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Abstract: Nonnegative matrix approximation (NNMA) is a popular matrix decomposition technique that has proven to be
useful across a diverse variety of fields with applications ranging from document analysis and image processing to bioinformatics
and signal processing. Over the years, several algorithms for NNMA have been proposed, e.g. Lee and Seung’s multiplicative
updates, alternating least squares (ALS), and gradient descent-based procedures. However, most of these procedures suffer from
either slow convergence, numerical instability, or at worst, serious theoretical drawbacks. In this paper, we develop a new
and improved algorithmic framework for the least-squares NNMA problem, which is not only theoretically well-founded, but
also overcomes many deficiencies of other methods. Our framework readily admits powerful optimization techniques and as
concrete realizations we present implementations based on the Newton, BFGS and conjugate gradient methods. Our algorithms
provide numerical results superior to both Lee and Seung’s method as well as to the alternating least squares heuristic, which
was reported to work well in some situations but has no theoretical guarantees [1]. Our approach extends naturally to include
regularization and box-constraints without sacrificing convergence guarantees. We present experimental results on both synthetic
and real-world datasets that demonstrate the superiority of our methods, both in terms of better approximations as well as
computational efficiency.  2007 Wiley Periodicals, Inc. Statistical Analy Data Mining 1: 38–51, 2008

Keywords: nonnegative matrix approximation; factorization; projected Newton methods; active sets; least-squares

1. INTRODUCTION

Nonnegative matrix approximation (NNMA), also known
as nonnegative matrix factorization [2] or positive matrix
factorization [3], is a popular and effective matrix decom-
position technique. It has become an established method for
performing dimensionality reduction and related tasks such
as clustering, image processing, and visualization—with
applications across a diverse variety of fields. The NNMA
problem setting is defined as follows. Let A = [a1, . . . , aN ]
be the matrix of nonnegative inputs, where each column
a i ∈ R

M+ . NNMA seeks to approximate these input vectors
by nonnegative linear (conic) combinations of a small num-
ber of nonnegative representative vectors, {b1, . . . , bK}, so
that

a i ≈
K∑

k=1

bkcki, (1)

where the coefficients cki are also nonnegative. We remark
in passing that various alternative restrictions on bk or
ci = [c1i c2i . . . cKi]T may be placed to obtain different
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types of approximations. For the purpose of this paper, we
focus only on the problem with nonnegativity constraints.

The quality of the approximation in Eq. (1) may be mea-
sured using an appropriate distortion function, for example,
the Frobenius norm distortion or the Kullback-Leibler
divergence. In this paper we focus on the former distortion,
which leads to the following least-squares NNMA problem:

minimize
B ,C ≥0

F(B ; C ) = 1

2
‖A − BC‖2

F, (2)

where A is the input matrix and B , C are the output (factor)
matrices. The matrix B may be intuitively viewed as a set
of basis vectors that can be conically combined using the
coefficients in C to approximate the input A.

In this paper we develop two new Newton-type algo-
rithms for solving Eq. (2) along with a theoretical anal-
ysis establishing their convergence. Both our algorithms
improve upon the de facto procedure of Lee and Seung [4],
hereafter referred to as LS, as well as upon the popular ALS
heuristic, which has been reported to perform well in prac-
tice [1]. However, both LS and ALS have their drawbacks;
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the former suffers from slow convergence, whereas the lat-
ter lacks theoretical guarantees on its performance—our
new algorithms rectify both of these deficiencies.

Researchers have also considered the following regular-
ized NNMA problem

minimize
B ,C≥0

1

2
‖A − BC‖2

F + λ‖B‖2
F + µ‖C ‖2

F, (3)

where λ > 0, and µ > 0 are regularization parameters. The
motivation behind studying Eq. (3) can be ascribed to cer-
tain practical concerns. For example, the basic NNMA
problem estimates the product BC that has (M + N)K

parameters. Such a large number of parameters can lead
to overfitting, which despite the apparent sparse representa-
tions yielded by NNMA, might be difficult to counter with-
out regularization. Furthermore, the regularization terms
also make the optimization problem more numerically sta-
ble.

