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Abstract. Hermitian positive definite (hpd) matrices form a self-dual convex
cone whose interior is a Riemannian manifold of nonpositive curvature. The

manifold view is endowed with a geodesically convex distance function but the
convex view is not. Drawing motivation from convex optimization, we introduce
the S-Divergence, a “distance-like” function on the convex cone of hpd matrices.
We study basic properties of the S-divergence that connect it intimately with

the Riemannian distance. In particular, we show that (i) its square-root is a
distance; and that (ii) it exhibits several (nonpositive-curvature-like) properties
akin to the Riemannian distance.

1. Introduction

Hermitian positive definite (hpd) matrices form a manifold of nonpositive curva-
ture [11, Ch.10], [6, Ch.6], whose closure is a self-dual convex cone. The manifold is
important in various applications [21], while the conic view is fundamental to convex
optimization [20, 10] and nonlinear Perron-Frobenius theory [18], for instance.

The manifold view comes with a natural distance function, while the conic view
does not. Drawing motivation from convex optimization we introduce on the hpd
cone a distance-like function: the S-Divergence. We prove several results connecting
the S-Divergence to the Riemannian distance. Our main result is that the square-
root of this divergence is actually a distance; our remaining results explore geometric
and analytic properties common to the S-Divergence and the Riemannian distance.

1.1. Setup. Let Hn denote the set of n× n Hermitian matrices. A matrix A ∈ Hn
is called positive definite if

(1.1) 〈x, Ax〉 > 0 for all x 6= 0, also written as A > 0.

The set of positive definite (henceforth positive) matrices in Hn is denoted by Pn. We
say A is positive semidefinite if 〈x, Ax〉 ≥ 0 for all x and write A ≥ 0. The inequality

A ≥ B means A−B ≥ 0. The Frobenius norm of a matrix X is ‖X‖F :=
√

tr(X∗X),
while ‖X‖ denotes the operator norm. Let f be an analytic function on C, and let
A have the eigendecomposition A = UΛU∗ with unitary U , then f(A) = Uf(Λ)U∗

with f(Λ) equal to the diagonal matrix Diag[f(λ1), . . . , f(λn)].
The set Pn is a well-studied differentiable Riemannian manifold, with the Rie-

mannian metric given by the differential form ds = ‖A−1/2dAA−1/2‖F. This metric
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induces the Riemannian distance (see e.g., [6, Ch. 6]):

(1.2) δR(X,Y ) := ‖log(Y −1/2XY −1/2)‖F for X,Y > 0.

The focus of this paper is on a complement to (1.2), namely, the S-Divergence:1

(1.3) δ2
S(X,Y ) := log det

(
X+Y

2

)
− 1

2 log det(XY ) for X,Y > 0.

This divergence was proposed as a numerical alternative to the Riemannian distance
δR in [14]—there, it was used in an application to image-search, primarily for its
empirical benefits. This initial empirical success of S-Divergence motivated us to
investigate δS more closely in this paper.

Contributions. The present paper goes substantially beyond our initial conference
version [23]. The main differences are: (i) Theorems 4.1, 4.5, 4.6, 4.7, and 4.9,
which establish several new geometric and analytic similarities between δS and
δR; (ii) the joint geodesic convexity of δ2

S (Prop. 4.3, Theorem 4.4); and (iii) new
“conic” contraction results for δS and δR that uncover properties akin to those
exhibited Hilbert’s projective metric and Thompson’s part metric [18] (Prop. 4.11,
Corollary 4.12, Theorem 4.14, Theorem 4.15, and Corollary 4.16).

Related work. While our paper was under preparation (in 2011), we became aware
of a concurrent paper of Chebbi and Moakher (CM) [12] who considered a single
parameter family of divergences that generalize (1.3). Our work differs from CM in
several key aspects. (1) CM prove δS to be a distance for commuting matrices only.
We note in passing that the commuting case is essentially equivalent to the scalar
case. The noncommuting case is much harder, and was also conjectured by [12]. We
prove the noncommuting case too, and note that our consideration of it was agnostic
of CM [12]. (2) We establish several theorems that uncover geometric and analytic
similarities between δ2

S and δR. (3) A question closely related to δS being a distance
is whether the matrix [det(Xi + Xj)

−β ]mi,j=1 is positive semidefinite for arbitrary
matrices X1, . . . , Xm ∈ Pn, every integer m ≥ 1, and every scalar β ≥ 0. CM
considered special cases of this question. We provide a complete characterization of
β necessary and sufficient for the above matrix to be semidefinite.

