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1 Introduction

We study in this chapter large-scale nonconvex optimization problems with composite objective functions
that are composed of a differentiable possibly nonconvex cost and a nonsmooth but convex regularizer.
More precisely, we consider optimization problems of the form

minimize ®(x):= f(x)+r(x), st x€ X, (1)

where X C IR" is a compact convex set, f : R" — R is a differentiable cost function and r : R” — Ris a
closed convex function. Further, we assume that the gradient V f is Lipschitz continuous on X (denoted
feCiHX)),ie,

JdL>0 st |[|[Vf(x)=Vf(y)| <L|x—yl forall x,yeX. (2)

Throughout this chapter, ||-|| denotes the standard Euclidean norm.

Problem (1) generalizes the more thoroughly studied class of composite convex optimization prob-
lems [30], a class that has witnessed huge interest in machine learning, signal processing, statistics,
and other related areas. We refer the interested reader to [2, 3, 21, 37] for several convex examples
and recent references. A thread common to existing algorithms for solving composite problems is
the remarkably fruitful idea of proximal-splitting [9]. Here, nonsmoothness is handled via proximity
operators [29], which allows one to treat the nonsmooth objective f + r essentially as a smooth one.

But leveraging proximal-splitting methods is considerably harder for nonconvex problems, espe-
cially without compromising scalability. Numerous important problems have appealing nonconvex
formulations: matrix factorization [25, 27], blind deconvolution [24], dictionary learning and sparse re-
construction [23, 27], and neural networks [4, 19, 28], to name a few. Regularized optimization within
these problems requires handling nonconvex composite objectives, which motivates the material of this
chapter.

The focus of this chapter is on a new proximal splitting framework called: Nonconvex Inexact
Proximal Splitting, hereafter N1rs. The Ni1ps framework is inexact because it allows for computational
errors, a feature that helps it scale to large-data problems. In contrast to typical incremental meth-
ods [5] and to most stochastic gradient methods [16, 18] that assume vanishing errors, N1ps allows the
computational errors to be nonvanishing.

Niprs inherits this capability from the remarkable framework of Solodov [33]. But Niprs not only
builds on [33], it strictly generalizes it: Unlike [33], N1ps allows r # 0 in (1). To our knowledge, Nirs
is the first nonconvex proximal splitting method that has both batch and incremental incarnations; this
claim remains true, even if we were to exclude the nonvanishing error capability.” We mention some
more related work below.

Among batch nonconvex splitting methods an early paper is [14]. Another batch method can be
found in the pioneering paper on composite minimization by Nesterov [30], who solves (1) via a
splitting-like algorithm. Both [14] and [30] rely on monotonic descent (using line-search or otherwise)
to ensure convergence. Very recently, [1] introduced a powerful class of “descent-methods” based
on Kurdyka-Lojasiewicz theory. In general, the insistence on descent, while theoretically convenient,
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makes it hard to extend these methods to incremental, stochastic, or online variants. The general
proximal framework of [40] avoids strict monotonic descent at each step by using a non-monotonic
line-search.

There are some incremental and stochastic methods that apply to (1), namely the generalized gradi-
ent algorithm of [35] and the stochastic generalized gradient methods of [12, 13], (and the very recent
work of [17, 18]). All these approaches are analogous to subgradient methods, and thus face similar
practical difficulties (except [18]). For example, it is well-recognized that subgradient methods fail to
exploit composite objectives [11, 30]. Moreover, they exhibit the effect of the regularizer only in the
limit, which conflicts with early termination heuristics frequently used in practice. If, say the nons-
mooth part of the objective is ||x||;, then with subgradient-style methods sparse solutions are obtained
only in the limit and intermediate iterates may be dense. Thus, like the convex case it may be of
substantial practical advantage to use proximal splitting even for (1).

2 The Nirs Framework
We rewrite (1) as an unconstrained problem by introducing the function
8(x) := r(x) +6(x[X),
where §(x|X') is the indicator function for set X. Our problem then becomes:
minimize ®(x) := f(x) + g(x) x € R". (3)
Since we solve (3) via a proximal method, we begin with the definition below.

