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Abstract

Microarray experiments have been extensively used for si-
multaneously measuring DNA expression levels of thou-
sands of genes in genome research. A key step in the analysis
of gene expression data is the clustering of genes into groups
that show similar expression values over a range of condi-
tions. Since only a small subset of the genes participate in
any cellular process of interest, by focusing on subsets of
genes and conditions, we can lower the noise induced by
other genes and conditions — a co-cluster characterizes such
a subset of interest. Cheng and Church [3] introduced an ef-
fective measure of co-cluster quality based on mean squared
residue. In this paper, we use two similar squared residue
measures and propose two fast k-means like co-clustering
algorithms corresponding to the two residue measures. Our
algorithms discover k row clusters and l column clusters si-
multaneously while monotonically decreasing the respective
squared residues. Our co-clustering algorithms inherit the
simplicity, efficiency and wide applicability of the k-means
algorithm. Minimizing the residues may also be formu-
lated as trace optimization problems that allow us to obtain
a spectral relaxation that we use for a principled initializa-
tion for our iterative algorithms. We further enhance our al-
gorithms by an incremental local search strategy that helps
avoid empty clusters and escape poor local minima. We il-
lustrate co-clustering results on a yeast cell cycle dataset and
a human B-cell lymphoma dataset. Our experiments show
that our co-clustering algorithms are efficient and are able to
discover coherent co-clusters.
Keywords: Gene-expression, co-clustering, biclustering,
residue, spectral relaxation

1 Introduction

Microarrays simultaneously measure the expression levels of
thousands of genes in a single experiment [5]. The results
of a microarray experiment are often organized as gene ex-
pression matrices whose rows represent genes, and columns
represent various environmental conditions or samples such
as tissues. The entries of these matrices give a numeric rep-
resentation of the expression/activity of a particular gene un-
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der a given experimental condition. Applications of microar-
rays range from the study of gene expression in yeast under
different environmental stress conditions to the comparisons
of gene expression profiles for tumors from cancer patients.
In addition to the enormous scientific potential of DNA mi-
croarrays to help in understanding gene regulation and inter-
actions, microarrays have important applications in pharma-
ceutical and clinical research. By comparing gene expres-
sion in normal and disease cells, microarrays may be used to
identify disease genes and targets for therapeutic drugs.

Clustering algorithms have proved useful for grouping
together genes with similar functions based on gene expres-
sion patterns under various conditions or across different tis-
sue samples. Expanding functional families of genes with
known function together with poorly characterized genes can
help in understanding the functions of many genes for which
such information is not yet available.

A wealth of work in cluster analysis of genes has been
done, for example hierarchical clustering, self-organizing
maps, graph-based algorithms, algorithms based on mix-
ture models, neural networks, simulated annealing and al-
gorithms based on principal components analysis. For a sur-
vey, see [12]. Dhillon et al. [9] present diametric cluster-
ing for identifying anti-correlated gene clusters for it is ob-
served that genes that are functionally related may demon-
strate strong anti-correlation in their expression levels. All
of the above work is focussed on clustering genes using con-
ditions as features.

Cheng and Church [3] proposed co-clustering (biclus-
tering) of gene expression data and advocated the impor-
tance of such simultaneous clustering of genes and condi-
tions for discovering more coherent and meaningful clusters.
They formulated their problem of co-clustering by proposing
a mean squared residue score for measuring cluster quality.
Co-clustering may prove useful in practice since it is widely
believed (as one may ascertain by scanning current bioinfor-
matics research articles) that only a small subset of the genes
participate in any cellular process of interest that takes place
in only a subset of the conditions. By focusing on subsets
of genes and conditions, we lower the bias exerted by other
genes and conditions. Evidently co-clusters appear to be nat-
ural candidates for obtaining such coherent subsets of genes
and conditions.

The development of our work is largely motivated by
that of [3]. We formulate objective functions based on min-



imizing two measures of squared residue that are similar to
those used by Cheng and Church [3] and Hartigan [11]. Our
co-clustering model is the partitioning model proposed by
Hartigan [11], who also proposed hierarchical co-clustering
models. Our formulation is thereby slightly different from
[3] but this difference is necessitated by our ability to find
k× l co-clusters simultaneously as opposed to finding a sin-
gle co-cluster at a time like Cheng and Church. We propose
iterative algorithms that have the benefits of simplicity and
speed while directly optimizing the squared residues. Our
co-clustering algorithms inherit the simplicity, efficiency and
broad applicability of the k-means algorithm.

Minimizing the squared residues can be viewed as cer-
tain constrained trace maximization problems [19]. A re-
laxation of the constraints of these maximization problems
makes them much easier to solve and leads to a spectral re-
laxation. We exploit this relaxation to develop a principled
method for initializing our iterative algorithms. Not surpris-
ingly, algorithms as the ones proposed herein, suffer from
being trapped in local minima. To escape poor local minima
in certain situations, we use a local search strategy [7, 21],
that incrementally moves rows and columns among clusters
if that leads to an improvement in the objective function.
These incremental algorithms also provide benefits against
empty clusters as shall become evident later in this paper.
We observe at this point that though our work is largely mo-
tivated by Cheng and Church [3] and is focused on gene ex-
pression data, the techniques discussed herein are simple and
as widely applicable as k-means.