2. The S-Divergence

Consider a differentiable strictly convex function f : R → R; then, f(x) ≥
f(y) + f ′(y)(x− y), with equality if and only if x = y. The difference between the
two sides of this inequality is called a Bregman Divergence:2

(2.1) Df (x, y) := f(x)− f(y)− f ′(y)(x− y).

The scalar divergence (2.1) readily extends to Hermitian matrices. Specifically, if f
is differentiable and strictly convex on R, and X,Y ∈ Hn are arbitrary. Then, the
matrix Bregman Divergence is defined as

(2.2) Df (X,Y ) := tr f(X)− tr f(Y )− tr
(
f ′(Y )(X − Y )

)
.

It can be verified that Df is nonnegative, strictly convex in X, and zero if and only
if X = Y . It is typically asymmetric. For example, if f(x) = 1

2x
2, then for X ∈ Hn,

tr f(X) = 1
2 tr(X2) and (2.2) becomes the squared Frobenius norm 1

2‖X − Y ‖
2
F. If

1It is a divergence because although nonnegative, definite, and symmetric, it is not a metric.
2Over vectors, these divergences have been well-studied; see e.g., [2]. Although not distances,

they often behave like squared distances, in a sense that can be made precise for certain f [13].
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f(x) = x log x− x on (0,∞), then tr f(X) = tr(X logX −X) and (2.2) yields the
(unnormalized) von Neumann Divergence of quantum information theory.

The asymmetry of Bregman divergences can be sometimes undesirable. This has
led researchers to consider symmetric divergences, among which the most popular
is the “Jensen-Shannon / Bregman” divergence

(2.3) Sf (X,Y ) := 1
2

(
Df (X, X+Y

2 ) +Df (X+Y
2 , Y )

)
.

Divergence (2.3) may also be written in the more revealing form:

Sf (X,Y ) = 1
2

(
tr f(X) + tr f(Y )

)
− tr f

(
X+Y

2

)
.(2.4)

The S-Divergence (1.3) can be obtained from (2.4) by setting f(x) = − log x, so
that f(X) = − log det(X), the barrier function for the positive definite cone [20].
The S-Divergence may be also be viewed as the Jensen-Bregman divergence between
two multivariate gaussians [15], or as the Bhattacharyya distance between them [8].

The following basic properties of S may be easily verified.

Proposition 2.1. Let λ(X) be the vector of eigenvalues of X, and Eig(X) the
diagonal matrix with λ(X) on its diagonal. Let A,B,C ∈ Pn. Then, (i) δS(I, A) =
δS(I,Eig(A)); (ii) δS(A,B) = δS(P ∗AP,P ∗BP ), where P ∈ GLn(C); (iii) δS(A,B) =
δS(A−1, B−1); (iv) δ2

S(A⊗B,A⊗ C) = nδ2
S(B,C).

3. The δS distance

In this section we present our main result: the square-root δS of the S-Divergence is
actually a distance. Previous authors [12, 14] conjectured this result; both appealed
to classical ideas from harmonic analysis [3, Ch. 3] to establish the commutative
case. But the noncommutative case requires a different approach, as we show below.

Theorem 3.1. Let δS be defined by (1.3). Then, δS is a metric on Pn.

The proof of Theorem 3.1 depends on several results, some of which we prove below.

Definition 3.2 ([3, Def. 1.1]). Let X be a nonempty set. A function ψ : X ×X → R
is said to be negative definite if for all x, y ∈ X , ψ(x, y) = ψ(y, x), and the inequality∑n

i,j=1
cicjψ(xi, xj) ≤ 0,

holds for all integers n ≥ 2, and subsets {xi}ni=1 ⊆ X , {ci}ni=1 ⊆ R with
∑n
i=1 ci = 0.