Definition 1 (Proximity operator). Let ¢ : R" — R be lower semicontinuous (Isc) and convex. The proximity
operator for g, indexed by n > 0, is the nonlinear map [31, Def. 1.22]:

. 1 2
prox,, : y ' argmin (g(x) + o [x — y[2). @
& x%lR" ( 2'7 )
Using the operator (4), the classic forward-backward splitting (FBS) [8] iteration (for suitable #; and
convex f) is written as

= prox,, (<F — V), k=01,.... )

The Ni1ps framework described in this chapter is motivated by the simple form of iteration (5). In
particular, for this iteration Niprs introduces two powerful generalizations: (i) it permits a nonconvex
f; and (ii) it allows computational errors. More precisely, Nirs performs the iteration

xk+l — proxg,nk (xk o ﬂka(xk) + ﬂke(xk))‘ (6)

The error vector e(x¥) in (6) is the interesting part. It denotes potential error made at step k in the
computation of the gradient V f(x). It is important to observe that the net error is y7ze(x¥), so that the
error is scaled by the stepsize. This scaling is made to suggest that the limiting value of the stepsize is
what ultimately determines the effective error, and thereby governs convergence.

Remark 1. We warn the reader against a potential pitfall of the notation for error in (6). That iteration does not
mean that N1ps adds an error vector e(x*) when iterating, but rather that it iterates

k+1

where g~ is an erroneous computation of the gradient, which is explicitly depicted in (6) as g5 = V f(x¥) — e(x*).



But notice that we do not impose the following condition
lim [|e(x¥)|| = 0 @)
k—o0

on the error vectors, which is typically imposed by stochastic-gradient methods [5]. Since we do not
require the errors to vanish in the limit, to make Nirs well-defined we must nevertheless somehow
control them. Thus, we impose a mild restriction on the errors: we assume that there is a fixed value
i], so that for all stepsizes 7 smaller than 7j the gradient errors satisfy

nlle(x)|| <& for some fixed € >0, andVx e X. (8)

Clearly, condition (8) is weaker than the usual requirement (7).

Remark 2. We can consider errors in the proximity operator too, i.e., the prox, ,, computation may also be

inexact (for convex optimization inexact proximity operators have been studied since a long-time; two recent
references are [32, 39]). With inexact proximity operations iteration (6) becomes

A = prox,, (2 = eV F(x0) + pre(x) + p (),

where . p(x*) is the error in proximity operator. The dependency on ;. highlights that the error should eventually
shrink in a manner similar to (8). This error can be easily incorporated into our analysis below, though at the
expense of heavier notation. To avoid clutter we omit details and leave them as an exercise for the interested
reader.

Since errors in the gradient computation need not disappear, we cannot ensure exact stationary
points; but we can nevertheless hope to ensure inexact stationary points. Let us make this more precise.
A point x* € R" is stationary for (3), if and only if it satisfies the inclusion

0€dc@(x") = Vf(x") +0g(x"), ©)
where dc®(x*) is the Clarke subdifferential [7] at x*. The optimality condition (9) may be recast as the

fixed-point equation
x* = prox,  (x" =y Vf(x")), forn>0, (10)

which helps characterize approximate stationarity. Define the prox-residual
p(x) := x = proxg, (x = Vf(x)); (11)

then, for stationary x* the residual norm ||p(x*)|| vanishes. At a point x, let the total perturbation be
given by e(x) > 0. We define a point & to be e-stationary if the residual norm satisfies the condition

(@) < e(x). (12)

Since we cannot measure convergence to an accuracy better than the amount of prevalent noise, we
require €(x) > y||e(x)||. By letting 7 become small enough, we may hope to come arbitrarily close to a
stationary point.

