
Tractable optimization in machine learning∗

Suvrit Sra†

Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany.

April 28, 2012

1 Introduction

Machine Learning (ML) broadly encompasses a variety of adaptive, autonomous, and intelligent
tasks where one must “learn” to predict from observations and feedback. Throughout its evolution,
ML has drawn heavily and successfully on optimization algorithms. This relation to optimization is
not surprising as “learning” and “adapting” usually lead to problems where some quality function
must be optimized.

But the interaction between ML and optimization is now undergoing rapid change. The in-
creased size, complexity, and variety seen in ML problems, not only prompt a refinement of existing
optimization techniques but also spur development of new methods tuned to the specific needs of
ML applications.1

In particular, ML applications must usually cope with large-scale data, which forces us to pre-
fer “simpler,” perhaps less accurate but more scalable algorithms. Such methods can also crunch
through more data, and may actually be better suited for learning—for a more precise characteri-
zation see [Bottou and Bousquet, 2011]. The use of possibly less accurate methods is also grounded
in pragmatic realities: modeling limitations, observational noise, uncertainty, and computational er-
rors are pervasive in real data. Hence, trusting more than a few digits of numerical accuracy would
be unrealistic. From an engineering perspective, simpler algorithms translate into more reliable
software that is easier to implement, debug, and deploy.

Before we get carried away by these benefits, we must recall a sobering statement of Nesterov
[2004]: “in general, optimization problems are unsolvable.” In other words, obtaining globally
optimal solutions is in general intractable. Fortunately, nature makes a generous exception for
convex optimization, which is not only tractable [Nemirovsky and Yudin, 1983] but also widely
applicable [Boyd and Vandenberghe, 2004].

We, therefore, limit our attention to convex optimization, and therein we focus on algorithms
that are simple, scalable, and amenable to theoretical analysis that qualifies their tractability.

The superficiality of a summary such as the one attempted herein is ineluctable. Nevertheless,
we hope that it still provides a quick entry into large-scale convex optimization for non-experts,
while offering pointers to literature that even more experienced readers might find useful.

∗A shorter version of this paper will appear as a chapter of the same name in “Advances in Tractability” edited
by L. Bordeaux and Y. Hamadi and P. Kohli and R. Mateescu.

†Part of this work was done during the author’s visit at the EE Department, University of Washington, Seattle.
1This viewpoint is not limited to ML; other problem domains that deal with large-scale data intensive problems

(e.g., bioinformatics, astroinformatics, signal processing) face similar concerns.

1

2 Background

A generic convex optimization problem may be written as

min φ(x) subject to x ∈ X , (1)

where φ : Rn → R is a proper convex function, also called the cost or objective function, and X is a
nonempty, compact convex set, also called the constraint or feasible set. In this chapter, we talk less
about casting ML problems into the form (1); we focus more on algorithms for solving important
instances of (1).

Example 2.1 (NNLS). Suppose we wish to estimate a nonnegative signal (such as, frequency,
probability, intensity) from a noisy measurement; for simplicity, assume that the measurement
process is linear. Let the measurement be given by vector b ∈ R

m, and the linear process be
encoded by a matrix A ∈ R

m×n. We wish to estimate an underlying nonnegative signal x that
satisfies b ≈ Ax. Assuming the noise to be additive and Gaussian, and that ATA is invertible.
Then, we may estimate x by solving the nonnegative least-squares (NNLS) problem:

minx ‖Ax− b‖2, s.t. x ≥ 0, (2)

which is essentially of the form (1), since the optimal x can be shown to lie in a compact set.

To avoid triviality, assume that (1) has a solution—that is, there exists a point x∗ ∈ X for which
φ(x∗) ≤ φ(x) for all x ∈ X (compactly, φ∗ ≤ φ). Ideally, the goal of an optimization algorithm is to
compute x∗, but almost always it is impossible to compute an exact x∗ in finite time. Thus, we speak
of “ǫ-accuracy,” a term whose meaning may vary. Consider for instance, an unconstrained version
of (1) where X = R

n. For differentiable φ, the condition ∇φ(x∗) = 0 is necessary and sufficient for
x∗ to be a global minimizer. So an ǫ-accurate solution could be a point x̄, for which ‖∇φ(x̄)‖ ≤ ǫ
(we use ‖x‖ :=

√

∑

i x
2
i). Alternatively, we may seek a point x̄ for which ‖x̄− x∗‖ ≤ ǫ, or more

often, for which the difference φ(x̄)− φ(x∗) ≤ ǫ.
Intuitively, the tighter the accuracy ǫ, the harder it will be to compute an ǫ-accurate solution.

Can this notion be made precise? Are there algorithms that can actually compute such solutions?
These questions lie at the heart of the complexity theory of convex optimization, as pioneered
by Yudin and Nemirovskii [1976]; see also [Nemirovsky and Yudin, 1983, Nesterov and Nemirovski,
1994]. For a nice historical account see [Tikhomirov, 1996].

2.1 Information based complexity

Observe that since we are working over the reals, the usual Turing machine based complexity analysis
does not apply. It is more convenient to perform information-based complexity analysis using an
oracle model of computation. More specifically, we consider algorithms that optimize (1) iteratively;
at each iteration the algorithm queries a first-order oracle2 using its current guess x; the oracle
responds by outputting the pair (φ(x), φ′(x))—here φ′ denotes the gradient ∇φ for differentiable
φ, or a subgradient from the subdifferential3 ∂φ(x), otherwise. We also speak of a noisy first-order
oracle, which does not output φ and φ′ exactly but rather their unbiased estimates.

We measure complexity of an algorithm by the number of queries that it makes for computing
an ǫ-accuracy solution. If this number is at most a polynomial (in 1/ǫ), then the problem is called

2We may also speak of zeroth, second-order, or other types of oracles, but for brevity we omit these from our
discussion.

3Please refer to [Rockafellar, 1970] for this and other key ideas of convex analysis.

2

x φ(x)
Oracle

φ′(x)
x φ(x) + ξ

Oracle
Noisy

φ′(x) + η

Figure 1: Noiseless and noisy first-order oracles. The noisy oracle returns values perturbed by mean-
zero bounded variance noise. More generally, these oracles may receive / use any of their previous
inputs or outputs when creating an output for the current x.

tractable. Different tractable problems have different lower-complexity bounds on the number of
queries that must be made; and an algorithm that achieves this lower bound (for all problems in its
class) is called optimal.

This chapter describes some fundamental tractable and optimal algorithms; we divide our presen-
tation into two parts: (i) smooth (at least once differentiable), and (ii) nonsmooth (but continuous)
convex optimization. We discuss both noise-free and noisy oracles while highlighting both classical
and modern results. Some concrete examples are interspersed to make our presentation clearer.

3 Smooth Convex Optimization

We begin with an instructive setup: unconstrained, smooth convex optimization for the class of
Lipschitz continuous functions.

Definition 3.1 (Lipschitz continuity). Let φ : Rn → R be k times continuously differentiable on
X ⊆ R

n. If the k-th derivative φ(k) satisfies

‖φ(k)(x)− φ(k)(y)‖ ≤ L‖x− y‖, ∀ x,y ∈ X , (3)

for some constant L, then φ is said to have a Lipschitz continuous k-th derivative, and we denote
this by writing φ ∈ Ck

L(X).

Example 3.2. Some familiar functions satisfying (3) are (verify!):

• Linear: 〈a, x〉+ c lies in C0
‖a‖(R

n) and also belongs to C1
0 (R

n)

• Hinge loss: max(0, 1− x) lies in C0
1 (R);

• Logistic loss: log(1 + ex) lies in C1
2 (R);

• Quadratic loss: 1
2x

TAx lies in C1
‖A‖(R

n)

Note that the Log-loss : φ(x) = − log x 6∈ C1
L(R++) for any finite L.

Among Lipschitz continuous functions, the class C1
L(X) of functions with Lipschitz continuous

gradients is of great importance. Most of the above examples lie in this class; and several differen-
tiable (not necessarily convex) optimization problems encountered in machine learning and related
areas feature C1

L functions. One reason why this class enjoys such importance is the following very
useful lemma.