Theorem 3.3 ([3, Prop. 3.2, Ch. 3]). Let ψ : X × X → R be negative definite.
There is a Hilbert space H ⊆ RX and a mapping x 7→ ϕ(x) from X → H such that

(3.1) ‖ϕ(x)− ϕ(y)‖2H = 1
2 (ψ(x, x) + ψ(y, y))− ψ(x, y).

Moreover, negative definiteness of ψ is necessary for such a mapping to exist.

Theorem 3.3 helps prove the triangle inequality for the scalar case.3

Lemma 3.4. Let δs be the scalar version of δS, i.e.,

δs(x, y) :=
√

log[(x+ y)/(2
√
xy)], x, y > 0.

Then, δs is a metric on (0,∞).

3The idea of invoking Schoenberg’s theorem (Theorem 3.3) for for establishing the commutative
case (which actually is essentially just the scalar case of Lemma 3.4) was also used by [12]; we
arrived at it independently following the classic route of harmonic analysis [3, Ch. 3].
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Proof. To verify that ψ(x, y) = log((x+ y)/2) is negative definite, by [3, Thm. 2.2,

Ch. 3] we may equivalently show that e−βψ(x,y) =
(
x+y

2

)−β
is positive definite for

any β > 0 and x, y > 0. This in turn follows from the inner-product representation

(3.2) (x+ y)−β = 1
Γ(β)

∫∞
0
e−t(x+y)tβ−1dt = 〈fx, fy〉,

where fx(t) = e−txt
β−1
2 ∈ L2([0,∞)). �

Corollary 3.5. Let x, y, z ∈ Rn++; and let p ≥ 1. Then,

(3.3)
(∑

i
δps (xi, yi)

)1/p

≤
(∑

i
δps (xi, zi)

)1/p

+
(∑

i
δps (yi, zi)

)1/p

.

Corollary 3.6. Let X,Y, Z > 0 be diagonal matrices. Then,

(3.4) δS(X,Y ) ≤ δS(X,Z) + δS(Y, Z)

Proof. For diagonal X,Y , δ2
S(X,Y ) =

∑
i δ

2
s(Xii, Yii); now use Corollary 3.5. �

Next, we recall an important determinantal inequality for positive matrices.

Theorem 3.7 ([5, VI.7]). Let A,B > 0. Let λ↓(X) denote the vector of eigenvalues
of X arranged in decreasing order; define λ↑(X) likewise. Then,

(3.5)
∏n

i=1
(λ↓i (A) + λ↓i (B)) ≤ det(A+B) ≤

∏n

i=1
(λ↓i (A) + λ↑i (B)).

Corollary 3.8. Let A,B > 0. Let Eig↓(X) denote the diagonal matrix with λ↓(X)

as its diagonal; define Eig↑(X) likewise. Then,

δS(Eig↓(A),Eig↓(B)) ≤ δS(A,B) ≤ δS(Eig↓(A),Eig↑(B)).(3.6)

Proof. In (3.5), dividing by 2n
√

det(A) det(B) we obtain∏n
i=1(λ↓i (

A
2 ) + λ↓i (

B
2 ))√

det(A) det(B)
≤

det
(
A+B

2

)√
det(A) det(B)

≤
∏n
i=1(λ↓i (

A
2 ) + λ↑i (

B
2 ))√

det(A) det(B)
.

Since determinants are invariant to permutation of eigenvalues, we can rearrange
the leftmost and rightmost terms so that upon taking logarithms, (3.6) follows. �

The final result we need is a classic lemma from linear algebra.

Lemma 3.9. If A > 0, and B is Hermitian, then there is a matrix P such that

(3.7) P ∗AP = I, and P ∗BP = D, where D is diagonal.

Accoutered with the above results, we are ready to prove Theorem 3.1.

Proof. (Theorem 3.1). We need to show that δS is symmetric, nonnegative, definite,
and that it satisfies the triangle inequality. Symmetry and nonnegativity are obvious,
while definiteness follows from strict convexity of − log det(X), the seed function that
generates the S-divergence. The only difficulty is posed by the triangle inequality.

