse Gaussian graphical models takes the

form (Banerjee et al., 2006):

min
Σ̃+X�0

− log det(Σ̃ +X), subject to |Xij | ≤ λij , ∀ij . (17)

There has been substantial recent interest in solving this problem (Banerjee
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et al., 2006). Here Σ̃ represents the empirical covariance of a data set, and

the bound constraints on the elements of the matrix encourage the associated

graphical model to be sparse for sufficiently large values of the λij variables.

Notice that the constraint |Xij | ≤ λij is equivalent to the box-constraints:

−λij ≤ Xij ≤ λij. Thus, provided Σ̃ +X is positive-definite for the initial

X, we can apply a simplified two-metric projection algorithm to this problem

where we use projection to address the bound constraints and backtracking

to modify the iterates when they leave the positive-definite cone.

11.4 Inexact Projection Methods

The previous section focused on examples with bound constraints. For opti-

mizing over more general but still simple convex sets, an attractive choice is

inexact projected-Newton methods. These methods represent a natural gen-

eralization of methods for unconstrained optimization that are alternately

referred to as Hessian-free, truncated, or inexact Newton methods. In inexact

projected-Newton methods, rather than finding the exact minimizer in Step

IIa of Algorithm 11.1, we find an approximate minimizer using an iterative

solver. That is, we use a single-metric projection, but solve the projection

inexactly. Note that the iterative solver can be a first-order optimization

strategy, and thus can take advantage of an efficient Euclidean projection

operator. Under only mild conditions on the iterative solver, this approx-

imate projection algorithm still leads to an improvement in the objective

function. There are many ways to implement an inexact projected-Newton

strategy but in this section we focus on the one described in Schmidt et al.

(2009). In this method, we use the L-BFGS Hessian approximation, which

we combine with simple Armijo backtracking and a variant of the projected

gradient algorithm for iteratively solving subproblems. In the next section

we review an effective iterative solver, and in the sequel we discuss using it

within an inexact projected-Newton method.

11.4.1 Spectral Projected Gradient

The traditional motivation for examining projected Newton methods is that

the basic gradient projection method may take a very large number of

iterations to reach an acceptably accurate solution. However, there has been

substantial recent interest on variants of gradient projection that exhibit

much better empirical convergence properties. For example, Birgin et al.

(2000) presented several spectral projected gradient (SPG) methods. In SPG

methods, either α or β is set to one, and the other step size is set to one of
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the step sizes proposed by (Barzilai and Borwein, 1988). For example, we

might set β = 1 and α to

αbb ,
gTs

gTg
, where g = ∇f(xk+1)−∇f(xk), and s = xk+1−xk. (18)

Subsequently, backtracking along one of the two step sizes is used to satisfy

the non-monotonic Armijo condition (Grippo et al., 1986)

f(xk+1) ≤ max
i=k−m:k

{f(xi)}+ τ∇f(xk)(xk+1 − xk), τ ∈ (0, 1),

which, unlike the ordinary Armijo condition (5), allows some temporary

increase in the objective. This non-monotonic Armijo condition typically

accepts the initial step length even if it increases the objective function, while

still ensuring global convergence of the method.5 Experimentally, these two

simple modifications lead to large improvements in the convergence speed

of the method. Indeed, due to its strong empirical performance, SPG has

recently also been explored in several other applications (Dai and Fletcher,

2005; Figueiredo et al., 2007; van den Berg and Friedlander, 2008).

An alternative to SPG for accelerating the basic projected gradient method

is the method of Nesterov (2004, §2.2.4). In this strategy, an extra extrapo-

lation step is added to the iteration, thereby allowing the method to achieve

the optimal worst-case convergence rate among a certain class of algorithms.

Besides SPG and this optimal gradient algorithm, there can be numerous al-

ternative iterative solvers. But we restrict our discussion to an SPG-based

method and consider for it some implementation and theoretical details.

11.4.2 SPG-based Inexact Projected-Newton

Recall Step IIa in the general framework of Algorithm 11.1:6

x̄k1 = argmin
x∈Ω

Qk(x, 1), (19)

where the quadratic model is

Qk(x, 1) = f(xk) + (x− xk)T∇f(xk) +
1

2
(x− xk)THk(x− xk).