Lemma 3.3 (Descent lemma). Let φ ∈ C1
L(X). Then, it holds that

|φ(x)− φ(y)− 〈∇φ(y), x− y〉| ≤ 1
2L‖x− y‖2, ∀ x,y ∈ X . (4)

3

Proof. Since f is differentiable, we have the Taylor-expansion

φ(x) = φ(y) +
∫ 1

0
〈∇φ(y + t(x− y)), x− y〉dt

= φ(y) + 〈∇φ(y), x− y〉+
∫ 1

0
〈∇φ(y + t(x− y))−∇φ(y), x− y〉dt.

Rearranging, taking absolute values, invoking the triangle and Cauchy-Schwarz inequalities, along
with Definition (3), we obtain

|φ(x)− φ(y)− 〈∇φ(y), x− y〉| ≤ L‖x− y‖2
∫ 1

0
tdt = 1

2L‖x− y‖2.

Now we look at optimization methods for convex C1
L(X) functions.

3.1 Gradient based methods

For solving (1), perhaps the simplest general purpose algorithm is gradient-projection; summarized
by (5) below.

Initialize x0 ∈ R
n

For k ≥ 0 iterate:
⌊

Select suitable stepsize αk > 0
xk+1 = PX (xk − αk∇φ(xk)).

(5)

Iteration (5) consists of three key components: (i) the gradient ∇φ; (ii) the stepsize αk > 0; and
(iii) the projection operator

PX (y) := argmin
x∈X

1
2‖x− y‖22. (6)

As per our assumption, the gradient ∇φ is generated by an oracle. The stepsize αk can be set using
various well-known strategies [Bertsekas, 1999, Nesterov, 2004], so we do not discuss it further.
Finally, it is important to note that unless X is “simple”, applying projection operator (6) can be
as difficult as solving the overall problem itself.

Therefore, for simplicity we first analyze iteration (5) for the unconstrained case X = R
n, for

which PX ≡ Id. Here, we answer two key questions: (i) what is an upper bound on the number of
oracle calls (iterations) needed by (5) to obtain an ǫ-accuracy solution; and (ii) how far is this upper
bound from the lower bound on oracle calls?

Theorem 3.4 (Upper bound). Let φ be a convex, C1
L(R

n) function. Let αk = 1/L and let x∗ be
an optimal solution to (1). Define the “diameter” D := ‖x0 − x∗‖. Then, the iterates {xk} of (5)
satisfy

φ(xk)− φ(x∗) ≤ 2LD2

k + 4
. (7)

Proof. We follow [Nesterov, 2004, Theorem 2.1.14], and present the details for their instructive value.
Define the residue rk = ‖xk − x∗‖, let gk ≡ ∇φ(xk), and g∗ = ∇φ(x∗). Recall now the optimality
condition

〈gk − g∗, xk − x∗〉 ≥ 0 for all xk.

This, together with the constant stepsize αk = 1/L, implies that

r2k+1 = ‖xk − x∗ − αkgk‖2 ≤ r2k − 1
L‖gk‖

2,

4

and in particular that, rk ≤ r0 = D. Now let ∆k := φ(xk)− φ(x∗), and use convexity of φ and the
Cauchy-Schwarz inequality to obtain

∆k ≤ 〈gk, xk − x∗〉 ≤ ‖gk‖‖xk − x∗‖ = ‖gk‖rk ≤ ‖gk‖D. (8)

Invoke Lemma 3.3 with x = xk+1 and y = xk, to now see that

φ(xk+1) ≤ φ(xk) + 〈gk, xk+1 − xk〉+ 1
2L‖xk+1 − xk‖2.

Then use xk+1 from iteration (5) with αk = 1/L to obtain

φ(xk+1) ≤ φ(xk)− 1
2L‖gk‖

2,

which implies the inequality ∆k+1 ≤ ∆k − (1/2L)‖gk‖2. From inequality (8) and Lemma 3.3 we
further obtain the bound

∆k+1 ≤ ∆k −∆2
k/(2LD

2) = ∆k(1− β),

for some β ∈ (0, 1). Take reciprocals and note that (1− β)−1 ≤ 1 + β, which yields 1
∆k+1

≥ 1+β
∆k

=
1
∆k

+ 1
2LD2 . Summing this over k we obtain

1

∆k+1
≥ 1

∆0
+

k + 1

2LD2
,

which upon rearranging yields

φ(xk)− φ(x∗) ≤ 2LD2∆0

2LD2 + k∆0
≤ 2LD2

k + 4
. (9)

The final inequality follows because ∆0 ≤ 1
2LD

2 (Lemma 3.3) and because the second-last term
in (9) is an increasing function of ∆0.

Corollary 3.5. The gradient method (5) requires O(1/ǫ) iterations (calls to the oracle) to obtain a
solution of ǫ-accuracy.

Proof. From Theorem 3.4 it follows that if k + 4 ≥ 2LD2

ǫ , then φ(xk) − φ(x∗) ≤ ǫ; thus, O(1/ǫ)
iterations yield a solution of ǫ-accuracy.

Let us now state a lower-bound on the number of oracle calls. In particular, this bound applies
to methods that generate the k-th iterate xk by linearly combining the information obtained from
the oracle up to step k−1. These methods generate iterates that satisfy

xk ∈ x0 + Lin(∇φ(x0), . . . ,∇φ(xk−1)). (10)

Theorem 3.6 (Lower bound). Using the same notation as in Theorem 3.4, and assuming that
1 ≤ k ≤ 1

2 (n − 1), there exists a convex function φ ∈ C1
L, such that any method that generates a

sequence {xk} satisfying (10), must also satisfy

φ(xk)− φ(x∗) ≥ 3LD2

32(k + 1)2
. (11)

Proof. See [Nesterov, 2004, Section 2.1.2].

5

Both the upper and lower accuracy bounds show (slow) sublinear convergence. So a natural
question is if there is a subclass of C1

L functions for which we can obtain faster convergence rates?
It turns out that for the subclass of strongly convex functions, we do have better rates.

Definition 3.7 (Strong convexity). A function φ : X ⊂ R
n → R is said to be strongly convex with

parameter µ > 0, denoted φ ∈ S1
L,µ(X), if

φ(x) ≥ φ(y) + 〈∇φ(y), x− y〉+ 1
2µ‖x− y‖2, ∀x,y ∈ X . (12)

For such functions we have the following upper and lower bounds.

Theorem 3.8 (SC upper-bound). Let φ ∈ S1
L,µ(R

n), and set αk = 2/(L+µ). Then, the iteration (5)
generates a sequence {xk} such that

φ(xk)− φ(x∗) ≤ L

2

(κ− 1

κ+ 1

)2k

D2, (13)

where κ = L/µ denotes the “condition number” of φ.

Theorem 3.9 (SC lower-bound). There exists an infinitely differentiable S1
µ,µκ function such that

any first-order method that generates {xk} satisfying (10) must also satisfy

φ(xk)− φ(x∗) ≥ µ

2

(

√
κ− 1√
κ+ 1

)2k

D2. (14)

For proofs of these theorems, refer to [Nesterov, 2004, Section 2.1.4].

Comparing the upper-bounds (7) and (13) with the lower-bounds (11) and (14), respectively, we
see that gradient-descent is far from optimal. In a breakthrough paper Nesterov [1983] introduced a
new optimal gradient method whose upper complexity bound matches (up to constants) the above
lower bound. While the derivation of the optimal method and its analysis lie outside the scope
of this chapter, some intuitive insight may be obtained by recalling the heavy-ball method [Polyak,
1987]. For a fixed γ > 0, this method performs the iteration

xk+1 = xk − αk∇φ(xk) + γ(xk − xk−1). (15)

Let φ be an S2
L,µ function. Set αk = 4

µ
1

(1+
√
κ)2

and γ = (
√
κ−1√
κ+1

)2; then, some algebra reveals that

the “multistep” iteration (15) satisfies

‖xk − x∗‖2 ≤
(

√
κ− 1√
κ+ 1

)2k

D2.

Notice that this matches the optimal rate (14) (up to constants).
Thus, we might expect a multistep iteration to be effective also for C1

L(R
n) functions. Nesterov’s

optimal method is such an iteration, though with a key difference: it uses iteration dependent values
of γ. Here’s how.