2.1 Convergence analysis

In this section, we outline a simple convergence analysis for the Nips iteration (6). Our analysis is
structured upon the powerful framework of [33]. But our problem class of composite objectives is
more general than the differentiable problems considered in [33] since we allow nonsmooth objective
functions. Our analysis leads to the first nonconvex proximal splitting algorithm which allows noisy
gradients; also we obtain the first nonconvex incremental proximal splitting algorithm regardless of
whether the noise vanishes or not.



For our analysis we make the following standing assumption.
Assumption. The stepsizes 1 satisfy the bounds

¢ <liminfe g, limsupyn <min{l,2/L—c}, 0<c<1/L. (13)
We start our analysis by recalling two well-known facts.

Lemma 2.1 (Descent). Let f be such that V f satisfies (2). Then

f(x) = fy) = (V) x—y)| < 5lx—y|® VxyeX. (14)

Proof. Since f € C}, by Taylor’s theorem for z; = y + t(x — y) we have

F() = ) = (VFW), x =) = | Jg{Vf(z) = V), x = y)dt],
< Jo INF) = VFWI - llx —yllde < L fy tllx = yl3de = §llx —y]3.
We used the triangle-inequality, Cauchy-Schwarz, and that f € C} above. O

Lemma 2.2. The operator prox, is nonexpansive, that is,

Ui
||Pr0xg,;7 X = proxg,q y” < Hx _yH’ v Xy € R". (15)

Proof. For brevity we drop the subscripted 7. After renaming variables, from optimality conditions
for the problem (4), it follows that x — prox, x € nag(proxg x). A similar characterization holds for y.
Thus, x — prox, x and y — prox, y are subgradients of ¢ at prox, x and prox.y, respectively. Thus,
g(prox, x) = g(prox, y) + (y — prox, y, prox, x — prox, )
g(prox, y) = g(prox, x) + (X — prox, x, prox, y — prox, x).

Adding the two inequalities we obtain firm nonexpansivity
2
||proxg X — prox, yl|© < <proxg X — prox,y, x — v),
from which via Cauchy-Schwarz, we easily obtain (15). O
Next, we prove a crucial monotonicity property of proximity operators.

Lemma 2.3. Define Py = prox,, ; let y,z € R", and n > 0; define the functions

S’

1Py (y —nz) —yll, (16)
1Py (y —nz) — yl|- (17)

p(n) :
q(n) :

Then, p(n) is a decreasing function and q(n) is an increasing function of 1.

Proof. Our proof relies on well-known results about Moreau-envelopes [8, 31]. Consider thus the
“deflected” proximal objective

mg(x,1;9,2) = (z, x —y) + 317 lx = y[I* + g (x), (18)
to which we associate its Moreau-envelope

&) := xlg)f( mge(x,1;Y,2). (19)



Since myq is strongly convex in x, and X is compact, the infimum in (19) is attained at a unique point,
which is precisely Pff (y — 11z). Thus, & (1) is a differentiable function of 7, and in particular

&g (1) _
Sy = En IRy =) — P = —3p()®

Observe that m, is jointly convex in (x,7); it follows that & is convex too. Thus, its derivative &, /9y
is increasing, whereby p(7) is decreasing. Similarly, & (7) := &(1/7) is concave in 7 (it is a pointwise
infimum of linear functions). Thus, its derivative

0(7) .
L = Py =7y =2l = q(1/7),
is a decreasing function of y. Writing 7 = 1/ completes our claim. O

Remark 3. The monotonicity results (16) and (17) subsume the monotonicity results for projection operators
derived in [15, Lemma 1].

We now proceed to analyze how the objective function value changes after one step of the Nirs
iteration (6). Specifically, we seek to derive an inequality of the form (20) (where @ is as in (3)):

O (xF) — (1) > n(ab). (20)

Our strategy is to bound the potential function h(x) in terms of prox-residual ||p(x)|| and the error
level e(x). It is important to note that the potential #(x) may be negative, because we do not insist on
monotonic descent.

To reduce clutter, let us introduce brief notation: u = x
Nrrs update (6) may be rewritten as

k1 x = xk, and # = #;; therewith the main
u = proxg, (x =V f(x) +ne(x)). (21)
We are now ready to state the following “descent” theorem.