The remainder of this paper is organized as follows.
Section 2 gives a brief survey of related work and Section 3
describes the residue measures and resulting objective func-
tions. In Section 4 we present our co-clustering algorithms
that monotonically decrease the proposed objective functions
along with proofs of monotonicity. To alleviate the prob-
lems of getting stuck in poor local minima, we describe local
search procedures in Section 4.2. We propose a principled
initialization method based on spectral techniques in Sec-
tion 4.3. Detailed empirical results substantiating the use-
fulness of co-clustering are provided in Section 5. Finally
we conclude with a brief summary and directions of future
work in Section 6.
Notation: Upper-case boldfaced letters such as X , A de-
note matrices while lower-case boldfaced letters like x de-
note column vectors. Column j and row i of matrix X are
denoted X·j and Xi· respectively, while Xij or xij denotes
the (i, j)-th element of X . Upper-case letters I and J (sub-
scripted or otherwise) respectively denote row and column
index sets of a co-cluster. The norm ‖X‖ denotes the Frobe-
nius norm of matrixX , i.e., ‖X‖2 =

∑
i,j X

2
ij .

2 Related work

One of the earliest co-clustering formulations, block cluster-
ing was introduced by Hartigan who called it “direct clus-
tering” [11, 14]. Hartigan introduced various co-clustering
quality measures and models including the partitional model
used in this paper. However, [11] only gives a greedy algo-
rithm for a hierarchical co-clustering model. This algorithm
begins with the entire data in a single block and then at each
stage finds the row or column split of every block into two
pieces, choosing the one that produces largest reduction in
the total within block variance. The splitting is continued till
the reduction of within block variance due to further splitting
is less than a given threshold. During the whole process, if
there exist row splits that intersect blocks, one of them shall
be used for the next row split, called a “fixed split”. The
same is done for columns. Otherwise, all split points are
tried. By restricting the splits to fixed splits, it is ensured
that: 1) the overall partition can be displayed as a contigu-
ous representation, with a re-ordering of rows and columns;
2) the partitions of row and columns can be described in a
hierarchical manner by trees. In contrast, our co-clustering
algorithms are partitional algorithms and optimize global ob-
jective functions.

Baier et al. [2] propose overlapping and non-overlapping
two-mode partitioning algorithms, of which the non-
overlapping two-mode algorithm tries to minimize the same
objective function as our Algorithm 4.1. The main differ-
ence between their non-overlapping two-mode partitioning
algorithm and Algorithm 4.1 is in our intermediate updates
of cluster prototypes.

Cheng and Church [3] propose a co-clustering algorithm
for gene expression data using mean squared residue as the
measure of the coherence of the genes and conditions. The
algorithm produces one co-cluster at a time — a low mean
squared residue plus a large variation from the constant gives
a good criterion for identifying a co-cluster. A sequence
of node (i.e. row or column) deletions and additions is
applied to the gene condition matrix, while the mean squared
residue of the co-cluster is kept under a given threshold.
After each co-cluster is produced, the elements of the co-
cluster are replaced with random numbers and then the
same procedure is applied on the modified gene condition
matrix to generate another, possibly overlapping, co-cluster
till the required number of co-clusters is found. Their
method finds one co-cluster at a time whereas our algorithms
find k × l co-clusters simultaneously. In our co-clustering
algorithms, as in the algorithm of [3], the row and column
clustering depend on each other as opposed to some simple
two-way clustering schemes that cluster rows and columns
independently, see [17] for a discussion.

Yang et al. [18] point out that random numbers used
as replacements in [3] can interfere with the future discov-
ery of co-clusters, especially ones that have overlap with the



discovered ones. They present an algorithm called FLOC
(FLexible Overlapped biClustering) that simultaneously pro-
duces k co-clusters whose mean residues are all less than a
pre-defined constant r. FLOC incrementally moves a row
or column out of or into a co-cluster depending on whether
the row or column is already included in that co-cluster or
not, which is called an action. Then the best (one that gives
the highest gain) action for a row or column, which is used
to evaluate the relative reduction of the co-cluster’s residue
and the relative enlargement of the co-cluster’s size, is per-
formed. This is done for every row and column sequen-
tially so M + N co-clusterings are produced since there
are M rows and N columns. The co-clustering with min-
imum mean residue is stored and the whole process is re-
peated. The idea of action is very similar to our incremental
co-clustering algorithms (see Section 4.2).

Kluger et al. [13] apply a spectral co-clustering algo-
rithm similar to the one proposed by Dhillon [6] on gene
expression data to produce “checkerboard” structure. The
largest several left and right singular vectors of the normal-
ized gene expression matrix are computed and then a final
clustering step using k-means and normalized cuts [15] is
applied to the data projected to the topmost singular vectors.
Different normalizations of genes and conditions are com-
pared in [13]; however, the algorithms in [13] and [6, 20]
model the gene expression matrix as a bipartite graph with
non-negative edge weights where the quality of a co-cluster
by the normalized cut criterion of [15]. Hence they are re-
stricted to non-negative matrices. On the other hand, we used
squared residue as a measure of the quality of a co-cluster,
which is not restricted to non-negative matrices.

Dhillon et al. [8] propose an information-theoretic co-
clustering algorithm that views a non-negative matrix as
an empirical joint probability distribution of two discrete
random variables and poses the co-clustering problem as
an optimization problem in information theory: the optimal
co-clustering maximizes the mutual information between
the clustered random variables subject to constraints on the
number of row and column clusters. Again, the restriction
is to non-negative matrices but the algorithm is similar to
our batch co-clustering algorithms with main difference of
distance measure.

3 Squared residue

In this section we define residue and two different objective
functions based on different squared residue measures.

Consider the data matrix A ∈ Rm×n, whose (i, j)-th
element is given by aij . We partition A into k row clusters
and l column clusters defined by the following functions,

ρ : {1, 2, . . . ,m} → {1, 2, . . . , k}
γ : {1, 2, . . . , n} → {1, 2, . . . , l},

where ρ(i) = r implies that row i is in row cluster r;

γ(j) = s implies that column j is in column cluster s. Let I
denote the set of indices of the rows in a row cluster and J
denote the set of indices of the columns in a column cluster.
The submatrix of A determined by I and J is called a co-
cluster. In order to evaluate the homogeneity of such a co-
cluster, we consider two measures:

1. The sum of squared differences between each entry in
the co-cluster and the mean of the co-cluster.

2. The sum of squared differences between each entry in
the co-cluster and the corresponding row mean and the
column mean. The co-cluster mean is to be added to
retain symmetry.