Let y0 = x0, α0 ≥ 1/
√
κ

For k ≥ 0 iterate:








xk+1 = yk − 1
L∇φ(yk)

αk+1 = 1
2κ − α2

k

2 +

√

α2
k +

(

1
2κ − α2

k

2

)2 (16a)

⌊

γk = αk(1−αk)
α2

k
+αk+1

yk+1 = xk+1 + γk(xk+1 − xk).
(16b)

6

10
0

10
1

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of iterations (k)

φ(
x k)−

φ(
x*)

Gradient Descent

Nesterov’s Method

Barzilai−Borwein

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of iterations (k)

φ(
x k)−

φ(
x*)

Least squares regression problem

Gradient Descent

Nesterov’s Method

Barzilai−Borwein

Figure 2: Gradient-descent (5), Nesterov’s method (16), and gradient-descent with Barzilai-Borwein (BB) step-
sizes (18). In the left plot we minimize φ(x) = 0.5‖DTx− b‖2, with D being an (n − 1) × n matrix having −1s
on its diagonal and 1s on the first superdiagonal. We used n = 50. The vector b is set to 2 (all twos). Here,
L = λmax(DDT) ≈ 4, and µ = λmin(DDT) ≈ 1/(0.1n2+0.6n) (so D is very ill-conditioned). The stepsize αk = 1/L
is used for (5). The superiority of Nesterov’s optimal method over gradient descent is evident; surprisingly, the BB
method performs even better. The right plot runs a least squares problem similar to the left plot, but this time on the
UCI Year-Prediction dataset [Frank and Asuncion, 2010]. Specifically, we solve minw ‖Xw − y‖2 on a 463, 715× 90
data matrix X (normalized to have unit columns); here L/µ ≈ 933.

The similarity of iteration (16b) to (15) is unmistakable. Theorem 3.10 characterizes the opti-
mality of the above method.

Theorem 3.10. Let {xk} be generated by (16) with α0 = α̂+
√
1 + α̂2, where α̂ = −1/2 + 1/(2κ).

Then, we have the upper bound:

φ(xk)− φ(x∗) ≤ 3

2
LD2 ×min

{(

√
κ− 1√
κ

)k

,
4

(k + 2)2

}

. (17)

Proof. Use γ0 = L in [Nesterov, 2004, Theorem 2.2.3] along with the inequality (follows from
Lemma 3.3) that φ(x0)− φ(x∗) ≤ 1

2LD
2.

Comparing (17) with the lower bound (11) one sees that for general C1
L(R

n) convex functions,
method (16) is optimal to within constant factors. For the strongly convex case, the lower bound (14)

implies that if φ(xk)− φ(x∗) ≤ ǫ, then 2k log
(

1 + 2√
κ−1

)

≥ log
(

µD2

2ǫ

)

, whereby

k ≥
√
κ−1
4

(

log(1ǫ + log µD2

2)
)

iterations are needed to obtain an ǫ-accuracy solution. Since φ(xk)−φ(x∗) ≤ (3/2)LD2(1−1/
√
κ)k,

using the inequality − log(1− 1/
√
κ) < 1/

√
κ for κ > 1, we conclude that k ≤ √

κ
(

log 1
ǫ + log 3LD2

2

)

iterations suffice to obtain an ǫ-accurate solution. Thus, the complexity bound (17) is within constant
factors of the lower bound (14).

7

Digression: A faster method?

A curious multistep algorithm is the nonmonotonic gradient descent of Barzilai and Borwein [1988]
(BB). Here one first computes the differences sk = xk − xk−1, yk = ∇φ(xk) − ∇φ(xk−1), and then
iterates (5) using the stepsize

αk = 〈sk, yk〉/‖yk‖2, or αk = ‖sk‖2/〈sk, yk〉. (18)

These stepsizes may be viewed as scalar approximations to the Hessian or its inverse; this approximation
of the curvature explains to some extent the impressive empirical speedups enjoyed by BB gradient-
descent (see Fig. 2).

3.1.1 Constrained problems

We can accommodate ‘simple’ constraints into the above gradient based methods without changing
their upper complexity bounds. In particular, say x lies in X which is “simple” so that the orthogonal
projection (6) can be computed exactly. The upper and lower bounds stated in Theorems 3.4 and 3.8
extend easily to this constrained problem.

The original proofs extend easily because we can exploit the fact that PX is firmly nonexpansive:

〈PXx− PXy, x− y〉 ≤ ‖x− y‖2. (19)

The details are an instructive, so we leave them as an exercise for the reader. Nesterov’s optimal
method (16) too, extends easily if we use the projected update xk+1 = PX

(

yk − 1
L∇φ(yk)

)

.
But what happens if the projection cannot be computed exactly? Indeed, frequently the con-

straint set is not so simple and the projection PX can be computed only approximately. In this case,
substantial changes to the algorithm and its convergence analysis must be made. For an accessible
account, we refer the reader to the recent work of Schmidt et al. [2011], who discuss how to handle
inexact projections (and proximity operators, to be introduced in Section 4.3).

4 Nonsmooth Convex Optimization

After our brief discussion of smooth convex optimization we now turn to a class of problems pervasive
in machine learning: nonsmooth convex optimization. More specifically, we consider optimizing
convex functions that are Lipschitz continuous over a compact set containing the solution.

Example 4.1 (Hinge loss SVM). Let {(xi, yi) : 1 ≤ i ≤ m} be labeled training examples, where
xi ∈ R

n are feature vectors and yi ∈ {±1} their labels. One way to classify an unlabeled point x
is to assign to it the label sgn(wTx+ b), where w ∈ R

n is a weight vector that must be learned
and b ∈ R is a “bias” term. A fundamental choice for computing w and b is the Hinge loss SVM,
which involves solving the nonsmooth problem:

minw,b φ(w, b) := 1
2‖w‖22 + C

∑m

i=1
max(0, 1− yi(w

Txi + b)), (20)

where C > 0 is a tradeoff parameter. The hinge loss terms in (20) are easily seen to be Lipschitz
continuous and convex. Assuming that the optimal w∗ lies in a ball of radius D, we see that
2D suffices as a Lipschitz constant for the (convex) regularizer ‖w‖22. Thus, φ(w, b) is Lipschitz
continuous and convex.

8

4.1 Basic Theory

We start our discussion of nonsmooth convex optimization by recalling an extremely important
concept from convex analysis.

Definition 4.2 (Subdifferential). Let φ be convex. For any y ∈ domφ the subdifferential of φ at
y, written ∂φ(y), is defined to be the set

∂φ(y) := {g | φ(x) ≥ φ(y) + 〈g, x− y〉 ∀x ∈ domφ} . (21)

The subdifferential generalizes the concept of a gradient: if φ is differentiable, then the subdif-
ferential is a singleton ∂φ(y) = {∇φ(y)}. Akin to gradients, subdifferentials also help characterize
optimality. Indeed, using (21) an easy exercise shows that for a given point x∗,

φ(x∗) ≤ φ(x) for all x, if and only if 0 ∈ ∂φ(x∗). (22)

Given these properties of the subdifferential, we may hope to generalize iteration (5) to accom-
modate nondifferentiable convex functions. A fairly natural choice is to introduce the (projected)
subgradient method

xk+1 = PX (xk − αkgk), k = 0, 1, . . . , (23)

where, instead of the gradient we use an arbitrary subgradient gk ∈ ∂φ(xk); αk is a suitable stepsize.
Although similar in form to (5), iteration (23) differs crucially: unlike the (negative) gradient, an
arbitrary subgradient does not provide a direction of descent. This limitation forces us to use
stepsizes that are less flexible than for gradient-descent, and also contributes to making (23) converge
slowly.

Example 4.3 (Nesterov [2008]). Let φ(x) = |x|, for x ∈ R. The subgradient method (23)
generates xk+1 = xk −αkgk, where gk ∈ ∂|xk|. If x0 = 1 and αk = 1√

k+1
+ 1√

k+2
(this stepsize is

known to be optimal [Nesterov, 2008]), then |xk| = 1√
k+1

, so that O(1
ǫ2) iterations are needed to

obtain ǫ-accuracy.

The dismal behavior shown in Example 4.3 is typical for the subgradient method which exhibits
O(1/

√
k) convergence. One may wonder: Can we do better than the subgradient method? The

answer is, unfortunately, ‘No.’ Theorem 4.4 asserts this claim formally.