Theorem 2.4. Let u, x, n be as in (21); assume €(x) > n||e(x)||. Then,

O(x) () > Hl|u—x|? - te(x)|u—x]. (22)

Proof. Let mq be as in (18); consider its directional derivative dm, with respect to x in direction w; at
x = u it satisfies the optimality condition

dmg(u,1;y,2) (w) = (247 (—y) +5,w) >0, s € I(u). (23)
In (23), substitute z = Vf(x) —e(x), y = x, and w = x — u to obtain
(VF(x)—e(x), u—2x) < (77 (u—x)+s, x—u). (24)

From Lemma 2.1 we know that ®(u) < f(x) + (Vf(x), u —x) + L||u — x||> + g(u); now add and
subtract e(x) to this and combine with (24) to obtain

D(u) < f(x) + (Vf(x) = e(x), u—x) + Fllu— x| + g (u) + (e(x), u — x)

<)+ = x) +s, x — ) + Flu— x|+ g(u) + (e(x), u —x)
= f(x)+ () + (s, x —u)+ (5 = DY [lu— x|+ (e(x), u —x)
< f(x) +g(x) — 37 lu— x[* + (e(x), u—x)

2—L
x) = = x| + fle(x) [ flu = x|,

<O
2-L
< O(x) = S flu — x| + fe(x) u— x|,



The third inequality follows from convexity of g, the fourth one from Cauchy-Schwarz, and the last
one from the definition of e(x).

O
To further analyze (22), we derive two-sided bounds on ||x — u|| below.
Lemma 2.5. Let x, u, and v be as in Theorem 2.4, and c as in (13). Then,
cllo() —e(x) < [lx —ul < [lp(x)| +e(x). (25)
Proof. Lemma 2.3 implies that for # > 0 we have the crucial bounds
1<y = q(1) <q(), and 1>5 = p(1) <p(y). (26)

Lety < x,z < Vf(x). Note that q(1) = |jo(x)|| < [|[P;(x —yVf(x)) — x| if > 1, while if < 1, we
get np(1) < [|P;(x =V f(x)) — x|. Compactly, we may therefore write

min{1, 7} [p(x)|| < [[Py(x — 4V £(x)) — 2.

Using the triangle inequality and nonexpansivity of prox we see that

min{1,7}[p(x)[| < [|Py(x =V f(x)) -
< e —ufl+ flu = Py(x =y Vf(x))]l
< lx—ull+alle@)l < llx—ul +e(x).

A\

As ¢ < liminfy 5%, for large enough k it holds that [|x — u|| > ¢||p(x)|| — e(x).
An upper-bound on ||x — u|| may be obtained as follows

I = ul} < flx = Py (e =y V()] + 1Py (x =y V f(2)) — ]
< max{L}le() [ +nlle()| < llp()ll +e(x),
where we again used Lemma 2.3 and nonexpansivity. O

Theorem 2.4 and Lemma 2.5 have done the hard work; they imply the following corollary, which is
a key component of the convergence framework of [33] that we ultimately will also invoke.

Corollary 2.6. Let x, u, 17, and c be as above and k sufficiently large so that c and 1 = ny satisfy (13). Then,
®(x) — P(u) > h(x) holds for

h(x) = s ()12 = (25 + Do) lle(x) — (2 — gy )e(x)? (27)
Proof. We prove (27) by showing that #(x) can be chosen as
h(x) = arflo(x)[* — azllp(x) e(x) — aze(x)?, (28)

where the constants a1, ay, and a3 satisfy

_ L2 _ L2 1 _ 1 L%
M = 20200 227 2= o 3= 2(2—cL)" (29)

Note that by construction the scalars a1, a3,a3 > 0. For sufficiently large k, condition (13) implies that

c<17<%—c — %>2Ech %<%, and 2—Ly > Lc, (30)
which in turn shows that
2-Ly  (2-Ly)L L2c 1 _1
2=l ~ 22-L ~ and T

6



We can plug this into (22) to obtain

O (x) = D) > g lx — ul® = Le(x)|lx — ull.

