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Abstract—Maximizing some form of Poisson likelihood (either
with or without penalization) is central to image reconstruction
algorithms in emission tomography. In this paper we introduce
NMML, a non-monotonic algorithm for maximum likelihood
PET image reconstruction. NMML offers a simple and flexible
procedure that also easily incorporates standard convex regular-
ization for doing penalized likelihood estimation. A vast number
image reconstruction algorithms have been developed for PET,
and new ones continue to be designed. Among these, methods
based on the expectation maximization (EM) and ordered-subsets
(OS) framework seem to have enjoyed the greatest popularity.
Our method NMML differs fundamentally from methods based
on EM: i) it does not depend on the concept of optimization trans-
fer (or surrogate functions); and ii) it is a rapidly converging non-
monotonic descent procedure. The greatest strengths of NMML,
however, are its simplicity, efficiency, and scalability, which
make it especially attractive for tomographic reconstruction. We
provide a theoretical analysis NMML, and empirically observe
it to outperform standard EM based methods, sometimes by
orders of magnitude. NMML seamlessly allows integreation of
penalties (regularizers) in the likelihood. This ability can prove to
be crucial, especially because with the rapidly rising importance
of combined PET/MR scanners, one will want to include more
“prior” knowledge into the reconstruction.

Index Terms—Non-monotonic maximum likelihood, ordered
subsets expectation maximization (OS-EM), emission tomogra-
phy, transmission tomography, convex optimization, penalized
likelihood.

I. INTRODUCTION

In this paper we present a new algorithm called Non-

Monotonic Maximum Likelihood (NMML) for computing

both penalized and non-penalized ML solutions with a focus

on image reconstruction for PET. We note that NMML can be

easily extended to other inverse problems, e.g., transmission

tomography, image restoration, etc. [1].

The distinguishing feature of NMML is its non-monotonic

optimization of the likelihood, which allows it to take more

aggressive steps, and therefore to achieve rapid convergence.

More importantly, we prove convergence of NMML, despite

its non-monotonicity [1], which differentiates NMML from

most other heuristic non-monotonic approaches.

Our goal while designing NMML was to satisfy the follow-

ing stringent requirements:

1) rapid convergence; ideally orders of magnitude faster than

MLEM, and at least as fast as OSEM,

2) ease of implementation and use; minimum amount of

parameter tuning on part of the user,

3) ability to rigorously and easily handle regularization, and

4) theoretical guarantees on convergence.

These desiderata are very challenging to simultaneously fulfill.

Often methods having theoretical guarantees on convergence
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simply do not compete empirically with OSEM, or lack

implementation ease. However, OSEM does have one major

drawback, namely, its inability to rigorously handle regulariza-

tion (though several workarounds such as using the modified

EM technique of [2], or Green’s OSL heuristic [3] have

been suggested). Regularization ability is also important due

to another recent development: combined PET/MR scanners;

here image priors obtained from MR can be used to improve

the PET image reconstruction via appropriate regularizers.

Our initial results with NMML are quite encouraging. We

see NMML to be rapidly convergent, flexible, and competitive

to OSEM. For well-conditioned system matrices NMML can

even be orders of magnitude better than OSEM (Fig. 1)!

In more realistic settings, NMML is competitive to OSEM,

and for noisy-data, NMML yields good results where OSEM

fails. Our results are thus a “proof-of-concept” and feedback

from the medical imaging community will be valuable in

transferring our algorithm into a clinical setting.

II. PET RECONSTRUCTION

We follow the standard PET setup [4], wherein the sinogram
counts for detector i are modeled by

yi ∼ Poisson(ci[Ax]i + ri), (1)

where A is the system matrix, x the image that we wish to

reconstruct, ri the average accidental coincindences, and ci the

detector calibration factors [5]. For simplicity, we will present

our method with ri = 0 and ci = 1, noting that our approach

can handle the general case too if convexity is ensured.

Maximizing the log-likelihood corresponding to (1), with

the (natural) constraint x ≥ 0 is equivalent to solving

min
x≥0

f(x) =
∑

i

−yi log[Ax]i + [Ax]i. (2)

Often, to prevent overfitting of noise, to smoothen the image,

or to incorporate prior knowledge, one adds a regularization
function to (2), which results in the problem

min
x≥0

h(x) = f(x) + βR(x), (3)

where β > 0 is a penalty parameter and R(x) is a regu-

larizing function. Several choices of R(x) have been studied

in the literature [5], e.g., R(x) = 1
2‖x‖2 is the traditional

energy penalty, while R(x) = 1
2‖Cx‖2 where C is a finite-

differencing matrix provides a first-order roughness penalty.

For our algorithm, we only make the requirement that R(x)
be a differentiable convex function of x, and no additional

effort (derivation of surrogates etc.) is needed for using it.
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A. The NMML Algorithm

We present simplified pseudo-code for NMML as Algo-

rithm 1, though we must omit the theoretical analysis (includ-

ing convergence) due to lack of space—the longer version

of this paper with contain these details. NMML extends the

successful unconstrained optimization method of Barzilai-

Borwein (BB) [6] to the constrained case. Our extension is

non-trivial because naive approaches to using the BB tech-

nique for constrained problems leads to divergent or oscillatory

behavior. For details on our extensions that permit us to deal

with constrained problems, please see [1], [7].