Theorem 4.4 (Nesterov [2004]). Assume that the solution x∗ lies in a Euclidean ball of radius
D > 0 around a given initial point x0, denoted B. There exists a function φ in C0

L(B) (with L > 0),
such that for 0 ≤ k ≤ n− 1, the inequality

φ(xk)− φ(x∗) ≥ LD
2(1+

√
k+1)

, (24)

holds for any algorithm that generates xk by linearly combining the previous iterates and subgradients
(cf. (10)).

Compared with the C1
L convex case, the situation for the nonsmooth case looks much worse.

Nesterov [2003, 2005a] brought good news by showing how to circumvent the O(1/
√
k) barrier of (24)

by making a simple (in hindsight) but far-reaching observation: we don’t always work with black-
boxes but explicitly know the problem structure, which can be exploited to obtain faster algorithms.
Let us now describe the key consequences of this observation.

9

4.2 Smooth Minimization of Nonsmooth Functions

Intuitively, if we could replace a nonsmooth problem with a “good enough” smooth approximation,
we could approximately solve the nonsmooth problem faster. This idea may be expected to work
because on a compact set, a Lipschitz continuous convex function can be approximated to any
uniform accuracy ǫ > 0 by a C1

L convex function. If L is of the order O(1/ǫ), then an optimal method

that requires O(
√

L/ǫ) iterations could yield a nonsmooth optimization method that converges as

O(1/ǫ), thereby breaking the O(1/
√
k) barrier (which corresponds to O(1/ǫ2)).

Nesterov [2005a] builds on this intuition to consider nonsmooth functions φ(x) that possess an
explicit max-structure, that is,

φ(x) = φ̂(x) + maxz∈Z⊆Rm{〈Ax, z〉 − φ̂(z)}, (25)

where φ̂ is convex and lies in C1
L(φ̂)

(X); φ̂(z) is continuous and convex on Z, and A ∈ R
m×n. For

such φ, he then introduces a smoothness parameter µ > 0, and defines the smooth approximation:4

φµ(x) := φ̂(x) + maxz∈Z{〈Ax, z〉 − φ̂(z)− 1
2µ‖z‖

2}. (26)

The ‘max’ term in (26) has a unique solution (since φ̂ is continuous, ‖z‖2 is strongly convex and
Z is compact), say zµ(x). From standard results [e.g., Rockafellar and Wets, 1998, Theorem 2.26]
it follows that

∇φµ(x) = ∇φ̂(x) +ATzµ(x), (27)

with a Lipschitz constant given by

L(φµ) := L(φ̂) + 1
µ‖A‖2. (28)

Depending on the set Z, instead of ‖z‖2, a different “prox-function” might be more appropriate—we
omit discussion for simplicity and refer the reader to [Juditsky and Nemirovski, 2011a, Nesterov,
2005a]. Instead, we directly present Nesterov’s smoothing algorithm.

For k ≥ 0 iterate:










yk = PX (xk − 1
L(φµ)

∇φµ(xk))

zk = argminx∈X
1
2L(φµ)‖x‖2 +

∑k
i=0

i+1
2 〈∇φµ(xi), x〉

xk+1 = 2
k+3zk + k+1

k+3yk

(29)

To describe the complexity of iteration (29), we need the (primal and dual) diameters DX :=
maxx∈X ‖x‖ and DZ := maxz∈Z ‖z‖. Nesterov [2005a, Thm. 3] shows that upon setting µ =
2‖A‖
N+1

DX

DZ

, after N iterations of (29), the vector yN solves (25) to an accuracy upper-bounded by

4‖A‖
N + 1

DXDZ +
4L(φ̂)D2

X
(N + 1)2

. (30)

And what’s more, it can be shown that (modulo constant factors) this bound is unimprovable [Ju-
ditsky and Nemirovski, 2011a].

An instructive example where algorithm (29) applies is shown as Example 4.5 below.

4This approximation is essentially the negative Moreau envelope of φ̂.

10

Example 4.5 (Least absolute deviations). A regression task that is more robust (perchance less
stable) than least-squares is least absolute deviations (LAD) [Portnoy and Koenker, 1997]. Here,
we minimize the ℓ1-norm cost φ(x) = ‖Ax− b‖1. Unlike least-squares, LAD does not have an
analytic solution, so it has attracted several iterative approaches; we are, however, unaware if
Nesterov’s smoothing technique has been applied to it so far.
Since the cost φ is separable, on noting |xi| = max|zi|≤1 zixi, we obtain

φ(x) = max‖z‖∞≤1{〈Ax− b, z〉}, (notice: φ̂ = 0),

so that φµ(x) := max‖z‖∞≤1{〈Ax− b, z〉 − 1
2µ‖z‖2}. Hence, zµ(x) can be computed simply by

projecting the scaled residual µ−1(Ax−b) onto the ball ‖z‖∞ ≤ 1. Notice that ‖z‖ ≤ √
n‖z‖∞ ≤√

n =: DZ . Some linear algebra shows that we can essentially restrict x to lie in a Euclidean ball
with diameter DX < ∞. Thus, we can invoke (29) to solve LAD.

For more sophisticated examples, see [Ying et al., 2009], who apply the smoothing technique to
metric learning, and [Stobbe and Krause, 2010], who apply the smoothing technique to approxi-
mately minimize a subclass of decomposable submodular functions.

4.2.1 Excessive Gap Technique

Scheme (29) has a disadvantage: to set the smoothing parameter µ, the number of steps must
be known in advance. Nesterov [2005b] overcomes this disadvantage by assuming slightly more
structure, for which he develops a new excessive-gap technique (EGT). This leads to O(1/k) rate
for problems with max-structure, and a faster O(1/k2) rate for strongly convex objectives. We
summarize the key ideas below.

First, some convex analysis shows that the (Fenchel) dual to (25) is

g(z) := −φ̂(z) + minx∈X {〈Ax, z〉+ φ̂(x)}. (31)

For this dual, we let ν > 0 and introduce the smooth approximation

gν(z) := −φ̂(z) + minx∈X {〈Ax, z〉+ φ̂(x) + 1
2ν‖x‖

2}. (32)

We require the gradient of (32), which is simply given by

∇gν(z) = −∇φ̂(z) +Axν(z),

where xν(z) denotes the unique solution to the ‘min’ in (32). One may quickly verify that the
gradient ∇gν is Lipschitz with the constant

L(gν) := L(φ̂) + 1
ν ‖A‖2.

Observe that weak-duality implies that g(z) ≤ φ(x) for all pairs (x, z) ∈ X × Z, while strong-
duality mandates minx∈X φ(x) = maxz∈Z g(z). Thus, for a given pair (x, z) we may compute the
duality gap φ(x) − g(z), but what about the “smoothed” gap φµ(x) − gν(z)? This gap can be
positive or negative (as any of the inequalities g ≤ φ, φµ ≤ φ, or g ≤ gν can hold), so it is useful to
consider the excessive gap condition:

φµ(x̄) ≤ gν(z̄) for a pair (x̄, z̄) ∈ X × Z. (33)

11

Condition (33) lies at the heart of the EGT. To see why, observe that

φ(x)− µD2
Z ≤ φµ(x) and g(z) + νD2

X ≥ gν(z). (34)

Thus, for a primal-dual pair (x̄, z̄) that satisfies the excessive gap condition (33), the corresponding
duality gap is bounded by

φ(x̄)− g(z̄) ≤ µD2
Z + νD2

X . (35)

In other words, the duality gap is bounded by a function linear in µ and ν. So, if both of these
parameters shrink to zero, the duality gap will also shrink to zero, at least as fast.

The aim of Nesterov’s EGT is, therefore, to generate a sequence {(x̄k, z̄k)} of primal-dual iterates
that satisfy condition (33), and to simultaneously choose scalar sequences {µk} and {νk} that tend to

zero at the desired rate. For example, when L(φ̂) = L(φ̂) = 0, then Nesterov [2005b, Iteration (6.8)]
shows how to generate such sequences, and to thereby obtain the desired O(1/k) upper-bound

φ(x̄k)− g(z̄k) ≤
4‖A‖
k + 1

DXDZ . (36)

If in addition the function φ̂ in (25) is σ-strongly-convex, then an even faster rate of convergence is
possible; specifically, it holds that

φ(x̄k)− g(z̄k) ≤
4DZ(L(φ̂) + σ−1‖A‖2)

(k + 1)(k + 2)
. (37)

A point worth noting about (37) is that in contrast to (36), the rate does not depend on DX , so in
principle, the set X need not be bounded.