These two considerations lead to two different measures of
residue. We define the residue of an element aij in the co-
cluster determined by index sets I and J to be

hij = aij − aIJ for the first case,(3.1)

hij = aij − aiJ − aIj + aIJ for the second case,(3.2)

where aIJ =
P
i∈I,j∈J aij
|I|·|J| is the mean of all the entries in

the co-cluster, aiJ =
P
j∈J aij
|J| is the mean of the entries in

row i whose column indices are in J , and aIj =
P
i∈I aij
|I|

is the mean of the entries in column j whose row indices
are in I , where |I| and |J | denote the cardinality of I and
J . Case (3.1) was the measure used by Hartigan [11] while
case (3.2) in the context of gene expression data was used
by Cheng and Church [3]. LetH = [hij ]m×n be the residue
matrix whose entries are described by either (3.1) or (3.2).
Our optimization problems are to minimize the total squared
residue and these result in the objective function

(3.3) ‖H‖2 =
∑

I,J

‖HIJ‖2 =
∑

I,J

∑

i∈I,j∈J
h2
ij ,

where HIJ is the co-cluster induced by I and J . The fol-
lowing toy example provides some insight into the different
residue measures (3.1) and (3.2). Consider the two different
matrices,

A1 =




1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1


 ,A2 =




1 2 3 0 0 0
2 3 4 0 0 0
0 0 0 1 2 3
0 0 0 2 3 4


 .

For both these matrices we would prefer the clustering
(1122) for rows and (111222) for columns. This “desirable”
clustering leads to zero residue by both measures for A1,
but a first residue of 3.317 for A2. We might thus incline
towards the second residue as the measure of choice, but we
observe that for A1, even less desirable clusterings such as
(1222) for rows and (111222) for columns, have zero second



residue. In fact many more such “uninteresting” clusters give
zero second residue for A1. Our experiments suggest that
the second residue is a better measure for clustering gene
expression data since it better captures the “trend” of the
data, but other types of data could still benefit from the first
measure.

Consider hij as defined by (3.1). We note that
‖HIJ‖2 = 0 if and only if all the entries in HIJ are the
same or HIJ is trivial, i.e., it has one or no entry. If k = m,
i.e., each row is in a cluster by itself, then ‖H‖2 is the sum of
squared Euclidean distance of every column vector to its col-
umn cluster mean vector, which is exactly what the k-means
algorithm tries to minimize for column clustering. Now con-
sider hij as defined by (3.2). We note that ‖HIJ‖2 = 0 if
and only if the submatrix described by I and J is of the form
xeT + eyT where e = [1 1 . . . 1]T , x and y are arbitrary
vectors. As seen below, if instead of the matrix A we con-
sider the projected matrix (I −RRT )A then (3.2) gives the
k-means objective function for this modified matrix. Thus,
both residue measures may be viewed as generalizations of
the one-dimensional k-means clustering objective to the co-
clustering case.

Assume row-cluster r (1 ≤ r ≤ k) has mr rows, so
that m1 +m2 + · · ·+mk = m. Similarly, column-cluster c
(1 ≤ c ≤ l) has nc columns, so that n1 +n2 + · · ·+nl = n.
Then, we define a row cluster indicator matrix, R ∈ Rm×k
and a column cluster indicator matrix,C ∈ Rn×l as follows:
column r of R has mr non-zeros each of which equals
m
−1/2
r , the non-zeros of C are defined similarly. Without

loss of generality, we assume that the rows that belong to
a particular cluster are contiguous and so are the columns.
Then the matrixR has the form,

R =




m
−1/2
1 0 · · · 0

m
−1/2
1 0 · · · 0
... 0 · · · 0

0 m
−1/2
2 · · · 0

0 m
−1/2
2 · · · 0

...
... · · ·

...
0 0 · · · m

−1/2
k

...
... · · ·

...
0 0 · · · m

−1/2
k




,

where the first column has m1 non-zeros, the second col-
umn has m2 non-zeros, and the last (k-th) column has mk

non-zeros. Matrix C has a similar structure. Therefore,
‖R·r‖21 = mr, and ‖C·c‖21 = nc. Note that R and C are
column orthonormal matrices since the columns ofR andC
are clearly orthogonal and ‖R·r‖2 = 1, ‖C·c‖2 = 1. Using
these definitions of R and C we can write both the residues
compactly.

LEMMA 3.1. (RESIDUE MATRIX) Suppose H = [hij ],
where hij is defined by (3.1) or (3.2), and R and C are the
cluster indicator matrices as defined above. Then,

H = A−RRTACCT for (3.1),(3.4)

H = (I −RRT )A(I −CCT ) for (3.2).(3.5)

Proof. Since there are k row clusters and l column clusters,
we will write Ir and Jc to refer to the appropriate index sets
when necessary. Consider,

(RRTA)ij =
k∑

r=1

Rir(R
TA)rj

=

k∑

r=1

Rir

m∑

l=1

RlrAlj

=

k∑

r=1

Rir
∑

l∈Ir
m−1/2
r Alj ,

(
Rlr = 0 for l 6∈ Ir

)

=

k∑

r=1

Rirm
−1/2
r mrAIrj ,

(
|Ir| = mr and AIrj =

1

mr

∑

l∈Ir
Alj
)

= m
−1/2
t m

−1/2
t mtaItj ,

(
Rir = 0 for all but one r, say r = t

)

= aItj .