Let X,Y, Z > 0 be arbitrary. From Lemma 3.9 we know that there is a matrix
P such that P ∗XP = I and P ∗Y P = D. Since Z > 0 is arbitrary, and congru-
ence preserves positive definiteness, we may write just Z instead of P ∗ZP . Also,
since δS(P ∗XP,P ∗Y P ) = δS(X,Y ) (see Prop. 2.1), proving the triangle inequality
reduces to showing that

(3.8) δS(I,D) ≤ δS(I, Z) + δS(D,Z).
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Consider now the diagonal matrices D↓ and Eig↓(Z). Corollary 3.6 asserts

(3.9) δS(I,D↓) ≤ δS(I,Eig↓(Z)) + δS(D↓,Eig↓(Z)).

Prop. 2.1(i) implies that δS(I,D) = δS(I,D↓) and δS(I, Z) = δS(I,Eig↓(Z)), while

Corollary 3.8 shows that δS(D↓,Eig↓(Z)) ≤ δS(D,Z). Combining these inequalities,
we immediately obtain (3.8). �

We now turn our attention to a related connection that enjoys importance in
some applications: kernel functions arising from δS .

3.1. Hilbert space embedding. Since δS is a metric, which for scalars embeds
isometrically into Hilbert space (Lemma 3.4), it is natural to ask whether δS(X,Y )
also admits such an embedding. But as we already noted, such an embedding does
not exist. Theorem 3.3 implies that a Hilbert space embedding exists if and only if
δ2
S(X,Y ) is a negative definite kernel; equivalently, iff the map (cf. Lemma 3.4)

e−βδ
2
S(X,Y ) =

det(X)β det(Y )β

det((X + Y )/2)β
,

is a positive definite kernel for β > 0. It suffices to check whether the matrix

(3.10) Hβ = [hij ] =
[
det(Xi +Xj)

−β] , 1 ≤ i, j ≤ m,
is positive definite for every m ≥ 1 and arbitrary positive matrices X1, . . . , Xm ∈ Pn.
Unfortunately, a quick numerical experiment reveals that Hβ can be indefinite.

This leads us to the weaker question: for what choices of β is Hβ ≥ 0?
Theorem 3.10 answers this question for Hβ formed from symmetric real positive

definite matrices.

Theorem 3.10. Let X1, . . . , Xm be real symmetric matrices in Pn. The m ×m
matrix Hβ defined by (3.10) is positive definite, if and only if β satisfies

(3.11) β ∈
{
j
2 : j ∈ N, and 1 ≤ j ≤ (n− 1)

}
∪
{
γ : γ ∈ R, and γ > 1

2 (n− 1)
}
.

Proof. Please refer to the longer version of this paper [22]. �

Theorem 3.10 shows that e−βδ
2
S is not always a kernel, while for commuting

matrices e−βδ
2
S is always a positive definite kernel. This raises the following:

Open problem. Determine necessary and sufficient conditions on a set

X ⊂ Pn, so that e−βδ
2
S(X,Y ) is a kernel function on X × X for all β > 0.

4. Geometric and analytic similarities with δR

4.1. Geometric mean. We begin by studying an object that connects δR and δ2
S

most intimately: the matrix geometric mean. For positive matrices A and B, the
matrix geometric mean (MGM) is denoted by A]B, and is given by the formula

(4.1) A]B := A1/2(A−1/2BA−1/2)1/2A1/2.

The MGM (4.1) has a host of attractive properties—see for instance the classic
paper [1]. The following variational characterization is important [7]:

A]B = argminX>0 δ2
R(A,X) + δ2

R(B,X), and

δR(A,A]B) = δR(B,A]B).
(4.2)

Surprisingly, the MGM enjoys a similar characterization even under δ2
S .
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Theorem 4.1. Let A,B > 0. Then,

(4.3) A]B = argminX>0

[
h(X) := δ2

S(X,A) + δ2
S(X,B)

]
.

Moreover, A]B is equidistant from A and B, i.e., δS(A,A]B) = δS(B,A]B).

Proof. If A = B, then clearly X = A minimizes h(X). Assume therefore, that
A 6= B. Ignoring the constraint X > 0 for the moment, we see that any stationary
point of h(X) must satisfy ∇h(X) = 0. This condition translates into

∇h(X) =
(
X+A

2

)−1 1
2 +

(
X+B

2

)−1 1
2 −X

−1 = 0 =⇒ B = XA−1X.