Example 4.6 (Structured prediction). In [Zhang et al., 2011] the authors apply the EGT (with
non-Euclidean prox-functions) to maximum-margin Markov networks, by minimizing the regu-
larized ‘hinge-loss’:

φ(w) :=
γ

2
‖w‖2 + 1

m

∑m

i=1
max
y∈Y

φi(y,w; zi),

where zi = (xi, yi) are labeled data, Y the labels space, and φi are loss functions. Observe that
the same ideas also applies to the hinge-loss SVM of Example 4.1 and other regularized prediction
problems.

Example 4.7 (Large-scale Linear Programming). Chen and Burer [2011] apply the EGT (with some mod-
ifications) to solve large-scale instances of the following linear programming problem

min
x,y

c
T
x+ d

T
y

s.t. Ax− b ≤ y, x,y ≥ 0.

The authors also show applications to some machine learning problems.

Note. The smoothing ideas can be generalized to problems whose objective function φ admits the
saddle-point representation

φ(x) := maxz∈Z Φ(x, z), (38)

where Φ has a Lipschitz continuous gradient on X ×Z. Instead of Nesterov’s smoothing algorithms,
we can also solve (38) by using the Mirror-Prox algorithm [Nemirovski, 2004] that yields a O(1/k)
rate.

12

4.3 Composite objective minimization

We just saw how exploitation of structure can be used to circumvent lower bounds and improve
convergence rates substantially. Can this idea be taken even further? It turns out that for certain
problems, it indeed can. Assume that the objective can be written as

φ(x) := ℓ(x) + r(x), (39)

where ℓ ∈ C1
L and r is a continuous convex regularizer. Objective (39) is called composite as it is a

mix of smooth and nonsmooth terms.5

Composite objectives enjoy great importance in machine learning, largely because of their flexibil-
ity and wide applicability. The smooth part measures quality of the estimation, while the nonsmooth
part encourages the solution to satisfy certain desirable structural properties such as sparsity. We
note in passing that one can alternatively view the loss ℓ(x) as a negative log-likelihood term and
the regularizer r(x) as a prior, though we do not pursue such connections further.

5This formulation is complementary to (25) where the max-term may be viewed as a nonsmooth loss and φ̂ as a
regularizer.

13

Example 4.8. Let ℓ(x) = 1
2‖Ax− b‖2 denote a generic quadratic loss; we list some correspond-

ing choices for the regularizer r(x) below.

• Lasso [Tibshirani, 1996] uses r(x) = λ‖x‖1, primarily to effect feature selection. The ℓ1-
norm is known to prefer sparse solutions (i.e., solutions with many zeros), which effectively
selects columns of matrix A that play a dominant role in explaining the observation vector
b. The ℓ1-norm also enjoys great popularity in the field of compressed sensing, where it is
formally used as a proxy for the cardinality function [Baraniuk, 2007].

• Fused lasso [Tibshirani et al., 2005] combines the ℓ1-norm on the vector x with an ℓ1-

norm on the “discrete gradient” of x, i.e., it uses r(x) = λ‖x‖1 +
∑n−1

i=1 |xi+1 − xi|. This
combination elicits not only sparse vectors x, but also enforces their gradients to be sparse—
thus, a few large changes will be preferred to several small changes in adjacent components
of x. This idea proves useful in applications such as change detection or even in feature
selection [Tibshirani et al., 2005].

• Total variation. Suppose the variable x is a matrix in R
n×n. The classical total-variation

regularizer used for image denoising is [Rudin et al., 1992]:

r(x) =
∑

1≤i,j<n
‖(∇x)i,j‖2, where (∇x)i,j =

[

xi+1,j − xi,j

xi,j+1 − xi,j

]

.

However, we alert the reader in passing that this choice of r(x) does not full fit with the
theory that we will describe next, though it can be accommodated using the “inexact”
methods proposed in [Schmidt et al., 2011].

• Mixed-norm regression. Assume that x is split into potentially overlapping “groups” of
subvectors x1, . . . ,xG. Instead of selecting features individually, as is done in Lasso, we
could now select features groupwise, e.g., using

r(x) :=
(

∑G

i=1
‖xi‖pq

)1/p

.

We refer the reader to [Bach et al., 2011] for a more detailed development.

Let us now see how to solve (39). Nesterov [2007] showed how to minimize φ at a rate limited
by only the smooth part of the objective as long as r is simple; that is, the following operator is
assumed to be computable exactly.6

Definition 4.9 (Proximity operator). Let r : X ⊆ R
n → R be lower semicontinuous and convex.

The proximity operator for r, indexed by scalar η > 0, is the following nonlinear map:

proxrη : y 7→ argminx∈X

(

r(x) + 1
2η‖x− y‖2

)

. (40)

Operator (40) generalizes the projection operator (cf. (6)): if r(x) is the indicator function of set
X , then proxrη ≡ PX . One of its most useful properties is its nonexpansivity, shown as Lemma 4.1.

6Large parts of the theory also carry over for inexact proximity operators, see [Schmidt et al., 2011] for a nice
account.

14

Lemma 4.1 (Nonexpansivity [see e.g., Combettes and Pesquet, 2010, Lemma 2.4]). The operator
proxrη satisfies

‖proxrη x− proxrη y‖ ≤ ‖x− y‖, ∀ x, y ∈ R
n. (41)

This operator enjoys several other useful properties, and we encourage the reader to read the
excellent survey [Combettes and Pesquet, 2010] for more information.

In analogy to iteration (5) where the projection operator PX handles constraints, we may wonder
similarly whether proxrη allows us to handle the nonsmooth term r(x), if we simply iterate

xk+1 = proxrηk
(xk − αk∇ℓ(xk)), k = 0, 1, (42)

It turns out that this is indeed possible. Iteration (42) is the so-called forward backward splitting [e.g.,
Combettes and Wajs, 2005] method, which converges at the rate O(1/k), matching the rate achieved
by the smoothing methods of the previous section. Extending the analogy to gradient-projection, it
is therefore fitting to ask whether this O(1/k) rate can be improved?

By now, no surprise: such an improved version was developed by Nesterov [2007]; also by Beck
and Teboulle [2009]. These improved methods achieve the optimal rate O(1/k2), and if in addition
ℓ is strongly convex, their rate improves to (optimal) linear [Nesterov, 2007]. We summarize Beck
and Teboulle’s method FISTA, which incidentally is almost implicit (modulo the prox-operator) in
Nesterov’s optimal method (16).

Choose x0 ∈ R
n; y0 = x0; and α0 = 1

For k ≥ 0 iterate:










xk+1 = proxr1/L(yk − 1
L∇ℓ(yk))

αk+1 = (1 +
√

4α2
k + 1)/2

yk+1 = xk+1 +
αk−1
αk+1

(xk+1 − xk)
(43)

From (43) it is clear that the computing xk+1 is the hard part. Thus, a lot of attention has been
paid to efficient computation of proximity operators. Discussing this computation would take us
beyond the scope of this chapter; we refer the interested reader to [Sra et al., 2011, Liu et al., 2009];
also see the useful survey by [Patriksson, 2005].

Another digression: a faster method?

We saw that among gradient-based methods, the nonmonotonic method of Barzilai and Borwein [1988]
can empirically outperforms gradient descent and Nesterov’s optimal method (Fig. 2). Do we have
a similarly strong method for the composite objective case? There are at least two such methods:
SpaRSA [Wright et al., 2009] and TRIP [Kim et al., 2010]. The latter is based on a nonsmooth trust-
region strategy that builds quadratic approximations to its objective function by using BB-formulae,
and then uses proximity operators to handle the nonsmooth part; the trust-region strategy ensures
convergence. Empirically, TRIP seems to yield impressive performance—see Figs. 3 and 4.

5 Stochastic optimization

So far we assumed access to a noiseless oracle. It is more realistic to consider noisy oracles, where
one does not have access to exact objective function or gradient values, but rather to their noisy
estimates (usually zero mean, bounded variance noise is assumed).