Thus the rows ofRRTA give the row cluster mean vectors.
In a similar fashion we conclude that (ACCT )ij = aiJ and
(RRTACCT )ij = aIJ , where column j ∈ J . Thus (3.4)
and (3.5) follow. ¤

4 Algorithms

The residue matrix H leads to objective functions for min-
imizing squared residues: find row clusters I and column
clusters J such that ‖H‖2 =

∑
I,J ‖HI,J‖2 is minimized.

For each definition of H we get a corresponding residue
minimization problem. We refer to these minimization prob-
lems as our first and second problem respectively. When R
and C are constrained to be cluster indicator matrices as in
our case, the problem of obtaining the global minimum for
‖H‖ is NP-hard. So we resort to iterative algorithms that
monotonically decrease the objective functions and converge
to a local minimum.

4.1 Batch iteration We first present batch iterative algo-
rithms for our clustering problems. The algorithms operate
in a batch fashion in the sense that at each iteration the col-
umn clusteringC is updated only after determining the near-
est column cluster for every column ofA (likewise for rows).
Define AC = RRTAC and AR = RTACCT . Defin-
ing Â = RRTACCT = ACCT , we can express ‖H‖2



of (3.4) as

‖A− Â‖2 =
l∑

c=1

∑

j∈Jc
‖A·j − Â·j‖2(4.6a)

=

l∑

c=1

∑

j∈Jc
‖A·j − (ACCT )·j‖2(4.6b)

=
l∑

c=1

∑

j∈Jc
‖A·j − n−1/2

c AC
·c‖2.(4.6c)

Similarly we can decompose the objective function in terms
of rows to obtain

‖A− Â‖2 =

k∑

r=1

∑

i∈Ir
‖Ai· −m−1/2

r AR
r·‖2.

These simplifications lead to Algorithm 4.1. Notice
that the columns and rows of the matrices AC and AR

play the roles of column cluster prototypes and row cluster
prototypes respectively. The algorithm begins out with some
initialization (see Section 4.3 for more information) of R
and C. Each iteration involves finding the closest column
(row) cluster prototype, given by a column (row) of AC

(AR), for each column (row) of A and setting its column
(row) cluster accordingly. The algorithm iterates till the
decrease in objective function becomes small as governed
by the tolerance factor τ .

ALGORITHM 4.1: Co-clustering problem 1.

COCLUS H1(A, k, l)
Input: Data matrixA and k, l
Output: Clustering matricesR and C
InitializeR and C
objval← ‖A−RRTACCT ‖2
∆← 1; τ ← 10−2‖A‖2; {Adjustable parameter}
while ∆ > τ
AC ← RRTAC
foreach 1 ≤ j ≤ n

γ(j)← argmin
1≤c≤l

‖A·j − n−1/2
c AC

·c‖2 (?)

C ← Update using γ
AR ← RTACCT

foreach 1 ≤ i ≤ m
ρ(i)← argmin

1≤r≤k
‖Ai· −m−1/2

r AR
r·‖2 (??)

R← Update using ρ
oldobj← objval; objval← ‖A−RRTACCT ‖2
∆← |oldobj− objval|

Before providing a proof of convergence of Algo-
rithm 4.1, we need the following simple Lemma.

ALGORITHM 4.2: Co-clustering problem 2

COCLUS H2(A, k, l)
Input: Data matrixA and k, l
Output: Clustering matricesR and C
InitializeR and C
objval← ‖(I −RRT )A(I −CCT )‖2
∆← 1; τ ← 10−2‖A‖2; {Adjustable parameter}
while ∆ > τ
AC ← (I −RRT )AC
AP ← (I −RRT )A
foreach 1 ≤ j ≤ n

γ(j)← argmin
1≤c≤l

‖AP
·j − n−1/2

c AC
·c‖2 (?)

C ← Update using γ
AR ← RTA(I −CCT )
AP ← A(I −CCT )
foreach 1 ≤ i ≤ m

ρ(i)← argmin
1≤r≤k

‖AP
i· −m−1/2

r AR
r·‖2 (??)

R← Update using ρ
oldobj← objval
objval← ‖(I −RRT )A(I −CCT )‖2
∆← |oldobj− objval|

LEMMA 4.1. Consider the function

(4.7) f(z) =
∑

i

πi‖ai −Mz‖2, πi ≥ 0,

ai, z are vectors and M is a matrix of appropriate di-
mensions. Then f(z) is minimized by z? that satisfies
πMTMz? = MTa, where π =

∑
i πi and a =

∑
i πiai.

Proof. Expanding (4.7) we get

f(z) =
∑

i

πi(a
T
i ai − 2zTMTai + zTMTMz),

thus,
∂f

∂z
=
∑

i

πi(2M
TMz − 2MTai).

On setting this gradient to zero we find that a minimizing z?

must satisfy

(4.8) MT

(∑

i

πiai

)
=

(∑

i

πi

)
MTMz. ¤

Lemma 4.1 leads to the following corollary that we
employ in our convergence proofs.

COROLLARY 4.1. The z? minimizing f(z) is given by

πz? = MTa, ifMTM = I,(4.9)

πMz = MTa, ifMTM = M .(4.10)



THEOREM 4.1. (CONVERGENCE OF ALGORITHM 4.1)
Co-clustering Algorithm 4.1 decreases the objective function
value ‖H‖2 monotonically, where H is given by (3.4).