The last equation is a Riccati equation whose unique positive solution is X = A]B [6,
Prop 1.2.13]. We now show that the stationary point A]B is actually a local minimum.
Consider the Hessian

2∇2h(X) = X−1 ⊗X−1 −
[
(X +A)−1 ⊗ (X +A)−1 + (X +B)−1 ⊗ (X +B)−1

]
.

Writing P = (X +A)−1, Q = (X +B)−1, and using ∇h(X) = 0 we obtain

2∇2h(X) = (Q⊗ P ) + (P ⊗Q) > 0.

Thus, X = A]B is a strict local minimum of h(X). This local minimum is the
global minimum as ∇h(X) = 0 has a unique positive solution and h goes to +∞ at
the boundary. Equidistance follows easily from A]B = B]A and Prop. 2.1. �

4.2. Geodesic convexity. The above derivation concludes optimality of the MGM
from first principles. In this section, we show that δ2

S is actually jointly geodesically
convex, hereafter ‘g-convex’, (see (4.5)), a property also satisfied by δR.

Before proving Theorem 4.4, we recall two results; the first implies the second4.

Theorem 4.2 ([16]). The GM of A,B ∈ Pn is given by the variational formula

A]B = max
{
X ∈ Hn |

[
A X
X B

]
≥ 0
}
.

Proposition 4.3 (Joint-concavity (see e.g. [16])). Let A,B,C,D > 0. Then,

(4.4) (A]B) + (C]D) ≤ (A+ C)](B +D).

Theorem 4.4. The function δ2
S(X,Y ) is jointly g-convex for X,Y > 0.

Proof. Since δ2
S is continuous, it suffices to show that for X1, X2, Y1, Y2 > 0,

(4.5) δ2
S(X1]X2, Y1]Y2) ≤ 1

2δ
2
S(X1, Y1) + 1

2δ
2
S(X2, Y2).

From Prop. 4.3 it follows that X1]X2 + Y1]Y2 ≤ (X1 + Y1)](X2 + Y2). Since log det
is monotonic and determinants are multiplicative, it then follows that

log det
(
X1]X2+Y1]Y2

2

)
≤ log det

(
(X1+Y1)](X2+Y2)

2

)
,

which when combined with the identity

− 1
2 log det

(
(X1]X2)(Y1]Y2)

)
= − 1

4 log det(X1Y1)− 1
4 log det(X2Y2)

yields inequality (4.5), establishing joint g-convexity. �

4.3. Basic contraction results. In this section we show that δS and δR share
several contraction properties. We state our results either in terms of δ2

S or of δS ,
depending on whichever appears more elegant.

4It is a minor curiosity to note that the mixed-mean inequality for matrix geometric and
arithmetic means proved in [19, Thm. 2] is a special case of Prop. 4.3.
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4.3.1. Power-contraction. The metric δR satisfies (e.g., [6, Exercise 6.5.4])

(4.6) δR(At, Bt) ≤ tδR(A,B), for A,B > 0 and t ∈ [0, 1].

Theorem 4.5 shows that S-Divergence satisfies the same relation.

Theorem 4.5. Let A,B > 0, and let t ∈ [0, 1]. Then,

(4.7) δ2
S(At, Bt) ≤ tδ2

S(A,B).

Moreover, if t ≥ 1, then the inequality gets reversed.

Proof. Recall that for t ∈ [0, 1], the map X 7→ Xt is operator concave. Thus,
1
2 (At +Bt) ≤

(
A+B

2

)t
; by monotonicity of the determinant it then follows that

δ2
S(At, Bt) = log

det
(

1
2 (At +Bt)

)
det(AtBt)1/2

≤ log
det
(

1
2 (A+B)

)t
det(AB)t/2

= tδ2
S(A,B).

The reverse inequality for t ≥ 1, follows by considering δ2
S(A1/t, B1/t). �

4.3.2. Contraction on geodesics. The curve

(4.8) γ(t) := A1/2(A−1/2BA−1/2)tA1/2, for t ∈ [0, 1],

parameterizes the unique geodesic between the positive matrices A and B on the
manifold (Pn, δR) [6, Thm. 6.1.6]. On this curve δR satisfies

δR(A, γ(t)) = tδR(A,B), t ∈ [0, 1].

The S-Divergence satisfies a similar, albeit slightly weaker result.