15

16

10
0

10
1

10
2

10
3

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Number of iterations (k)

φ(
x k)−

φ(
x*)

Lasso problem with λ=1.0

FBS

FISTA

TRIP

10
0

10
1

10
2

10
3

10
−10

10
−5

10
0

10
5

Number of iterations (k)

φ(
x k)−

φ(
x*)

Lasso problem with λ=10.0

FBS

FISTA

TRIP

Figure 3: Lasso problem that solves min 1

2
‖DTx− b‖2 +λ‖x‖1, where D is as in Fig. 2 with n = 500. Left

plot shows a run with λ = 1, which leads to ≈ 7% sparsity; right plot shows run with λ = 10, which leads
to ≈ 41% sparsity. As sparsity increases, FBS performs similar to FISTA. Surprisingly, the TRIP method
of Kim et al. [2010], which combines Barzilai-Borwein stepsizes with proximity operators, outperforms both,
more so for higher sparsity.

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

10
2

10
4

Number of iterations (k)

φ(
x k)−

φ(
x*)

Lasso problem with λ=100

FBS

FISTA

TRIP

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Number of iterations (k)

φ(
x k)−

φ(
x*)

Lasso problem with λ=500

FBS

FISTA

TRIP

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Number of iterations (k)

φ(
x k)−

φ(
x*)

Lasso problem with λ=5

FBS

FISTA

TRIP

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Number of iterations (k)

φ(
x k)−

φ(
x*)

Lasso problem with λ=100

FBS

FISTA

TRIP

Figure 4: Lasso problem on two UCI datasets. Top row: Abalone dataset (4177 × 8); bottom row: Year
Prediction dataset (463715× 90) [Frank and Asuncion, 2010]. Both FISTA and TRIP outperform FBS, and
TRIP seems to yield higher accuracy solutions. Note that we used datasets with more rows than columns
to make it easy to compute the optimal L and µ parameters needed by FISTA and FBS.

This setup is fundamental to machine learning and has attracted enormous interest in the com-
munity. Therefore, it is impossible to survey this topic here, and we refer the reader to the tuto-
rial [Srebro and Tewari, 2010] that expostulates the connection between stochastic optimization and
machine learning; see also [Bottou and Bousquet, 2011] and [Ghadimi and Lan, 2010] for background
and algorithms. We limit our attention to the very recent work of Ghadimi and Lan [2010], because
of its generality and algorithmic simplicity.

In this section too, we are interested in computing

φ∗ := min
x∈X

(

φ(x) := f(x) + r(x)
)

, (44)

where X ⊆ R
n is a compact convex set and r(x) is a ‘simple’ convex function as before. We assume

that f : X → R is convex and satisfies

1
2µ‖y − x‖2 ≤ f(y)− f(x)− 〈f ′(x), y − x〉

≤ 1
2L‖y − x‖2 +M‖y − x‖, for all x,y ∈ X , (45)

but that it is not known exactly. Specifically, assume that f (and f ′) are available to us via a
stochastic oracle, which on receiving xk as input, returns the noisy estimates ({ξk} is a sequence of
i.i.d. noise variables):

F (xk, ξk) ∈ R, and G(xk, ξk) ∈ R
n. (46)

Further, it is assumed that the estimates (46) satisfy

E[F (x, ξk)] = f(x), E[G(x, ξk)] = f ′(x) ∈ ∂f(x), (47)

and that the variance of the (sub)gradient estimates is bounded, so that

E[‖G(x, ξk)− f ′(x)‖2] ≤ σ2 for k ≥ 1. (48)

The above setup is parameterized by the tuple (L,M, µ, σ), different choices of which cover
different scenarios. For example, σ = 0 reduces to the zero-noise, non-stochastic case. If f ∈ S1

L,µ,

then M = 0, while if f ∈ C0
L(f), then (45) holds with L = 0, µ = 0, and M = 2L(f). Ghadimi

and Lan [2010] present a general algorithm for solving the (L,M, µ, σ) setup; a simplified version of
which is presented below.

Let x0 ∈ X ; z0 = x0; and γ ≥ 0 be provided.
For k ≥ 1 iterate:

αk = 2
k+1 ; γk = 4L

k(k+1) +
2γ√
k
; τk = (1−αk)(µ+γk)

γk+(1−α2
k
)µ

yk = τkzk−1 + (1− τk)xk−1

Invoke stochastic oracle to compute gk = G(yk, ξk)









x̂k = αkµyk + ((1− αk)µ+ γk)xk−1 − αkgk
xk = proxrαk/(γk+µ)(x̂k/(µ+ γk))

zk = αkxk + (1− αk)zk−1;

(49)

The above algorithm enjoys the following complexity results.

17

Theorem 5.1 (Ghadimi and Lan [2010]). Let {zk}k≥1 be generated by (49) and let D := supx∈X ‖x− x∗‖,
where φ(x∗) = φ∗. If we set γ ≈ 1.94

√
M2 + σ2/D, then for the case with µ = 0 we have

E[φ(zk)− φ∗] ≤ 2LD2

k(k + 1)
+

34D
√
M2 + σ2

5
√
k

. (50)

For µ > 0 we can set γ = 0; then we have

E[φ(zk)− φ∗] ≤ 2LD2

k(k + 1)
+

8(M2 + σ2)

µ(k + 1)
. (51)

We omit the proof as it is very tedious. It is worth noting that in the absence of strong convexity
(i.e., µ = 0), the result (50) is optimal to within constants. For strongly convex optimization, the
result (51) is optimal in the slower O(1/k) term, but suboptimal in the faster term. Specifically, it
is known [Nemirovsky and Yudin, 1983] that to find a point x̄ ∈ X such that E[φ(x̄)− φ∗] ≤ ǫ, the
number of calls to the stochastic oracle cannot be smaller than

C
(√

L
µ log

(

LD2

ǫ

)

+ (M+σ)2

µǫ

)

,

where D is as defined in Theorem 5.1, and C is an absolute constant.
Ghadimi and Lan [2010] also develop a multistage version of (49) that achieves the above cited

lower bound, though at the cost of a more complicated algorithm; large-deviation results that show
bounds in terms of probability (rather than expected values) are also presented.

5.1 Other closely related algorithms

We conclude this section by mentioning two other setups algorithmically related to stochastic opti-
mization: (i) online convex optimization; and (ii) incremental (sub)gradient and proximal methods.
For an accessible account of the former please see [Hazan, 2011], while for a survey treatment of the
latter see [Bertsekas, 2010].

In the stochastic setup we assume the ‘samples’ ξi to be i.i.d. In contrast, in online optimization,
we receive samples that need not follow any distribution and may even be chosen adversarially. In
general, at each step an online algorithm selects a point, say xk ∈ X (from a fixed set X). Then,
the adversary reveals its cost function fk : X → R (assumed to be convex), and the online algorithm
incurs a cost fk(xk). Since the online method selects xk before seeing the cost, its decision might be
suboptimal. So, the method suffers regret, which measures departure from the best (in hindsight)
decision:

RK :=
∑K

k=1
fk(xk)−minx∈X

∑K

k=1
fk(x). (52)

In online optimization, we are interested in obtaining algorithms for which the average regret RK/K
is sublinear, so that as the number of rounds K → ∞, the algorithm converges to the optimal
answer. When the functions fk are Lipschitz continuous but do not have any additional structure,
regret O(

√
k) is the best attainable, and can be attained for example by the regularized follow-the-

leader method [Hazan, 2011]. Assuming more structure, such as strong-convexity, logarithmic regret
O(log k) can be attained—recent work of [Hazan and Kale, 2011] indicates that this might be the
best possible.