Proof. Let the current approximation to A be denoted by
Â and the approximation obtained after the greedy column
assignments in step (?) of Algorithm 4.1 be denoted by Ã.
Denote the current column clustering by C and the new
clustering obtained after the greedy step by C̃. The current
and new column indices for column cluster c are denoted by
Jc and J̃c respectively. We have

‖A− Â‖2

=

l∑

c=1

∑

j∈Jc
‖A·j − (RRTACCT )·j‖2,

=

l∑

c=1

∑

j∈Jc
‖A·j − n−1/2

c AC
·c‖2

{using (4.6a)–(4.6c)},

≥
l∑

c=1

∑

j∈Jc
‖A·j −Rn−1/2

c̃ (RTAC)·c̃‖2

{from step (?) of Algorithm 4.1, c̃ = γ(j)},

≥
l∑

c=1

∑

j∈ eJc

∥∥∥A·j −RRT 1

nc

∑

t∈ eJc

A·t
∥∥∥

2

{rearranging sum and (4.9) withM = R},

=

l∑

c=1

∑

j∈ eJc

‖A·j − n−1/2
c RRTAC̃·c‖2

=
l∑

c=1

∑

j∈ eJc

‖A·j − n−1/2
c ÃC

·c‖2

= ‖A− Ã‖2.
Thus the objective function is non-increasing under the
column cluster updates. Similarly we can prove that the
objective function is non-increasing under the row cluster
updates (step (??) of Algorithm 4.1). ¤

The batch iterative algorithm for the second problem
is displayed as Algorithm 4.2. The algorithm is similar to
the first problem except that AC and AR are now given
differently due to the different objective function — the
remaining structure of the procedure is unchanged1.

THEOREM 4.2. (CONVERGENCE OF ALGORITHM 4.2)
Co-clustering Algorithm 4.2 decreases the objective function
value ‖H‖2 monotonically, where H is as in (3.5).

1In fact the same algorithm structure could be employed for co-
clustering using any distortion measure that can be split up over rows and
columns.

Proof. The proof is similar to that of Theorem 4.1 ( (4.10) is
used withM = I −RRT ) and is omitted for brevity.

We would like to emphasize that Algorithms 4.1 and 4.2
can only guarantee convergence to a local minimum of the
objective function value. In practice it has been observed
that batch clustering algorithms make large changes to the
objective function in their initial few iterations, thereafter
effecting little changes. Once the batch algorithm converges
it might suffer from two problems: 1) a poor local minimum,
2) the presence of empty clusters. In the next section we
present a local search strategy that moves a single point (or
in general a subset of points) from a given cluster to another
if the move leads to a decrease in the objective function.
Such a local search strategy has been shown to be effective in
escaping poor local minima and avoiding empty clusters [7].

4.2 Incremental algorithms We now formulate incre-
mental schemes for moving columns (rows) between column
(row) clusters if such a move leads to decrease in the objec-
tive function. Each invocation of the incremental procedures
tries to perform such a move for each row and column of the
data matrix. Since moving a row or column from its current
cluster to an empty cluster always leads to a decrease in the
objective function (assuming non-degeneracy) such a move
will always be made guaranteeing that no cluster is empty.

To aid the derivation of an efficient incremental update
scheme we decompose the residue of (3.4) as follows.

‖A− Â‖2 = Tr((A− Â)T (A− Â))

= Tr(ATA)− 2 Tr(AT Â) + Tr(ÂT Â)

= ‖A‖2 − 2 Tr(ATRRTACCT )+

Tr(CCTATRRTACCT )

= ‖A‖2 − ‖RTAC‖2.(4.11)

In the above derivation, we used the properties ‖X‖2 =
Tr(XTX), Tr(A + B) = Tr(A) + Tr(B), Tr(AB) =
Tr(BA) and the fact that RTR = I and CTC = I .
Similarly we can decompose the residue in (3.5) to yield

‖A− Â‖2

= ‖A‖2 − ‖RTA‖2 − ‖AC‖2 + ‖RTAC‖2.
(4.12)

From (4.11) we see that minimizing ‖A − Â‖2 is
equivalent to maximizing ‖RTAC‖2. We can try to perform
this maximization in the following way:

• FixR and solve max
C
‖RTAC‖2.

• Fix C and solve max
R
‖RTAC‖2.

Let the current column clustering be given by C and
the new clustering (that could be obtained by moving some



column of A to another cluster) be represented by C̃. Our
aim to is maximize ‖RTAC̃‖2 − ‖RTAC‖2 over C̃ that
can arise from single moves. For notational convenience let
us denote RTA by Ā. Suppose that a column j is moved
from its current cluster c to cluster c′. Then, C and C̃ differ
only in their columns c and c′. We find the difference in
objective function values (as determined byC and C̃) to be,

‖ĀC̃‖2 − ‖ĀC‖2 =

‖ĀC̃·c′‖2 − ‖ĀC·c′‖2 + ‖ĀC̃·c‖2 − ‖ĀC·c‖2.
(4.13)

Note that C̃·c has nc − 1 entries each of which equals
(nc − 1)−1/2. Similarly each of the entries in C·c′ equals
(nc′ + 1)−1/2.

A procedure that incrementally assigns columns to
their closest column cluster is described below as Algo-
rithm 4.3.

ALGORITHM 4.3: Local Search Step.

COLINCR H1(R,A, l, γ)
Input: R,A, l, γ
Output: C
τ ← 10−5‖A‖2; {Adjustable parameter}
Ā← RTA
{Optimizing over column clusters}
for j = 1 to n

for c′ = 1 to l, c′ 6= γ(j) = c

δj(c
′)← ‖ĀC̃·c′‖2 − ‖ĀC·c′‖2 + ‖ĀC̃·c‖2 −

‖ĀC·c‖2 (?)
{Find best column to move along with best cluster}
(j?, c?)← argmax

(j,c)

δj(c)

if δj?(c?) > τ
γ(j?)← c? (??)