Apply to this the two-sided bounds (25), so that we get

O(x) = () = g (cllo(x)] —e(x)” = Le(x) (lo(x)] +€(x))

= 725 oI = (% + Do) le(x) — (2 = 555 )e(x)? =: h(x).

All that remains to show is that the said coefficients of h(x) are positive. Since 2 — Lc > 0 and ¢ > 0,

% _ Z(ZLiCLC) > 0, holds as long as 0 < ¢ < @,

which is obviously true since ¢ < 1/L by assumption (13). Thus, a1,a3,a3 > 0. O

positivity of a; and a, is immediate. Inequality a3 =

Theorem 2.7 (Convergence). Let f € C}(X) such that infy f > —oo and g be Isc, convex on X. Let
{x*} C X be a sequence generated by (6), and let condition (8) hold. Then, there exists a limit point x* of
the sequence {x*}, and a constant K > 0, such that ||p(x*)|| < Ke(x*). Moreover, if the sequence { f(x*)}
converges, then for every limit point x* of {x} it holds that ||p(x*)|| < Ke(x*).

Proof. Theorem 2.4, Lemma 2.5, and Corollary 2.6 have shown that the net change in objective from
one step to the next is lower bounded by a quadratic function with suitable positive coefficients, which
makes the analysis technique of the differentiable case treated by [33, Thm. 2.1] applicable to setting
(the exact nature of the quadratic bound derived above is crucial to the proof which essentially shows
that for a large enough iteration count, this bound must be positive, which ensures progress); we omit
the details for brevity. O

Theorem 2.7 says that we can obtain an approximate stationary point for which the norm of the
residual is bounded by a linear function of the error level. The statement of the theorem is written in
a conditional form, because nonvanishing errors e(x) prevent us from making a stronger statement. In
particular, once the iterates enter a region where the residual norm falls below the error threshold, the
behavior of {x*} may be arbitrary. This, however, is a small price to pay for having the added flexibility
of nonvanishing errors. Under the stronger assumption of vanishing errors (and suitable stepsizes), we
can also ensure exact stationarity.

3 Scaling up: Incremental proximal splitting

We now apply Nips to a large-scale setting. Here, the objective function f(x) is assumed to be decom-
posable, that is

Fx) =Y fi(%), (31)

where f; : R” — R is in Ch(z’\’) (set L > L; for all t), and we solve
min f(x)+g(x), x€ X, (32)

where g and X are as before (3).

It has long been known that for decomposable objectives it can be advantageous to replace the
full gradient Vf(x) by an incremental gradient V f,;)(x), where r(t) is some suitably chosen index.
Nonconvex incremental methods have been extensively analyzed in the setting of backpropagation
algorithms [5, 33], which correspond to g(x) = 0 in (32). For g(x) # 0, the stochastic generalized
gradient methods of [13] or the perturbed generalized methods of [35] apply. As previously mentioned,
these approaches fail to exploit the composite structure of the objective function, which can be a
disadvantage already in the convex case [11].



In contrast, we exploit the composite structure of (31), and propose the following incremental
nonconvex proximal-splitting method:

A = M (2 — 2;1 Vfi(z")) (33)
2 =xk M =0GE - Vi), t=1,...,T-1.

Here, © and M are appropriate nonexpansive maps, choosing which we get different algorithms. For

example, when X = R", ¢(x) =0, and M = O = Id, then (33) reduces to the problem class considered

in [34]. If X is a closed convex set, g(x) =0, M = Ily, and O = 1d, then (33) reduces to a method

that is essentially implicit in [34]. Note, however, that in this case, the constraints are enforced only once

every major iteration; the intermediate iterates (z') may be infeasible.

Depending on the application, we may implement either of the four variants of (33) in Table 1.
Which of these one prefers, depends on the complexity of the constraint set A and on the cost of
applying Pf; . In the first two examples X is not bounded, which complicates the convergence analysis;
the third variant is also of practical importance but the fourth variant allows a more instructive analysis,
so we discuss it only.