A strong resemblance to the online setup is borne by incremental algorithms. The key difference
here is that the components of the objective function are fixed in advance. Here too, the objective
function is decomposable and we solve

minx∈X φ(x) :=
∑m

i=1
fk(x), (53)

18

where each fk : X → R is convex. If we apply the projected (sub)gradient method to (53) we obtain
the iteration

xk+1 = PX
(

xk − αk

∑m

i=1
f ′
k(xk)

)

, f ′
k(x) ∈ ∂fk(x). (54)

However, if the number of components m in (53) is very large, it can be impractical to compute the
entire (sub)gradient at each iteration. Instead, we could use incremental (sub)gradients and simply
iterate as

xk+1 = PX
(

xk − αkf
′
i(k)(xk)), (55)

where i(k) ∈ [1..m] is a suitably chosen index. (If i(k) is picked uniformly at random, then (55)
is essentially a stochastic subgradient method.) Numerical experience suggests that these methods
can be much faster when one is far away from convergence, but become increasingly inferior close to
convergence [Bertsekas, 2010]. These methods can also be shown to require O(1/ǫ2) cycles (through
all the m components) to converge to an ǫ-accuracy solution, though the constants in the big-Oh
are much worse for a deterministic choice of i(k) than for a randomized one.

6 Parallel and Distributed Optimization

Under preparation.

7 Algorithmic tricks of the trade

Under preparation.

8 A brief guide to software

Under preparation.

9 Summary

In this chapter we surveyed some fundamental algorithms and complexity results in large-scale
convex optimization. Given the great importance of this class of optimization problems, especially
for applications in data intensive areas such as machine learning, we could not cover all works that
deserve a mention. In the notes we offer pointers to additional interesting material; we apologize
in advance to the authors whose work has escaped our summary and will be grateful if they or the
reader would alert us to such an omission.

9.1 Notes

This section is under constant revision...

Complexity. The complexity bounds discussed in this chapter draw on the seminal work of Ne-
mirovsky and Yudin [1983]. However, we followed Nesterov’s (2004) gentler exposition for greater
accessibility. The lower bounds proved by [Nemirovsky and Yudin, 1983] invoke ‘resisting oracles’
(adversarial), which can require very ingenious construction. More recently, Raginsky and Rakhlin
[2011] presented a simpler technique based on relating optimization to statistical hypothesis testing,
which also yields several of the lower bounds for convex optimization.

19

Despite the acceleration achieved by the methods that exploiting problem structure to circumvent
the black-box assumption, these lower-bounds and subgradient methods remain important as ever.
This is so, because often the problem structure is too complex or too non-transparent to be exploited;
and in such circumstances, subgradient schemes can still be employed—see [Nesterov, 2009] for more
discussion.

Smooth convex optimization. As mentioned in Theorem 3.6, for sufficiently large problem di-
mension, the number of iterations of any first-order method cannot be better than O(

√

LD2/ǫ). This
result was first shown by Nemirovsky and Yudin [1983], who also provided a nearly optimal method
that achieved this lower-bound up to logarithmic factors. Nesterov’s breakthrough work [Nesterov,
1983] provided the first provably optimal method. Later, Nesterov [1988, 2005a] presented two more
optimal methods. Other variations on Nesterov’s optimal methods have also been considered; for
a nice summary and simplified explanation of such methods, we refer the reader to Tseng’s (2008)
manuscript.

Nonsmooth optimization. As hinted by Theorem 4.4, the number of iterations of any first-order
method cannot be smaller than O(L2D2/ǫ2). The simple subgradient method attains this bound
(up to constant factors). Nemirovsky and Yudin [1983] presented the mirror-descent procedure that
may be much more effective than ordinary subgradient method (which is merely mirror descent
in a Euclidean setup) when dealing with non-Euclidean setups: the key idea is to use a different
(non quadratic) ‘prox-function’ based on Bregman divergences. Nesterov [2005b] also allows using
Bregman divergence based prox-functions.

In general, mirror-descent has been shown to be a workhorse in fact for optimally tackling all
convex optimization settings, including strongly convex, smooth, stochastic, and online; moreover,
its analysis can be simpler than that of Nesterov’s optimal methods—we refer the reader to [Juditsky
and Nemirovski, 2011a,b].

Stochastic optimization. Here the optimization problem may be written as one of minimizing an
expected loss φ(x) := E[Φ(x, ξ)]. The random variable ξ models parameter variation and uncertainty,
and its value is not known; only its distribution is assumed to be available. The goal of stochastic
programming is to find an x that minimizes φ on average, or with high probability. The expectation
involves a multidimensional integral, so closed-form expressions for φ are almost never available.
Instead, one has to resort to Monte-Carlo sampling, leading to the sample average approximation
(SAA) and stochastic approximation (SA) methods. The SA method dates back to the classic
paper of Robbins and Monro [1951]. Since then stochastic methods have exploded in interest;
see [Nemirovsky and Yudin, 1983], [Kushner and Yin, 2003], [Nemirovski et al., 2009], [Ermoliev,
1981] and references therein.

It was believed that the SAA approach is superior to SA, but Nemirovski et al. [2009] derived a
mirror-descent version of SA that exhibits an unimprovable rate of convergence O((M +σ)/

√
k); see

also [Nesterov, 2009]. We remark in passing that in classic SA, the objective function φ is assumed
to be smooth (C2

L) and strongly convex, and only recently, interest in nonsmooth stochastic setups
has surged—see also [Bertsekas and Tsitsiklis, 2000].

Algorithms. Figures 2 and 3 indicate that other first-order algorithms not discussed in this chap-
ter can also be very competitive. Some noteworthy ones among these are: (i) alternating direction
method of multipliers (ADMM)—see the recent survey treatment by [Boyd et al., 2011], who also
advocate ADMM as a practical method for distributed and parallel optimization; (ii) coordinate

20

descent methods [Tseng and Yun, 2009, Nesterov, 2010]; (iii) trust-region methods for composite
minimization [Kim et al., 2010]; (iv) interior point methods specialized to machine learning prob-
lems [Gondzio, 2011, Andersen et al., 2011] (though generally not scalable, unless the Hessian has
special structure or is very sparse); (v) bundle and cutting plane methods [Teo et al., 2010]; (vi)
specialized primal-dual methods [Esser et al., 2010]; (vii) level-set methods for composite optimiza-
tion [Lan, 2011]; (viii) dual augmented Lagrangian methods [Tomioka et al., 2011]; (ix) Nesterov
style methods with optimal rates despite inexact proximity operators [Schmidt et al., 2011].

Other setups. We mention some important setups missing in this chapter: (i) bandit optimiza-
tion [Audibert and Munos, 2011]; (ii) nonconvex stochastic optimization [Bertsekas and Tsitsiklis,
2000, Ermoliev, 1981]; (iii) variational inequalities [Nemirovski, 2004]; (iv) robust optimization [Ben-
Tal et al., 2009]; (v) derivative free minimization [Conn et al., 2009]; (vi) trust-region methods [Conn
et al., 2000]; (vii) distributed and parallel optimization [Bertsekas, 2010, Zinkevich et al., 2010, Duchi
et al., 2011, Recht et al., 2011].

Acknowledgments

I am grateful to Jeff Bilmes for hosting me at the University of Washington, Seattle, during my
unforeseen visit in July 2011; large-parts of this chapter were written during that time.

References

M. S. Andersen, J. Dahl, Z. Liu, and L. Vandenberghe. Interior-point methods for large-scale cone
programming. In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for machine learning.
MIT Press, 2011.

J.-Y. Audibert and R. Munos. Introduction to Bandits: Algorithms and Theory. ICML 2011
Tutorial, 2011.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Convex optimization with sparsity-inducing
norms. In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for Machine Learning. MIT
Press, 2011.

R. Baraniuk. Compressive sensing. IEEE Signal Processing Magazine, 24(4):118–121, 2007.

J. Barzilai and J. M. Borwein. Two-Point Step Size Gradient Methods. IMA J. Num. Analy., 8(1),
1988.

A. Beck and M. Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
Problems. SIAM J. Imaging Sciences, 2(1):183–202, 2009.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Univ. Press, 2009.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, second edition, 1999.

D. P. Bertsekas. Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimiza-
tion: A Survey. Technical Report LIDS-P-2848, MIT, 2010.

D. P. Bertsekas and J. N. Tsitsiklis. Gradient Convergence in Gradient methods with Errors. SIAM
J. on Optimization, 10(3):627–642, 2000.

21

L. Bottou and O. Bousquet. The tradeoffs of large-scale learning. In S. Sra, S. Nowozin, and S. J.
Wright, editors, Optimization for machine learning. MIT Press, 2011.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, March 2004.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Optimization and Statis-
tical Learning via the Alternating Direction Method of Multipliers. In Michael Jordan, editor,
Foundations and Trends in Machine Learning, volume 3, pages 1–124. NOW, 2011.