{Update the cluster description matrix}
C ← Update using γ

The procedure for incrementally assigning rows to row
clusters is similar. Notice that the algorithm ensures the
change in objective function is monotonic. The algorithm
above just makes one move at a time. One could also make
a chain of moves (see for e.g. [7]) for obtaining better local
minima. Variants of the algorithm perform any move that
leads to a decrease in objective, and not insist on the best
possible move.

Following exactly the same derivation we deduce that
for the second problem the change in objective function on
moving a column to another cluster is given by

‖AC̃·c′‖2 − ‖AC·c′‖2 + ‖AC̃·c‖2 − ‖AC·c‖2−
‖ĀC̃·c′‖2 + ‖ĀC·c′‖2 − ‖ĀC̃·c‖2 + ‖ĀC·c‖2.

(4.14)

If we replace step (?) of Algorithm 4.3 by formula (4.14)

then we obtain an incremental algorithm for the second
problem.

Incremental algorithms such as the one described above
often tend to be slow but sometimes we can at least speed up
each iteration by performing the computations in a different
manner. We now briefly look at simplifications that can
enable us to greatly reduce the time of each iteration (at the
expense of additional storage). Consider

‖ĀC·c‖2 =
1

nc

(∑

j′∈Jc
ĀT
·j′

)(∑

j′∈Jc
Ā·j′

)
,

‖ĀC̃·c‖2 =
1

nc − 1

(∑

j′∈J̃c

ĀT
·j′

)(∑

j′∈J̃c

Ā·j′
)
.

Therefore, if column j belongs to cluster c,

(nc − 1)‖ĀC̃·c‖2 − nc‖ĀC·c‖2

=

(∑

j′∈J̃c

ĀT
·j′

)(∑

j′∈J̃c

Ā·j′
)

−
(∑

j′∈Jc
ĀT
·j′

)(∑

j′∈Jc
Ā·j′

)

= −ĀT
·j
∑

j′∈Jc
Ā·j′ −

∑

j′∈Jc
ĀT
·j′Ā·j + ĀT

·jĀ·j

= −2
∑

j′∈Jc
ĀT
·j′Ā·j + ĀT

·jĀ·j .(4.15)

Similarly, we get

(nc′ + 1)‖ĀC̃·c′‖2 − nc′‖ĀC·c′‖2

= 2
∑

j′∈Jc′
ĀT
·j′Ā·j − ĀT

·jĀ·j .(4.16)

Thus, if we store ĀT Ā, ‖ĀC·c‖2 and ‖ĀC·c′‖2 in main
memory, then we can compute ‖ĀC̃·c‖2 and ‖ĀC̃·c′‖2 in
constant time according to (4.15) and (4.16) respectively.
Therefore, δ(c′) in step (?) of Algorithm 4.3 can be updated
in constant time. Following the same idea, if we additionally
store ATA, ‖AC·c‖2 and ‖AC·c′‖2 in main memory, we
can also update δ(c′) based on (4.14) efficiently.

In our implementation we go one step further and em-
ploy a “ping-pong” approach wherein we alternate between
the invocations of the batch and incremental algorithms (see
Figures 1 and 2 to assess usefulness).

4.3 Spectral approximation for initialization Till now
we have tacitly assumed the presence of some initialization
(as induced by R and C) for our algorithms. In this
section we look more carefully at a method for a principled
initialization scheme.

In minimizing the original objective functions the dif-
ficulty is introduced by the strong structural constraints on



R and C—viz., constraining R and C to be cluster indica-
tor matrices. If we relax those constraints to just seek col-
umn orthogonal matrices R and C, i.e., RTR = Ik and
CTC = Il, then the minimization is dramatically eased.

Let A = UΣV T be the singular value decomposition
(SVD) of A and As = UsΣsV

T
s be the rank-s SVD

approximation to A (note that if s > rank(A) then As =
A). We use the fact that the best rank-s approximation to a
matrixA, where the approximation error is measured by the
Frobenius norm, is given by As [10]. This fact allows us to
show that both the residues (3.4) and (3.5) are minimized by
selecting R = Uk and C = Vl. We find that the minimum
residue is achieved when Â = As = UsΣsV

T
s where

s = min(k, l) for the first problem, and s = max(k, l)
for the second. We verify the second claim as follows. Let
R = Uk and C = Vl, then

Â = RRTA+ACCT −RRTACCT

= UkU
T
k A+AVlV

T
l −UkUT

k AVlV
T
l

= Ak +Al −AkVlV
T
l

= As, s = max(k, l).

Note that the relaxation above allows us to obtain lower
bounds on both the objective functions. The squared residues
are lower bounded by σ2

s+1 + · · · + σ2
rank(A). Due to their

global nature, spectral techniques seem to offer an ability for
superior initializations. After obtaining a relaxed solution
we have to somehow obtain a co-clustering. One approach
is to cluster the rows of R and C using k-means and obtain
row and column clusters from the clustered R and C. We
could also follow an approach based on QR factorization as
proposed by Zha et al. [19].

4.4 Computational complexity We briefly remark on the
computational complexity of our algorithms. Consider Al-
gorithm 4.1. We need not carry out an explicit computation
of RRTACCT . Instead, we just need to compute RTAC
and update the cluster assignment vectors ρ and γ appro-
priately. The former takes O(N) time, whereas the com-
putations for updating the clusterings can be performed in
O(N(k+ l)) time per iteration. Thus the overall complexity
of Algorithm 4.1 is O(t(k + l)N) where t is the number of
iterations. It is easy to observe that the computational com-
plexity of Algorithm 4.2 is the same. Algorithm 4.3 can be
implemented to require O(nl) operations if we make use of
the speedup suggestions in Section 4.2.