X g M @) Penalty | Proximity operator calls

R" #0 prox, Id PU once every major (k) iteration

R" Z0 prox, | prox, | PU once every minor (k,t) iteration
CCvx | h(x) +(x|X) prox, Id PC once every major (k) iteration
CCvx | h(x)+6(x|X) | prox o | prox, || PC once every minor (k, f) iteration

Table 1: Different variants of incremental N1ps (33). ‘P’ indicates penalized, ‘U’ indicates ‘unconstrained’, while
‘C’ refers to a constrained problem; ‘CCvx’ signifies ‘Compact convex’.

3.1 Convergence

Our analysis is inspired by [34] with the obvious difference that we are dealing with a nonsmooth
problem. First, as is usual with incremental methods, we also rewrite (33) in a form that matches the
main iteration (6)

= M (K~ Zthl Vi) = M =g VEGER) + nee(xF)).

The error term at a general x is then given by e(x) := Y[, (fi(x) — fi(z!)). Since we wish to reduce
incremental NI1Ps to a setting where the analysis of the batch method applies, we must ensure that the
norm of the error term is bounded. Lemma 3.3 proves such a bound; but first we need to prove two
auxiliary results.

Lemma 3.1 (Bounded increment). Let z/*1 be computed by (33). Then,

if O=1d, then |27 —2'| = 5| Vfi(z)]| (34)

if O=Tly, then |27 —2'| <y|Vfi(z")] (35)

if O =prox!, steag(z), then |z'T1 =zt <2y||VF£i(zh) +5. (36)
proxe g 1

Proof. Relation (34) is obvious, and (35) follows immediately from nonexpansivity of projections. To
prove (36), notice that definition (4) implies the inequality

2 =2 + VA2 + 18 < HInVAEIP +5g(2),
LI — 2|2 < p(Vfi(2h), 28— 21 4+ (g (") — g(z1*h)).



Since g is convex, g(z!*1) > g(z!) + (sy, 2!+ — 2!) for s; € 9g(z'). Moreover,

%HZtJrl o ZtHZ < 17<St, Zt _Zt+1> + 77<Vft(2t), Zt _Zt+1>
<llse + VAE 2 =2
= |2 =2 <2y VA + 6 O

Lemma 3.2 (Incrementality error). Let x = Xk, and define
e = |VAiE) - VAiE), t=1,...,T (37)
Then, for each t > 2, the following bound on the error holds:
t—1 1 ;
e <2yLY . (1+2yL) |V fi(x) +, t=2,...,T. (38)

Proof. The proof extends the differentiable case treated in [34]. We proceed by induction. The base case
is t = 2, for which we have

(36)
&2 = |Vf2(2%) = VL) < Ll|2% = x|| = L||2> = 2'| < 27L||Vfi(x) +5'].
Assume inductively that (38) holds for t <r < T, and consider t = r + 1. Then,

et = V(@™ = Vi@ < L2 x|

— r i+1 _ L j r i+1 _ j
= L|gL @ -2 <L 1 - )
Lemma 3.1

< 2;7LZ]T:1 IV£i(Z) +9]. (39)

To complete the induction, first observe that ||V fi(z') + st|| < ||V fi(x) + s'|| + €, so that on invoking
the induction hypothesis we obtain for t = 2,...,7,

IVAEI < IV fi(x)ll +29L Z;;i(1+2f7L)t_l_j||ij(X) +9]. (40)

Combining inequality (40) with (39) we further obtain

r < i—1 i—1—
&1 <21L Yy (IVF() +5 ) +29L Yy (1 + Loy Vi) +5'] ).

Writing B; = || Vf;(x) + s/|| a simple manipulation of the above inequality yields
—1 i]—
20LB,+ Yy (20D + 412 Y (142901 By
-1 ~1-1 '
— 2L+ Y (2;7L +aPL2Y (1 2;7L)1)) B

= LB+ Y 2L+ 2gL) g = 2Ly (1+27L) 'y,

IN

€r+1

Now we are ready to bound the error, which is done by Lemma 3.3 below.