Broadly viewed, the BB method proposes a special choice

of step-size for a gradient-projection method, obviating the

for expensive procedures like line-search. This results in a

much simpler but still rapidly converging algorithm. For the

constrained case, the computation of these BB step-sizes must

be modified carefully using the notion of a fixed set, i.e., the

variables that should not participate in optimization at the

current step; Algorithm 1 shows the details.

Other than the fixed set I+, the most important computation

in Algorithm 1 is the gradient

∇h(x) = ∇f(x) + β∇R(x) = AT (1− ŷ) + β∇R(x), (4)

where ŷ is given by the elementwise division [yi/[Ax]i]
(using the standard assumption that [Ax]i �= 0). Thus, comput-

ing (4) requires one forward projection, one back projection,

and evaluation of ∇R(x), whereby the total computational

cost remains very low.

Algorithm 1: Non-monotonic maximum likelihood

Input: y: sinogram, h: funct. to optimize

Output: x reconstructed image, i.e.,solution to (3)

Initialize k ← 1, x0 ∈ R
n
++, g0 = ∇h(x0);

Set α0, s.t. h(x1) < h(x0) for x1 ← P+(x0 − α0g
0);

repeat
gk = Z+

(∇h(xk)
)
;

Compute fixed set I+ =
{
i
∣∣xk

i = 0, [gk]i > 0
}

;

Δx ← Z+(xk − xk−1) {Zero out variables in I+};

Δg ← Z+(gk − gk−1) {Zero out gradient};

αk ← 〈Δx,Δx〉
〈Δx,Δg〉 {Compute BB step};

xk+1 ← P+(xk − αkgk);
k ← k + 1;

until Stopping Criteria are met ;

B. Implementation Details for PET

The individual steps of the method described above are

displayed in Algorithm 1, and with a little care they can

be implemented highly efficiently. Note that the gradient

computation

[∇h(x)]j =
∑

i

aij −
∑

i

yiaij

[Ax]i
+ β[∇R(x)]j ,

can be written as

∇h(x) = AT (1 − ŷ) + β∇R(x), (5)

where ŷ is given by the elementwise division [yi/[Ax]i]. In

the language of PET image reconstruction (5) requires one

forward projection and one back projection—in matrix termi-

nology, it requires just two matrix-vector BLAS2 operations,

which can be computed very efficiently, or even parallelized

easily if needed. Finally, care must be taken to avoid any

division by zero while computing the gradient.

C. Convergence

One can show the following convergence theorem—see [1]

for details.

Theorem 1 (ε-optimal Convergence). If h∗ denotes the opti-
mal objective value for (3), and αk as given by Algorithm 1 is
bounded above, then there exists a constant ε > 0, such that

lim
k→∞

h̄k − h∗ < ε,

where h̄k is the best objective so far, i.e., h̄k =
min{h̄k−1, h(xk)}.

III. EXPERIMENTS

We show two main experiments, both of which used 256×
256 images, and 256×192 sinograms, so that A was 49152×
65536 in size. For OSEM we used Fessler’s powerful IRT

software [8]; NMML was also implemented in MATLAB.

Our first set of experiments shows results with a well-
conditioned system matrix A, and is included merely to

indicate the potential speedup NMML can offer. The plots

in Fig. 1 show convergence of the objectives for NMML

and OSEM, with increasing photon counts from left to right.

NMML yields objectives up to 2 orders of magnitude better

than OSEM (tried with 8, 16, 32 subsets) in the same time.

The second set of experiments is on simulated noisy (to very

noisy) PET sinograms (first col. of Fig. 2), and a corresponding

ill-conditioned system matrix A. For this difficult setup,

NMML was run with a first-order smoothness penalty as the

regularizer. We tried to run OSEM with the OSL heuristic

of [3], however, could not obtain any meaningful results with

it. We thus used the OS version of De Pierro’s technique [2],

OSDP, taken from the IRT. We tuned the value of β used for

the regularizer, and report results for the most favorable values

(used for both OSDP and NMML). The second, third, and last

columns of Fig. 2 report the results produced by plain OSEM,

OSDP, and NMML. It is easy to see that for the high-noise

cases (top two rows), only NMML yields something slightly

meaningful. For decreasing noise, OSEM still overfits, while

OSDP and NMML yield comparable results. We mention that

NMML much faster (3 to 4 times) than OSDP (detailed timing

results will be shown in the longer version of the paper).

Our experimental results are encouraging, and indicate

that NMML has potential as a rigorous convex optimization

method for PET image reconstruction, especially for situations

where regularization is important. Its simplicity should make

it an easy candidate for adoption in practice too, and running

NMML on real clinical data is a part of our future work.
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Fig. 1. Convergence of NMML compared to OSEM (8, 16, 32 subsets), both
without regularization. From left to right (and top-down) data has increasing
photon counts. Note that the y-axis in on a logarithmic scale.

Sinogram OSEM OSDP NMML

Fig. 2. Regularized reconstruction for sinograms with varying noise levels.
Both OSEM and OSDP fail totally for the high-noise (rows 1 & 2). With
decreasing noise (top–bot), OSDP and NMML perform comparably; though
NMML runs several times faster (timing not reported due to lack of space).
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