Another interesting variation arises when one binds the
solution values by imposing box-constraints on the vari-
ables. For NNMA this results in the problem

minimize 1
2‖A − BC‖2

F,

subject to P ≤ B ≤ Q,

R ≤ C ≤ S ,

(4)

where the inequalities are component-wise. Both Eqs. (3)
and (4) can be handled by our methods without much
additional difficulty.

2. BACKGROUND AND RELATED WORK

The NNMA objective function Eq. (2) is not simulta-
neously convex in both B and C due to the presence of
the product term BC. Hence, in general it is very difficult
to find globally optimal solutions to Eq. (2). Fortunately,
the objective function is at least individually convex in B
and in C, which makes it possible to invoke an alternating
minimization or descent procedure that takes the form:

1. Initialize B0 and/or C 0; set t ← 0.
2. Fix B t and find C t+1 such that

F(B t , C t+1) ≤ F(B t , C t ).

3. Fix C t+1 and find B t+1 such that

F(B t+1, C t+1) ≤ F(B t , C t+1).

4. Let t ← t + 1, and repeat Steps 2 and 3 until con-
vergence.

On the basis of the above procedure, we can categorize
NNMA methods into two types, namely the exact and inex-
act methods. The former perform an exact minimization at
each iterative step so that C t+1 = argminCF(B t , C ) (sim-
ilarly for B t+1), while the latter merely ensure descent, i.e.
F(B t , C t+1) ≤ F(B t , C t ) (similarly for B t+1).

Since the Frobenius norm of a matrix is just the sum of
Euclidean norms over columns (or rows), minimization or
descent over either B or C boils down to solving a sequence
of nonnegative least squares (NNLS) problems of the form

minimize
x

f (x) = 1
2‖Gx − h‖2

2,

subject to x ≥ 0.
(5)

Exact methods find a global optimum of this subprob-
lem, while inexact methods roughly approximate it. There
do exist well-known methods for solving the NNLS prob-
lem, such as the Lawson-Hanson procedure [5], FNNLS
[6], and other procedures mentioned in ref. [7]. However, as
we show in ref. [8], our approach to solving NNLS outper-
forms the other methods, hence we favor it as the method of
choice for solving Eq. (5). At this point, we alert the readers
against a potential misinterpretation that could arise from
our choice of nomenclature in terms of exact and inexact
methods. It is not the case that the exact methods are supe-
rior to the inexact ones, or even that the exact methods
could converge to a global optimum of Eq. (2). However,
the exact methods do provide better theoretical properties
and they tend to produce better quality solutions, even-
though there is still no guarantee on the global optimality
due to the nonconvexity of Eq. (2). Inexact methods often
provide great savings of computational effort by trading-off
precision of the solutions for speed.

In this paper we present a new exact method for NNMA,
which we call FNMAE. There have been other exact
approaches in the literature. For example, Paatero and Tap-
per [3, 9, 10] introduced a set of algorithms for NNMA
and provided a convergence proof for one of their methods
that employs the preconditioned conjugate gradient method.
However, their methods are described in a nebulous fash-
ion, and they cite the need for considerable engineering
effort [9] for an actual implementation. Bierlaire et al. [11]
developed a projected gradient method for NNLS, which
Lin [12] applied to solve problem Eq. (2). Recently, Mer-
ritt and Zhang [13] developed an interior-point gradient
method for NNLS—a gradient descent-based method with-
out projection that maintains feasibility of intermediate
solutions throughout the iterations. They also provided a
convergence proof for their method under the mild assump-
tion that G has full-rank. Though problem Eq. (5) can
be solved by any constrained optimization technique, the
above methods are all based on gradient descent since it
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allows for efficient handling of simple nonnegativity con-
straints. However, gradient-based methods are known to
have linear convergence rate at best, and often suffer from
a phenomenon known as zigzagging or jamming. FNMAE

subsumes the projected gradient-based method as a special
case and retains its algorithmic simplicity while overcom-
ing its deficiencies by employing a nondiagonal gradient
scaling matrix.