5. A typical value for the number m of previous function values to consider is 10.
6. We assume that α = 1 and backtrack along β so that the iterative solver is invoked
only once for each iteration; however, the inexact Newton method does not rule out the
possibility of fixing β (and invoking the iterative solver for each backtracking step).
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For the remainder of this section, we denote Qk(x, 1) by Qk when there is no

confusion. In inexact projected-Newton methods solve the subproblem (19)

only approximately; we denote this approximate solution by zk below.

At each iteration of an SPG-based inexact projected-Newton method, we

first compute the gradient ∇f(xk) and (implicitly) compute the quadratic

termHk in Qk. Subsequently, we try to minimize this Qk over the feasible set

using iterations of an SPG algorithm. Even if f or∇f are difficult to compute,

this SPG subroutine can be efficient if Qk and ∇Qk can be evaluated rapidly.

Given f(xk) and ∇f(xk), the dominant cost in evaluating Qk and ∇Qk is

pre-multiplication by Hk. By taking the compact representation of Byrd

et al. (1994)

Hk = σkI−NM−1NT , where N ∈ Rn×2m, M ∈ R2m×2m, (20)

we can compute Qk and ∇Qk in O(mn) under the L-BFGS Hessian approxi-

mation.

In addition to Qk and ∇Qk, the SPG-subroutine also requires computing

the Euclidean projection PΩ onto the feasible set Ω. However, note that the

SPG subroutine does not evaluate f or ∇f . Hence, the SPG-based inexact

projected Newton method is most effective on problems where computing

the projection is much less expensive than evaluating the objective function.7

Although in principle we could use SPG to exactly solve problem (19),

in practice this is expensive and ultimately unnecessary. Thus, we termi-

nate the SPG-subroutine before the exact solution is found. One might be

concerned about terminating the SPG subroutine early, especially because an

approximate solution to (3) will in general not be a descent direction. Fortu-

nately, we can guarantee that the SPG subroutine yields a descent direction

even under early termination if we initialize it with xk and we perform at

least one SPG iteration. To see this, note that positive-definiteness of Hk

implies that a sufficient condition for zk − xk to be a descent direction for

some vector zk, is that Qk(zk, αk) < f(xk), since this implies the inequality

(zk − xk)T∇f(xk) < 0.

By substituting Qk(xk, αk) = f(xk), we see that

Qk(zk, αk) < Qk(xk, αk) = f(xk),

where zk is the first point satisfying the Armijo condition when we initialize

7. This is different than many classical optimization problems like quadratic programming,
where evaluating the objective function may be relatively inexpensive but computing the
projection may be as difficult as solving the original problem.
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SPG with xk.8 In other words, if we initialize the SPG subroutine with

xk, then the SPG iterate gives a descent direction after the first iteration,

and every subsequent iteration. Thus, it can be safely terminated early. In

an implementation we can parametrize the maximum number of the SPG

iterations by c, which results in an O(mnc) iteration cost for the inexact

Newton method, assuming that projection requires O(n) time.

Example 11.6 (Blockwise-Sparse Gaussian Graphical Models). Consider

a generalization of Example 11.5 where instead of constraining the absolute

values of matrix elements, we constrain the norms of a disjoint set of groups

(indexed by g) of elements:

min
Σ̃+X�0

1
2 log det(Σ̃ +X), subject to ‖Xg‖2 ≤ λg, ∀g. (21)

This generalization is similar to those examined in (Duchi et al., 2008;

Schmidt et al., 2009), and it encourages the Gaussian graphical model to

be sparse across groups of variables (i.e. all edges in a group g will either be

included or excluded from the graph). Thus, formulation (21) encourages the

precision-matrix to have a ‘blockwise’ sparsity pattern. Unfortunately, this

generalization can no longer be written as a problem with bound constraints,

nor can we characterize the feasible set with a finite number of linear con-

straints (though it is possible to write the feasible set using quadratic con-

straints). Nevertheless, it is easy to compute the projection onto the norm

constraints; to project a matrix X onto the feasible set with respect to the

norm constraints we simply set Xg = λg/‖Xg‖2 for each group g. Con-

sidering the potentially high cost of evaluating the log-determinant function

(and its derivative), this simple projection suggests inexact projected-Newton

methods are well-suited for solving (21).