Lemma 3.3 (Bounded error). If forall x € X, ||V fi(x)|| < Mand ||0g(x)|| < G, then |le(x)| < K for some
constant K > 0.



Proof. If z!*1 is computed by (33), O = prox,, and s' € 9g(z'), then

I =2 < 2| Vi) +5)) (41)
Using (41) we can bound the error incurred upon using z! instead of x. Specifically, if x = x¥, and

&= |VAE) VA, t=1..,T, 42)

then Lemma 3.2 shows the following bound
et<217L2 (1 +27L) "IV fi(x) + )|, t=2,...,T. (43)

Since €1 = 0, we have

le()ll < Xy Yoyt YY)t
=2 LZt 1 Bt (ZT . 1(1+277L))
= L= 1 ﬁt((l‘i'Z’?L)T f-1)
<Y (2L tﬁt

< (1+27L) T Y IV A + 1)
<C(T-1)(M+G) =K. 0

Thanks to the error bounds established above, convergence of incremental Niprs follows immedi-
ately from Theorem 2.7; we omit details for brevity.

4 Application to matrix factorization

The main contribution of our paper is the new Nips framework, and a specific application is not one
of the prime aims of this paper. We do, however, provide an illustrative application of Nips to a
challenging nonconvex problem: sparsity regularized low-rank matrix factorization

min g llY - XAJE+ (X )+ Y Yilar), (44)

where Y € R"™*T, X ¢ R"*K and A € RK*T, with a4, ...,ar as its columns. Problem (44) generalizes
the well-known nonnegative matrix factorization (NMF) problem of [25] by permitting arbitrary Y (not
necessarily nonnegative), and adding regularizers on X and A. A related class of problems was studied
in [27], but with a crucial difference: the formulation in [27] does not allow nonsmooth regularizers on X.
The class of problems studied in [27] is in fact a subset of those covered by N1ps. On a more theoretical
note, [27] considered stochastic-gradient like methods whose analysis requires computational errors
and stepsizes to vanish, whereas our method is deterministic and allows nonvanishing stepsizes and
errors.

Following [27] we also rewrite (44) in a form more amenable to Nirs. We eliminate A and consider
nonnegatively constrained optimization problem

ming  ®(X) = Y| fi(X) +g(X), where g(X):=o(X) +8(X|>0), 45)

and where each f;(X) for 1 <t < T is defined as

fi(X) s=ming  3llys — Xa||? + gi(a), (46)
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Figure 1: Running times of Nips (Matlab) versus SPAMS (C++) for NMF on RAND, CBCL, and YALE datasets. Initial
objective values and tiny runtimes have been suppressed for clarity.

where g;(a) := ¢¢(a) 4+ 5(a]> 0). For simplicity, assume that (46) attains its unique®> minimum, say a*,
then f;(X) is differentiable and we have Vxf;(X) = (Xa* — y¢)(a*)”. Thus, we can instantiate (33),
and all we need is a subroutine for solving (46).

We present empirical results on the following two variants of (45): (i) pure unpenalized NMF
($r = 0 for 0 < t < T) as a baseline; and (ii) sparsity penalized NMF where ¢(X) = A||X||; and
Pt(ar) = v||at]]1. Note that without the nonnegativity constraints, (45) is similar to sparse-PCA.

We use the following datasets and parameters:

(i) RAND: 4000 x 4000 dense random (uniform [0, 1]); rank-32 factorization; (A,y) = (10’5, 10);
(ii) CBCL: CBCL database [38]; 361 x 2429; rank-49 factorization;
(iii) YALE: Yale B Database [26]; 32256 x 2414 matrix; rank-32 factorization;

(iv) WEB: Web graph from google; sparse 714545 x 739454 (empty rows and columns removed) matrix;
ID: 2301 in the sparse matrix collection [10]); rank-4 factorization; (A = v = 107°).