5 Experimental results

We now provide experimental results to illustrate the behav-
ior of our algorithms. We witness that co-clustering allows
us to capture the “trends” of genes over a subset of the to-
tal number of conditions. We select two commonly used
gene expression datasets, viz., a yeast Saccharomyces cere-

visiae cell cycle expression dataset from Cho et al. [4] and
human B-cell lymphoma expression dataset from [1]. The
preprocessed gene expression matrices are obtained from
http://arep.med.harvard.edu/biclustering/ [3].

5.1 Description of the datasets The yeast cell cycle
dataset contains 2884 genes and 17 conditions. To avoid dis-
tortion or biases arising from the presence of missing values
in the data matrix we remove all the genes that had any miss-
ing value. This step results in a matrix of size 2882 × 17.
The preprocessed matrix contains integers in the range 0 to
595. More details about this particular dataset and its pre-
processing can be found in Cheng and Church [3]. The hu-
man lymphoma dataset has 4026 genes and 96 conditions.
The preprocessed data matrix has integer entries in the range
−749 to 642. After removing all the genes having any miss-
ing value as before, the matrix is reduced to a smaller matrix
of size 854× 96. We note that though the size of the matrix
is substantially reduced, without recourse to some principled
missing value replacement it is improper to use the entire
data matrix.

5.2 Implementation details Our algorithms are imple-
mented in C++, all experiments are performed on a
PC(Linux, Intel Pentium 2.53GHz), and all figures are gen-
erated with MATLAB. We tested a variety of co-clusterings
with differing number of row and column clusters. However,
we illustrate results with 50 gene clusters and 2 condition
clusters for the yeast dataset and 20 gene clusters and 2 con-
dition clusters for the human lymphoma dataset. These clus-
ter numbers are chosen with consideration to the dimension
of the data matrix and to make it easy to illustrate co-clusters.
We do not want to put too many or too few genes in each co-
cluster, but we want to demonstrate coherence of a subset
of genes over a subset of conditions in each co-cluster. In
all our experiments, we set τ = 10−2‖A‖2 for both Algo-
rithm 4.1 and Algorithm 4.2. Also, we fix τ = 10−5‖A‖2
and 20 as the chain length for local search. With random ini-
tialization, Algorithm 4.1 generates the co-clusters in 16 sec-
onds for the yeast dataset and in 5 seconds for the lymphoma
dataset whereas Algorithm 4.2 takes 14 and 20 seconds re-
spectively for these datasets.

5.3 Analysis of co-clustering results To demonstrate the
advantage of spectral initialization we conduct the follow-
ing set of experiments. Each algorithm is run 20 times on
the yeast and the lymphoma datasets, with random and spec-
tral initialization, respectively. We averaged the initial and
final objective function values over these 20 trials. Table 1
shows the averaged values for the yeast dataset. Observe that
spectral initialization yields lower initial objective function
values than random initialization and better final objective
function values for both algorithms. Similarly Table 2 shows



Table 1: Average initial and final objective function values
over 20 runs for the yeast data set. Here ‖A‖2 = 2.89236×
109.

Random Spectral
Alg. 4.1 (initial) 6.6081× 108 3.9277× 108

(final) 5.4192× 107 5.4115× 107

Alg. 4.2 (initial) 5.0466× 108 3.6359× 108

(final) 1.9337× 107 1.9278× 107

Table 2: Average initial and final objective function values
over 20 runs for the human lymphoma dataset. Here ‖A‖2 =
5.63995× 108.

Random Spectral
Alg. 4.1 (initial) 5.6328× 108 5.3239× 108

(final) 4.8209× 108 4.8129× 108

Alg. 4.2 (initial) 5.0754× 108 4.1596× 108

(final) 2.7036× 108 2.6854× 108

that spectral initialization performs better than random ini-
tialization for the human lymphoma dataset.
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Figure 1: Objective function value vs. iteration by Algo-
rithm 4.1 (left plot) and Algorithm 4.2 (right plot) for the
yeast dataset. (50 gene clusters and 2 condition clusters)

Figures 1 and 2, in logarithmic scales, show the mono-
tonic decrease in objective function values with the progress
of iterations for both algorithms. In the figures, iteration
refers to one of the followings: row batch update (denoted as
a circle), column batch update (an asterisk), row local search
step (a triangle), and column local search step (a square). As
shown in the figures, though initial objective function values
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Figure 2: Objective function value vs. iteration by Algo-
rithm 4.1 (left plot) and Algorithm 4.2 (right plot) for the
lymphoma dataset. (20 gene clusters and 2 condition clus-
ters)

with random and spectral initialization are quite different, the
final objective function values are similar. We ascribe this to
the employment of both batch update and incremental local
search in “ping-pong” manner, where the incremental local
search algorithm refines the clustering produced by the batch
algorithms and triggers further runs of the batch algorithms.
Thus this ping-pong strategy produces stair-shaped objective
function curves as shown in Figures 1 and 2. For example, in
the left plot of Figure 1, the algorithms will terminate af-
ter 6 batch steps (with random initialization) and 4 batch
steps (with spectral initialization) without the incremental
algorithm. However, after taking the chain of incremental
local searches, the objective function values decrease several
times until it converges. We also want to mention that our in-
cremental local search algorithm can remove empty clusters
generated by the batch algorithms because moving a vec-
tor into an empty cluster always decreases objective function
values.

Due to space limitations, we present only some exem-
plary co-clusters obtained by our co-clustering algorithms
with spectral initialization. In Figures 3-7, x-axis lists the
number of the conditions and y-axis gives the gene expres-
sion level.

Figure 3 shows four co-clusters of yeast data generated
by Algorithm 4.1, while Figure 4 shows eight co-clusters
generated by Algorithm 4.2. From the figures we see
that both Algorithm 4.1 and Algorithm 4.2 can identify
groups of genes and groups of conditions that exhibit similar
expression patterns. In other words, they discover a set
of genes that display homogeneous patterns of expression
levels over a subset of conditions.