Theorem 4.6. Let A,B > 0, and γ(t) be defined by (4.8). Then,

(4.9) δ2
S(A, γ(t)) ≤ tδ2

S(A,B), 0 ≤ t ≤ 1.

Proof. The proof follows upon observing that

δ2
S(A, γ(t)) = δ2

S(I, (A−1/2BA−1/2)t)
(4.7)

≤ tδ2
S(I, A−1/2BA−1/2) = tδ2

S(A,B).�

4.3.3. A power-monotonicity property. We show below that on matrix powers, δ2
S and

δR exhibit a similar monotonicity property reminiscent of a power-means inequality.

Theorem 4.7. Let A,B > 0. Let scalars t and u satisfy 1 ≤ t ≤ u <∞. Then,

t−1δR(At, Bt) ≤ u−1δR(Au, Bu)(4.10)

t−1δ2
S(At, Bt) ≤ u−1δ2

S(Au, Bu).(4.11)

To our knowledge, inequality (4.10) is also new. Before proving Theorem 4.7
we first state a “power-means” determinantal inequality (which follows from the
monotonicity theorem of [4] on power means; see [22] for an independent proof).

Proposition 4.8. Let A,B > 0; let scalars t, u satisfy 1 ≤ t ≤ u <∞. Then,

(4.12) det1/t
(
At+Bt

2

)
≤ det1/u

(
Au+Bu

2

)
.

Proof (Theorem 4.7). (i): Note that δR(X,Y ) = ‖logE↓(XY −1)‖F. We must show

1
t ‖logE↓(AtB−t)‖F ≤ 1

u‖logE↓(AuB−u)‖F.
Equivalently, for vectors of eigenvalues we may prove

(4.13) ‖log λ1/t(AtB−t)‖2 ≤ ‖log λ1/u(AuB−u)‖2.
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The log-majorization relation stated in [5, Theorem IX.2.9] says

log λ1/t(AtB−t) ≺ log λ1/u(AuB−u),

to which we apply the map x 7→ ‖x‖2 immediately obtaining (4.13). Notice, that
we have in fact proved the more general result

1
t ‖logE↓(AtB−t)‖Φ ≤ 1

u‖logE↓(AuB−u)‖Φ,

where Φ is a symmetric gauge function (a permutation invariant absolute norm).
(ii): To prove (4.11) we must show that

1
t log det

(
(At+Bt)/2

)
− t

2 log det(AtBt) ≤ 1
u log det

(
(Au+Bu)/2

)
−u2 log det(AuBu).

But this inequality is immediate from Prop. 4.8 and the monotonicity of log. �

4.3.4. Contraction under translation. The last basic contraction result that we prove
is an analogue of the following shrinkage property [9, Prop. 1.6]:

(4.14) δR(A+X,A+ Y ) ≤ α
α+β δR(X,Y ), for A ≥ 0, and X,Y > 0,

where α = max {‖X‖, ‖Y ‖} and β = λmin(A). This result plays a crucial role in
deriving contractive maps for certain nonlinear matrix equations [17].

Theorem 4.9. Let X,Y > 0, and A ≥ 0, then the function

(4.15) g(A) := δ2
S(A+X,A+ Y ),

is monotonically decreasing and convex in A.

Proof. We must show that if A ≤ B, then g(A) ≥ g(B). Equivalently, we show that
the gradient ∇Ag(A) ≤ 0, which follows easily since

∇Ag(A) =
(

(A+X)+(A+Y )
2

)−1

− 1
2 (A+X)

−1 − 1
2 (A+ Y )

−1 ≤ 0,

as the map X 7→ X−1 is operator convex. It remains to prove convexity of g.
Consider therefore its Hessian ∇2g(A). Let P = (A+X)

−1
, Q = (B +X)

−1
, so

∇2g(A) = 1
2 (P ⊗ P +Q⊗Q)−

(
P−1+Q−1

2

)−1

⊗
(
P−1+Q−1

2

)−1

.