11.5 Toward Nonsmooth Objectives

In this section we reconsider Problem (1), but unlike previous sections, we

now allow r(x) 6= 0. The resulting composite optimization problem occurs

frequently in machine learning and statistics, especially with r(x) being a

sparsity promoting regularizer—see e.g., Chapter 2.

How should we deal with the non-differentiability of r(x) in the context

of Newton-like methods? While there are many possible answers to this

8. We will be able to satisfy the Armijo condition provided that xk is not already a
minimizer.
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question, we outline two simple but effective solutions that align well with

the framework laid out so far.

11.5.1 Two-Metric Subgradient Projection Methods

We first consider the following special case of (1)

min
x∈Rn

F(x) = f(x) +
∑

i
ri(xi), (22)

where r(x) has the separable form r(x) =
∑

i ri(xi) and each ri : R → R
is continuous and convex but not necessarily differentiable. A widely used

instance of this problem is when we have ri(xi) = λi|xi| for fixed λi > 0,

corresponding to `1-regularization. Note that this problem has a similar

structure to the bound-constrained optimization problem (10); problem (10)

has separable constraints, while problem (22) has a separable nonsmooth

term. We can use separability of the nonsmooth term to derive a two-

metric subgradient projection method for (22), analogous to the two-metric

gradient projection method discussed in §11.3. The main idea is to choose

an appropriately defined steepest descent direction and then to take a step

resembling a two-metric projection iteration in this direction.

To define an appropriate steepest descent direction we note that even

though the objective in (22) is not differentiable, its directional derivatives

always exist. Thus, analogous to the differentiable case, we can define the

steepest descent direction as the direction that minimizes the directional

derivative; among all vectors with unit norm, the steepest descent direction

locally decreases the objective most quickly. This direction is closely related

to the element of the subdifferential of a function F(x) with minimum norm:

Definition 11.7 (Mininum-norm subgradient). Let

zk = argmin
z∈∂F(x)

||z||2 (23)

Following an argument outlined in (Bertsekas et al., 2003, §8.4),9 the

steepest descent direction for a convex function F(x) at a point xk is in

the direction −zk, where the subdifferential of (22) is given by

∂F(x) = ∂{f(xk) + r(xk)} = ∇f(xk) + ∂r(xk).

Using the separability of r(x), we see that the minimum-norm subgradi-

9. Replacing maximization with minimization and concavity with convexity.
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ent (23) with respect to a variable xi is given by

zki =

{
0, if −∇if(xk) ∈

{
∂−ri(x

k
i ), ∂

+ri(x
k
i )
}
,

min
{∣∣∇if(xk) + ∂−ri(x

k
i )
∣∣ , ∣∣∇if(xk) + ∂+ri(x

k
i )
∣∣} , otherwise,

where the directional derivative ∂+ri(x
k
i ) is given by

∂+ri(x
k
i ) = lim

δ→0+

ri(x
k
i + δ)− ri(xki )

δ
,

the directional derivative ∂−ri(x
k
i ) is defined similarly with δ going to zero

from below. Thus, it is easy to compute zk given ∇f(xk), as well as the

left and right partial derivatives (∂−ri(x
k
i ) and ∂+ri(x

k
i )) for each ri(x

k
i ).

Observe that when ri(x
k
i ) is differentiable, ∂−ri(x

k
i ) = ∂+ri(x

k
i ), whereby

the minimum norm subgradient is simply ∇if(xk) +∇ir(xk). Further, note

that zk = 0 at a global optimum; otherwise −zk yields a descent direction

and we can use it in place of the negative gradient within a line search

method.

Similar to steepest-descent for smooth functions, a generalized steepest-

descent for nonsmooth functions may converge slowly, and thus we seek

a Newton-like variant. A natural question is whether we can merely use

a scaling matrix Sk to scale the steepest-descent direction. Similar to the

two-metric projection algorithm, the answer is “no” for essentially the same

reason: in general a scaled version of the steepest-descent direction may turn

out to be an ascent direction.