Each cluster in Figure 5, from top to bottom and from
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Figure 3: Co-clusters discovered from the yeast dataset by
Algorithm 4.1 using spectral initialization. Each co-cluster
consists of the following number of genes and conditions in
the format of (number of genes; number of conditions) from
top-left to bottom-right plot: (2; 9), (3; 9), (4; 9), and (14; 9).

left to right, is generated by combining the two co-clusters in
each row of Figure 4. The average expression level (a thick
red line) for each cluster is shown for interpretation purpose.
These four concatenated clusters are closely related with the
clusters of Tavazoie et al. [16], where one-way Euclidean
k-means clustering algorithm was applied to cluster genes
into different regulation classes, as follows: The top-left
cluster is related to their cluster 1, the top-right cluster is
related to their cluster 7, the bottom-left cluster is related
to their cluster 2, and the bottom-right cluster is related to
their cluster 12. Thus co-clustering does not prevent us
from discovering relations that can be discovered by one-
way clustering.

We observe that Algorithm 4.2 appears to generate
more meaningful co-clusters than Algorithm 4.1 because
the residue measure used by Algorithm 4.2 captures the
coherence trends of genes and conditions of the form exT +
yeT while the residue used in Algorithm 4.1 captures the
uniformity of a co-cluster.

We conducted similar experiments on the human lym-
phoma dataset and some exemplary co-clusters are shown in
Figures 6 and 7. As before, Algorithm 4.2 appears to cap-
ture more meaningful co-clusters than Algorithm 4.1. Both
algorithms discover several co-clusters that consist of only
several genes, but large number of conditions. For exam-
ple, the top-left co-cluster in Figure 7 has 4 genes and the
top-right co-cluster in Figure 7 contains 5 genes, behaving
similarly across 83 out of total 96 conditions. Also, we ob-
serve that several co-clusters that contain a large subset of

genes behaving similarly across a small number of condi-
tions are discovered. For example, the bottom-left co-cluster
consists of 72 genes and the bottom-right co-cluster has 106
genes, containing 13 conditions for both co-clusters. These
co-clusters display the broad trends over genes or conditions,
either of which may contain a smaller subset of related co-
clusters. All results shown herein were obtained by running
our algorithms with spectral initialization without any fur-
ther post-processing, however, our algorithms could be re-
cursively applied on each co-cluster to obtain a finer parti-
tion.
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Figure 4: Co-clusters discovered from the yeast dataset by
Algorithm 4.2 using spectral initialization. Note that two co-
clusters in the same row have same genes. Each co-cluster
consists of the following number of genes and conditions
in the format of (number of genes; number of conditions)
from top-left to bottom-right plot: (124; 8), (124; 9), (19; 8),
(19; 9), (63; 8), (63; 9), (20; 8), and (20; 9).
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Figure 5: Gene clusters obtained by combining adjacent
co-clusters in Figure 4 for comparison with Tavazoie et al.
[16]. Each cluster consists of the following number of genes
and conditions in the format of (number of genes; number
of conditions) from top-left to bottom-right plot: (124; 17),
(19; 17), (63; 17), and (20; 17). Each of these plots is closely
related to clusters discovered in Tavazoie et al. [16], where
one-way clustering was used to cluster genes.

0 5 10 15
−700

−600

−500

−400

−300

−200

−100

0

100

200

0 5 10 15
−800

−700

−600

−500

−400

−300

−200

−100

0

100

200

0 10 20 30 40 50 60 70 80 90
−600

−400

−200

0

200

400

600

0 10 20 30 40 50 60 70 80 90
−700

−600

−500

−400

−300

−200

−100

0

100

200

300

Figure 6: Co-clusters discovered from the human lymphoma
dataset by Algorithm 4.1 using spectral initialization. Each
co-cluster consists of the following number of genes and
conditions in the format of (number of genes; number of con-
ditions) from top-left to bottom-right plot: (4; 15), (5; 15),
(5; 81), and (15; 81).
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Figure 7: Co-clusters discovered from the human lymphoma
dataset by Algorithm 4.2 using spectral initialization. Each
co-cluster consists of the following number of genes and
conditions in the format of (number of genes; number of con-
ditions) from top-left to bottom-right plot: (4; 83), (5; 83),
(7; 83), (26; 83), (21; 83), (25; 83), (72; 13), and (106; 13).

6 Conclusions & future work

Our main contributions in this paper are: 1) we propose two
efficient k-means like co-clustering algorithms to simulta-
neously find k row and l column clusters, 2) an initializa-
tion method using spectral relaxation of a trace optimization
problem, 3) a local search strategy that prevents poor local
optima and empty clusters. We expect this framework to
have as broad applicability to co-clustering as the popular
k-means algorithm has to one-way clustering. An issue that
is the subject of future exploration is a “good” way of eval-
uating co-clusterings, especially in the absence of truelabels
for one or both dimensions of the data. We also plan to in-



vestigate the biological significance of co-clustering results
on various gene expression datasets.

In contrast to [3], our co-clustering algorithms produce
non-overlapping clusters. In the future, we plan to extend
our work to generate overlapping clusters like in [3] and
soft clustering that allows weighted memberships in multiple
clusters. We envisage a generalization of our methods
to multi-way k-means type procedures applied to multi-
dimensional data matrices on contingency tables.

An intriguing future application of co-clustering would
be to fill in missing values that frequently occur in gene
expression matrices. Anti-correlation has been observed to
imply functional similarity of genes [9]; we plan to extend
our co-clustering algorithms to detect such anti-correlations.
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