J. Chen and S. Burer. A first-order smoothing technique for a class of large-scale linear programs.
Argonne National Labls Preprint, (ANL/MCS-P1971-1011), 2011.

P. L. Combettes and J.-C. Pesquet. Proximal Splitting Methods in Signal Processing.
arXiv:0912.3522v4, May 2010.

P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. Multiscale
Modeling and Simulation, 4(4):1168–1200, 2005.

A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. SIAM, 2000.

A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization. SIAM,
2009.

J. Duchi, A. Agarwal, and M. Wainwright. Dual Averaging for Distributed Optimization: Con-
vergence Analysis and Network Scaling . IEEE Transactions on Automatic Control, 2011. To
appear.

Y. Ermoliev. Stochastic quasigradient methods and their applications in systems optimization.
Technical Report WP-81-2, International Institute for Applied Systems Analysis, 1981.

E. Esser, X. Zhang, and T. F. Chan. A General Framework for a Class of First Order Primal-
Dual Algorithms for Convex Optimization in Imaging Science. SIAM J. Imaging Sciences, 3(4):
1015–1046, 2010.

A. Frank and A. Asuncion. UCI machine learning repository, 2010. URL
http://archive.ics.uci.edu/ml.

S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic
composite optimization. SIAM J. Optimization, 2010. Submitted.

J. Gondzio. Interior point methods in machine learning. In S. Sra, S. Nowozin, and S. J. Wright,
editors, Optimization for machine learning. MIT Press, 2011.

E. Hazan. The convex optimization approach to regret minimization. In S. Sra, S. Nowozin, and
S. J. Wright, editors, Optimization for machine learning. MIT Press, 2011.

E. Hazan and S. Kale. Beyond the regret minimization barrier: an optimal algorithm for stochastic
strongly-convex optimization. In Conference on Learning Theory (COLT), 2011.

A. Juditsky and A. Nemirovski. First-Order Methods for Nonsmooth Convex Large-Scale Optimiza-
tion, I: General Purpose Methods. In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization
for machine learning. MIT Press, 2011a.

22

A. Juditsky and A. Nemirovski. First-Order Methods for Nonsmooth Convex Large-Scale Opti-
mization, II: Utilizing Problem’s Structure. In S. Sra, S. Nowozin, and S. J. Wright, editors,
Optimization for machine learning. MIT Press, 2011b.

D. Kim, S. Sra, and I. S. Dhillon. A scalable trust-region algorithm with application to mixed-norm
regression. In Int. Conf. Machine Learning (ICML), 2010. Submitted.

H. J. Kushner and G. G. Yin. Stochastic approximation and recursive algorithms and applications.
Springer, 2003.

G. Lan. Level methods uniformly optimal for composite and structured nonsmooth convex opti-
mization. Submitted, 2011.

J. Liu, S. Ji, and J. Ye. SLEP: Sparse Learning with Efficient Projections. Arizona State University,
2009.

A. Nemirovski. Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with
Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems.
SIAM J. on Optimization, 15:229–251, January 2004.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust Stochastic Approximation Approach
to Stochastic Programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience, 1983. Translated by: E. R. Dawson.

Yu. Nesterov. A method for solving a convex programming problem with rate of convergence o(1/k2).
Soviet Math. Dokady, 27(2):372–376, 1983.

Yu. Nesterov. On an approach to the construction of optimal methods of minimization of smooth
convex functions. Ekonom. i. Mat. Metody, 24:509–517, 1988.

Yu. Nesterov. Smooth minimization of non-smooth functions. Technical Report 2003/12, Université
catholique de Louvain, Center for Operations Research and Econometrics (CORE), January 2003.

Yu. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer, 2004.

Yu. Nesterov. Smooth minimization of nonsmooth functions. Math. Program., Series A, 103:127–152,
2005a.

Yu. Nesterov. Excessive Gap Technique in Nonsmooth Convex Minimization. SIAM Journal on
Optimization, 16(1):235–249, 2005b.

Yu. Nesterov. Gradient methods for minimizing composite objective function. Technical Report
2007/76, Université catholique de Louvain, Center for Operations Research and Econometrics
(CORE), September 2007.

Yu. Nesterov. How to advance in Structural Convex Optimization. OPTIMA, MPS Newsletter, 78:
2–5, 2008.

Yu. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Programming,
120:221–259, 2009.

23

Yu. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. Techni-
cal Report 2010/2, Université catholique de Louvain, Center for Operations Research and Econo-
metrics (CORE), 2010.

Yu. Nesterov and A. Nemirovski. Interior Point Polynomial Algorithms in Convex Programming.
SIAM, 1994.

M. Patriksson. A survey on a classic core problem in operations research. Technical Report 2005:33,
Chalmers University of Technology and Göteborg University, Oct. 2005.

B.T. Polyak. Introduction to Optimization. Optimization Software Inc., 1987.

Stephen Portnoy and Roger Koenker. The Gaussian hare and the Laplacian tortoise: computability
of squared-error versus absolute-error estimators. Statistical Science, 12(4):279–300, 1997.

M. Raginsky and A. Rakhlin. Information-based complexity, feedback and dynamics in convex
programming. IEEE Transactions on Information Theory, 2011. doi:10.1109/TIT.2011.2154375.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A Lock-Free Approach
to Parallelizing Stochastic Gradient Descent. In J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N.
Pereira, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 24,
pages 693–701. 2011.

H. Robbins and S. Monro. A Stochastic Approximation Method. Annals of Mathematical Statistics,
22(3):400–407, 1951.

R. T. Rockafellar. Convex Analysis. Princeton Univ. Press, 1970.

R. T. Rockafellar and R. J.-B. Wets. Variational analysis. Springer, 1998.

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D, 60:259–268, 1992.

M. Schmidt, N. Le Roux, and F. Bach. Inexact. In Advances in Neural Information Processing
Systems (NIPS), 2011.

S. Sra, S. Nowozin, and S. J. Wright, editors. Optimization for Machine Learning. MIT Press, 2011.

N. Srebro and A. Tewari. Stochastic Optimization for Machine Learning. ICML 2010 Tutorial, 2010.

P. Stobbe and A. Krause. Efficient minimization of decomposable submodular functions. In Advances
in Neural Information Processing Systems (NIPS), 2010.

C. H. Teo, S.V.N. Vishwanthan, A. J. Smola, and Q. V. Le. Bundle Methods for Regularized Risk
Minimization. J. Machine Learning Research, 11:311–365, 2010.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via the
fused lasso. J. Royal Stat. Soc.: Series B, 67(1):91–108(18), 2005.

Robert Tibshirani. Regression shrinkage and selection via the lasso. J. R. Statist. Soc., 58(1):
267–288, 1996.

V. M. Tikhomirov. The evolution of methods of convex optimization. The American Mathematical
Monthly, 103(1):pp. 65–71, 1996.

24

R. Tomioka, T. Suzuki, and M. Sugiyama. Super-Linear Convergence of Dual Augmented Lagrangian
Algorithm for Sparsity Regularized Estimation. J. Machine Learning Research, 12:1537–1586,
2011.

P. Tseng. On accelerated gradient methods for convex-concave minimization. SIAM J. Optimization,
2008. Submitted.

P. Tseng and S. Yun. A Block-Coordinate Gradient Descent Method for Linearly Constrained
Nonsmooth Separable Optimization. J. Optim. Theory Appl., 140:513–535, 2009.

S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by separable approxi-
mation. IEEE Trans. Sig. Proc., 57(7):2479–2493, 2009.

Yiming Ying, Kaizhu Huang, and Colin Campbell. Sparse Metric Learning via Smooth Optimization.
In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in
Neural Information Processing Systems 22, pages 2214–2222. 2009.

D. B. Yudin and A. S. Nemirovskii. Informational complexity and effective methods of solution for
convex extremal problems. Ekonomika i Matematicheski Metody, 12:357–369, 1976.

X. Zhang, A. Saha, and S. V. N. Vishwanathan. Accelerated Training of Max-Margin Markov
Networks with Kernels. In Algorithmic Learning Theory (ALT), 2011.

M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized Stochastic Gradient Descent. In
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in
Neural Information Processing Systems 23, pages 2595–2603. 2010.

25