However, we can still use a similar solution to the problem. If we make the

positive-definite scaling matrix Sk diagonal with respect to the variables xi
that are close to locations where ri(xi) is non-differentiable, then we can

still ensure that the method generates descent directions. Thus, we obtain

a simple Newton-like method for nonsmooth optimization that uses iterates

of the form

xk+1 ← xk − αSkzk. (24)

Here, matrix Sk has the same structure as (12), but now the variables that

receive a diagonal scaling are variables close to non-differentiable values.

Formally, the set of restricted variables is:

Ik ,
{
i
∣∣ min
di∈Di

|di − xi| ≤ ε
}
, (25)

where Di is the (countable) set containing all locations where ri(xi) is non-

differentiable.

In many applications where we seek to solve a problem of the form (22),
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we expect the function to be non-differentiable with respect to several of

the variables at a solution. Further, it may be desirable that intermediate

iterations of the algorithm lie at non-differentiable points. For example, these

might represent sparse solutions if a non-differentiability occurs at zero. In

these cases, we can add a projection step to the iteration that encourages

intermediate iterates to lie at points of non-differentiability. Specifically, if

a variable xi crosses a point of non-differentiability, we project onto the

point of non-differentiability. Since we use a diagonal scaling with respect to

the variables that are close to points of non-differentiability, this projection

reduces to computing the Euclidean projection onto bound constraints,

where the upper and lower bounds are given by the nearest upper and lower

points of non-differentiability. Thus, each iteration is effectively a two-metric

subgradient projection iteration. To make our description concrete, let us

look at a specific example below.

Example 11.8 (`1-Regularization). A prototypical composite minimization

problem in machine learning is the `1-regularized task

min
x∈Rn

f(x) +
∑n

i=1
λi|xi|. (26)

The scalars λi ≥ 0 control the degree of regularization, and for sufficiently

large λi, the parameter xi is encouraged to be exactly zero.

To apply our framework, we need to efficiently compute the minimum-

norm subgradient zk for (26); this gradient may be computed as

zki ,


∇if(x) + λi sgn(xi), |xi| > 0

∇if(x) + λi, xi = 0,∇if(x) < −λi
∇if(x)− λi, xi = 0,∇if(x) > λi

0, xi = 0,−λi ≤ ∇if(x) ≤ λi

(27)

For this problem, the restrictied variable set (25) corresponds to those

variables sufficiently close to zero, {i||xi| ≤ ε}. Making Sk partially diagonal

with respect to the restricted variables as before, we define the two-metric

projection step for `1-regularized optimization as

xk+1 = PO[xk − αSkzk,xk]. (28)

Here, the orthant projection (that sets variables to exactly zero) is defined

as

PO(y,x)i ,

{
0, if xiyi < 0,

yi, otherwise.
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Applying this projection is effective at sparsifying the parameter vector since

it sets variables that change sign to exactly zero, and it also ensures that the

line search does not cross points of non-differentiability. Provided that xk

is not stationary, the steps in (28) are guaranteed to improve the objective

for sufficiently small α. The step size α is selected by a backtracking line

search along the projection arc to satisfy a variant of the Armijo condition

where the gradient is replaced by the minimum-norm subgradient. If at

some iteration the algorithm identifies the correct set of non-zero variables

and then maintains the orthant of the optimal solution, then the algorithm

essentially reduces to an unconstrained Newton-like method applied to the

non-zero variables.

In the two-metric projection algorithm for bound-constrained optimization

the choice of the diagonal scaling matrix Dk simply controls the rate that very

small variables move towards zero, and does not have a significant impact on

the performance of the algorithm. However, the choice of Dk in the algorithm

for `1-regularization can have a significant effect on the performance of the

method, since if Dk is too large we may need to perform several backtracking

steps before the step length is accepted, while too small of a value will require

many iterations to set very small variables to exactly zero. One possibility is

to compute the Barzilai-Borwein scaling αbb of the variables given by (18),

and set Dk to αbbI.

11.5.2 Proximal Newton-like methods

The method of the previous section crucially relies on separability of the non-

smooth function r(x). For more general nonsmooth r(x), an attractive choice

is to tackle the non-differentiability of r(x) via proximity operators (Moreau,

1962; Combettes and Wajs, 2005; Combettes and Pesquet, 2009). These

operators are central to forward-backward splitting methods (Combettes

and Pesquet, 2009)10, as well as to methods based on surrogate optimiza-

tion (Figueiredo and Nowak, 2003; Daubechies et al., 2004), separable ap-

proximation (Wright et al., 2009), gradient-mapping (Nesterov, 2007), or in

a proximal trust-region framework (Kim et al., 2010).