Using matrix convexity of X 7→ X−1 we obtain

∇2g(A) ≥ 1
2 (P ⊗ P +Q⊗Q)− P+Q

2 ⊗ P+Q
2 = 1

2 (P −Q)⊗ (P −Q),

which is positive definite since by assumption P ≥ Q. �

Corollary 4.10. Let X,Y > 0, A ≥ 0, β = λmin(A). Then,

(4.16) δ2
S(A+X,A+ Y ) ≤ δ2

S(βI +X,βI + Y ) ≤ δ2
S(X,Y ).

4.4. Conic contraction. We establish below (Theorem 4.14) a compression prop-
erty for the S-Divergence, which it shares with the well-known Hilbert and Thompson
metrics on convex cones [18, Ch.2]. We start with some preparatory results.

Proposition 4.11. Let P ∈ Cn×k (k ≤ n) have full column rank. The function
f : Pn → R ≡ X 7→ log det(P ∗XP )− log det(X) is operator decreasing.
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Proof. It suffices to show that ∇f(X) ≤ 0. This amounts to establishing that

(4.17) P (P ∗XP )−1P ∗ ≤ X−1 ⇔
[
X−1 P
P ∗ P ∗XP

]
≥ 0.

Inequality (4.17) follows once we note the factorization[
X−1 P
P ∗ P ∗XP

]
=

[
I 0
0 P ∗

] [
X−1 I
I X

] [
I 0
0 P

]
. �

Corollary 4.12. Let X,Y > 0. Let A =
(
X+Y

2

)
, G = X]Y ; and let P ∈ Cn×k

(k ≤ n) have full column rank. Then,

(4.18)
det(P ∗AP )

det(P ∗GP )
≤ det(A)

det(G)
.

Proof. Since A ≥ G, it follows from Prop. 4.11 that

log det(P ∗AP )− log det(A) ≤ log det(P ∗GP )− log det(G).

Rearranging, and using the fact that P ∗AP ≥ P ∗GP , we obtain (4.18). �

Theorem 4.13 ([1, Thm. 3]). Let Π : Pn → Pk be a positive linear map. Then,

(4.19) Π(A]B) ≤ Π(A)]Π(B) for A,B ∈ Pn.
We are now ready to prove the main theorem of this section.

Theorem 4.14. Let P ∈ Cn×k (k ≤ n) have full column rank. Then,

(4.20) δ2
S(P ∗AP,P ∗BP ) ≤ δ2

S(A,B) for A,B ∈ Pn.
Proof. We may equivalently show that

(4.21)
det

(
P∗(A+B)P

2

)
√

det(P∗AP ) det(P∗BP )
≤

det
(
A+B

2

)
√

det(AB)
.

But Prop. 4.13 shows P ∗(A]B)P ≤ (P ∗AP )](P ∗BP ), which implies that
1√

det(P∗AP ) det(P∗BP )
= 1

det[(P∗AP )](P∗BP )] ≤
1

det(P∗(A]B)P ) .

Consequently, an invocation of Corollary 4.12 concludes the argument. �

Theorem 4.14 relates δS to the classical Hilbert and Thompson metrics on convex
cones, which also satisfy similar results (for the wider class of order-preserving sub-
homogenous maps [18]); this explains the name “conic contraction.” Theorem 4.14
also extends to δR, as noted in Corollary 4.16, which itself follows from Theorem 4.15
(we believe that this theorem must exist in the literature—see [22] for our proof).

Theorem 4.15. If A,B ∈ Pn, and P ∈ Cn×k (k ≤ n) has full column rank. Then,

(4.22) λ↓j (P
∗AP (P ∗BP )−1) ≤ λ↓j (AB

−1) for 1 ≤ j ≤ k.

Corollary 4.16. Let P ∈ Cn×k (k ≤ n) have full column rank. Then,

(4.23) δΦ(P ∗AP,P ∗BP ) ≤ δΦ(A,B) := ‖log(B−1/2AB−1/2)‖Φ,
where Φ is any symmetric gauge function.

We conclude by noting a bi-Lipschitz-like inequality between δS and δR.

Theorem 4.17 ([22]). Let A,B ∈ Pn. Let δT (A,B) = ‖log(B−1/2AB−1/2)‖ denote
the Thompson-part metric [18]. Then, we have the following bounds

(4.24) 8δ2
S(A,B) ≤ δ2

R(A,B) ≤ 2δT (A,B)
(
δ2
S(A,B) + n log 2

)
.
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