On the NMF baseline (Fig. 1), we compare Nirs against the well optimized state-of-the-art C++
toolbox SPAMS (version 2.3) [27]. We compare against SPAMS only on dense matrices, as its NMF code
seems to be optimized for this case. Obviously, the comparison is not fair: unlike SPAMS, Nirs and
its subroutines are all implemented in MATLAB, and they run equally easily on large sparse matrices.
Nevertheless, N1rs proves to be quite competitive: Fig. 1 shows that our MATLAB implementation runs
only slightly slower than SPAMS. We expect a well-tuned C++ implementation of Ni1ps to run at least
4-10 times faster than the MATLAB version—the dashed line in the plots visualizes what such a mere
3X-speedup to N1rs might mean.

Figure 2 shows numerical results comparing the stochastic generalized gradient (SGGD) algorithm
of [13] against N1prs, when started at the same point. As is well-known, SGGD requires careful stepsize
tuning; so we searched over a range of stepsizes, and have reported the best results. NIps too requires
some stepsize tuning, but to a much lesser extent than SGGD. As predicted, the solutions returned by
N1ps have objective function values lower than SGGD, and have greater sparsity.

5 Other applications
We mention below a few other applications where we have used the N1ps framework successfully.

While it lies outside the scope of this chapter to cover the details of these applications, we refer the
reader to research articles that include the requisite details.

2If not, then at the expense of more notation, we can add a strictly convex perturbation to ensure uniqueness; this error can
be absorbed into the overall computational error.
3In practice, we use mini-batches for all the algorithms.
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Figure 2: Sparse NMF: Nips versus SGGD. The bar plots show the sparsity (higher is better) of the factors X
and A. Left plots for RAND dataset; right plots for WEB. SGGD yields slightly worse objective function values and
significantly less sparse solutions than Niprs.
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e Online multiframe blind deconvolution [20]. In this application, a slightly modified version of
Nips is used for processing a stream of blurry images in an incremental fashion. The end goal
is to obtain a sharp reconstruction of a single underlying image. The optimization problem is
nonconvex because given observations 1, ...,yT which are assumed to satisfy the linear model
yi = Ajx, we need to recover both A; and x.

e Generalized dictionary learning for positive definite tensors [36]. In this problem, we seek a
dictionary whose “atoms” can be sparsely combined to reconstruct a set of matrices. The key
difference from ordinary dictionary learning [23] is that the observations are positive definite
matrices, so the dictionary atoms must be positive definite too. The problem fits in the Nips
framework (as for NMF, subproblems relied on a nonnegative least-squares solver [22] and a
nonsmooth convex solver [21]).

e Denoising signals with spiky (sparse) noise [6]. This application formulates the task of removing
spiky noise from signals by formulating it as a nonconvex problem with sparsity regularization,
and was hence a suitable candidate for Nips.

6 Discussion

This chapter discussed a general optimization framework called Nirs that can solve a broad class
of nonconvex composite objective (regularized) problems. Our analysis is inspired by [33], and we
extend the results of [33] to admit problems that are strictly more general by handling nonsmooth
components via proximity operators. NIPs permits nonvanishing perturbations, which is a useful
practical feature. We exploited the perturbation analysis to derive both batch and incremental versions
of N1ps. Finally, experiments with medium to large matrices showed that Nips is competitive with
state-of-the-art methods; N1ps was also seen to outperform the stochastic generalized gradient method.

We conclude by mentioning Ni1ps includes numerous algorithms and problem settings as special
cases. Example are: forward-backward splitting with convex costs, incremental forward-backward
splitting (convex), gradient projection (both convex and nonconvex), the proximal-point algorithm,
and so on. Thus, it will be valuable to investigate if some of the theoretical results for these methods
can be carried over to Nips.

The most important theoretical question worth pursuing at this point is a less pessimistic conver-
gence analysis for the scalable incremental version of N1ps than implied by Lemma 3.3.
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