The idea of a proximity operator is simple. Let r : X ⊆ Rd → (−∞,∞]

be a lower semicontinuous, proper convex function. For a point y ∈ X, the

proximity-operator for r applied to y is defined as

proxr(y) = argmin
x∈X

1
2‖x− y‖22 + r(x). (29)

10. Including iterative shrinkage-thresholding as a special case
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This operator generalizes the projection operator, since when r(x) is the

indicator function for a convex set C, (29) reduces to projection onto C. This

observation suggests that we might be able to replace projection operators

by proximity operators. Indeed, this replacement is done in forward-backward

splitting methods, where one iterates

xk+1 = proxαkr(x
k − αk∇f(xk));

the iteration “splits” the update into differentiable (forward) and non-

differentiable (proximal or backward) steps. This method generalizes first-

order projected gradient methods, and under appropriate assumptions it

can be shown that the sequence {f(xk)+r(xk)} converges to f(x∗)+r(x∗),

where x∗ is a stationary point.

At this point, the reader may already suspect how we might use proximity

operators in our Newton-like methods. The key idea is simple: build a

quadratic model, but only for the differentiable part, and tackle the non-

differentiable part via a suitable proximity operator. This simple idea was

also previously exploited by (Wright et al., 2009; Kim et al., 2010). Formally,

we consider the regularized quadratic model

Qk(x, α) , f(xk)+(x−xk)T∇f(xk)+
1

2α
(x−xk)THk(x−xk)+r(x), (30)

whose minimizer can be recast as the generalized proximity-operator :

proxH
k

α·r (yk) = argmin
x∈Rn

1
2‖x− yk‖2Hk + αr(x), (31)

where yk = xk − α[Hk]−1∇f(xk); observe that under the transformation

x→ [Hk]1/2x, (31) may be viewed as a standard proximity operator.

Using this generalized proximity operator, our Newton-like algorithm

becomes

xk+1 = proxH
k

α·r (xk − α[Hk]−1∇f(xk)). (32)

If instead of the true inverse Hessian, we useHk = I, iteration (32) degener-

ates to the traditional forward-backward splitting algorithm. Furthermore,

it is equally straightforward to implement a quasi-Newton variant of (32),

where for example Hk is obtained by an L-BFGS approximation to ∇2f(xk).

Another practical choice might be an inexact quasi-Newton variant, where

we use iterations of the SPG-like method of (Wright et al., 2009) to approxi-

mately minimize Qk(x, α) under an L-BFGS approximation of f(x); in other

words, the generalized proximity operator (31) is computed inexactly.

Similar to inexact projected Newton methods, under only mild assump-



11.5 Toward Nonsmooth Objectives 317

tions we can guarantee that an inexact solution to the generalized proximity

operator yields an improvement on the original objective for a sufficiently

small step size α. For example, assume that ∇f(x) is Lipschitz-continuous

and that we find a value y such that Qk(y, α) < Qk(xk, α) in (30). Then we

have

f(xk) + r(xk) = Qk(xk, α)

> Qk(y, α)

= f(xk) + (y − xk)T∇f(xk) +
1

2α
(y − xk)THk(y − xk) + r(y)

≥ f(xk) + (y − xk)T∇f(xk) +
m

2α
||y − xk||22 + r(y)

≥ f(y) + r(y) (for 0 < α ≤ m/L),

where m is the smallest eigenvalue ofHk and the last inequality follows from

Lipschitz-continuity of the gradient (Bertsekas, 1999, Proposition A.24),

where L is the Lipschitz constant of the gradient of f(x). A similar property

holds if ∇f(x) is only locally Lipschitz-continuous.

Example 11.9 (Group `1-Regularization). Consider a generalization of

Example 11.8 where instead of penalizing the absolute values of each element

of x, we penalize the `2 norms of a set of disjoint groups indexed by g:

min
x∈Rn

f(x) +
∑

g
λg‖xg‖2. (33)

The regularizer in (33) is referred to as a group regularizer (`1,2-regularizer),

since it encourages sparsity in terms of groups of variables, and dates back

to (Bakin, 1999). The regularization term is nonsmooth when an entire

group of variables is set to 0. However, the proximal operator for this

regularizer is easily computed: given a vector y, with groups yg, we simply

set xg = (yg/‖yg‖2) max{0, ‖yg‖2 − αλg}. Thus, inexact proximal-Newton

methods are well-suited to solving (33).

Example 11.10 (Group Nuclear-Norm Regularization). A related problem

is optimizing a smooth function of several matrix inputs with regularization

of the nuclear norms of the matrices:

min
X1,X2,...,Xn

f(X1,X2, . . . ,Xn) +
∑n

i=1
λi‖Xi‖∗. (34)

Here we use ‖X‖∗ to the denote the nuclear norm (or trace norm), the

sum of the singular values of X. This regularization not only encourages

sparsity across individual matrices, but also encourages each matrix to be

low-rank. The proximal operator for the nuclear norm can be computed by
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soft-thresholding the singular values of each Xi (Cai et al., 2010). That is,

to compute the proximal operator we replace each singular value σj of each

Xi by σj = max{0, σj − αλi}, where α is the parameter of the quadratic

approximation (30). Thus, inexact proximal-Newton methods are well-suited

to solving (34) too, especially when it is more expensive to evaluate f and

∇f than it is to compute the singular value decomposition of each Xi.

11.6 Summary and Discussion

In this chapter, we have concentrated on minimizing twice-differentiable

convex functions, both when their exact Hessian is feasible to use, as well as

when quasi-Newton choices are more practical. Note that the quasi-Newton

approach can also be applied when the objective function is only once-

differentiable. Furthermore, we may relax the assumption of convexity if

we concede that the stationary point found by the method may not be a

local or global minimum.

As for implementational strategies, while we have focused on L-BFGS meth-

ods, an alternative restricted-memory strategy is to use implicit Hessian-

vector products. For example, in the two-metric projection strategy we can

use Hessian-vector products within a linear conjugate gradient iteration to

solve the scaling with respect to the free variables as in (Nocedal and Wright,

2000, §7.1), while we can use Hessian-vector products within the SPG sub-

routine for inexact projected Newton methods. An alternative means to op-

timize nonsmooth objectives with an L-BFGS approximation is given by (Yu

et al., 2010). Variants of the L-BFGS approximation that apply in stochastic

scenarios are examined in (Sunehag et al., 2009).

We close by noting some open issues regarding convergence of the methods

discussed in this section. First, we note that global convergence of methods

based on the minimum-norm subgradient without a diminishing step size can

be tenuous because of the lack of continuity in the derivatives of sequences.

For example, see the counter-example in (Bertsekas, 1999, Exercise 6.3.8).

Andrew and Gao (2007) give a proof of global convergence of a method

related to the two-metric subgradient projection method we discuss in

Sectin 11.5.1, but as pointed out by (Yu et al., 2010) their proof does not

account for this lack of continuity. Thus, while the algorithms of Andrew

and Gao (2007) and Section 11.5.1 appear to be very effective in practice,

it remains to show whether they are globally convergent in general without

additional assumptions. A related issue is showing whether the two-metric

subgradient projection method identifies the correct set of non-zero variables

after a finite number of iterations, and then has a super-linear convergence
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rate when exact second-order information is available. Also, in Examples 1.5

and 1.6, we use a projection with respect to a subset of the constraints and

do not project with respect to the positive-definite constraint that is known

to not be active at the solution. Although this strategy has been used by

several authors, and seems to not significantly affect empirical convergence

of the method when given a suitable starting point, formally examining

convergence under this heuristic deserves some theoretical attention.

Finally, we remark that there are not yet formal proofs of global and local

convergence for inexact projected Newton methods, but this appears to be

a simpler task than showing convergence of the methods discussed in the

previous paragraph. For example, it is likely that global convergence can

be proved by showing that a suitable gradient-related condition (Bertsekas,

1999, §1.2) applies to the first iteration in the SPG subroutine that satisfies

the Armijo condition, while a local convergence rate can likely be shown by

using a forcing sequence (Nocedal and Wright, 2000, §7.1) on the solution

accuracy of the SPG subroutine.
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