The group of inexact methods has witnessed greater pop-
ularity and it includes Lee and Seung’s [4] multiplicative
algorithms. Gonzalez and Zhang [14] proposed a variant
of Lee and Seung’s method that utilizes a different scaling
scheme for negative gradients to get faster convergence.
Berry et al. [1] report the alternating least squares (ALS)
procedure to be a simple but effective method for perform-
ing NNMA. The ALS procedure is somewhat ad-hoc —it
solves the unconstrained least squares problem at each step
exactly, followed by a truncation of the negative entries
to zero. However, ALS does not have any convergence
guarantees, and we discuss this in more detail in Section
2.1. Another inexact approach is provided by Zdunek and
Cichocki’s, which we refer to as the ZC method, Zdunek
and Cichocki [15] who proposed the combination of pro-
jection with a quasi-Newton procedure for NNMA.

Our FNMAE procedure is a quasi-Newton method that
remedies the theoretical deficiencies of both the ALS and
ZC methods. As an alternative, we also present an inexact
method called FNMAI that shares the same algorithmic
framework as its exact counterpart FNMAE while providing
a computationally more efficient procedure.

2.1. ALS and ZC Methods

As alluded to the above, both the ALS and ZC methods
have theoretical deficiencies, which can lead to

nonmonotonic changes in the objective function value and
to inferior approximations. We illustrate these deficiencies
more clearly in this section providing further motivation for
our algorithms.

Both ALS and ZC are closely related to FNMAE and
FNMAI. A critical difference between FNMAE and both
these approaches (ZC and ALS) is that the former is an
exact approach, whereas the latter two are inexact methods.
To see why these methods are inexact, consider the NNLS
subproblem Eq. (5) that they must solve. Let us denote a
projection onto the nonnegative orthant by P+[·]. Assuming
G to be of full rank, the ALS update for subproblem Eq. (5)
may be written as

x = P+[(GT G)−1GT h], (6)

or equivalently,

x = P+[x − (GT G)−1(GT Gx − GT h)].

For the ZC approach, the update is

x new = P+[x old − αD(GT Gx old − GT h)], (7)

where α > 0 and D is some positive definite matrix that
approximates (GT G)−1, i.e. the inverse of the Hessian.
Note that the ALS update has D = (GT G)−1 and α = 1
in this form. Figure 1 illustrates why the updates Eqs. (6)
and (7) are inexact, moreover they fail to decrease the
objective function for an arbitrary positive α. Observe that
Eq. (6) performs an exact-Newton step followed by projec-
tion, while Eq. (7) does a quasi-Newton with projection.
Hence, we see that both the ALS and the ZC approaches
can lead to an increase in the objective function value (also
see Fig. 6). Our exact method, FNMAE, fixes this prob-
lem and is provably convergent unlike the ALS and ZC
methods.

Fig. 1 Example where P+[x k − αDk∇f (x k)] fails to decrease the objective for an arbitrary α > 0. In this figure, the ellipses represent
level sets of f (the inner ellipses correspond to a smaller objective value), and Dk is assumed to be exactly equal to the inverse of the
Hessian. The current iterate is given as x k . Note that for Problem Eq. (5), the Newton method reaches the unconstrained optimum x in
a single iteration. However, the projected solution P+[x k − Dk∇f (x k)] for nonnegatively constrained problems leads to an increase in
the objective since the current iterate (x k) moves from an inner ellipse to an outer one by the update rule.
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3. ALGORITHMS AND THEORY

In this section, we develop an algorithm and associated
supporting theory for solving Eq. (2). An efficient solution
of the NNLS subproblem Eq. (5) forms the core of FNMAE.
Hence, first we focus our attention on efficiently solving the
NNLS problem.

Broadly viewed, our method for solving NNLS may
be viewed as combining the active set method with the
projected gradient scheme. This approach is founded upon
the observation that if the constraints active at the final
solution are known in advance, the original problem can
be solved by optimizing the objective in an equality-
constrained manner over only the variables that correspond
to the inactive constraints.

However, by itself, the projected gradient method, being
a direct analog of steepest descent, suffers from deficien-
cies such as slow convergence and zigzagging. For uncon-
strained optimization problems, it is known that the use
of nondiagonal positive definite gradient scaling matrices
alleviates such problems. To overcome problems associated
with gradient-based methods, Bertsekas [16] developed a
projection framework for simply constrained cases based
on the Newton-method. We build on that idea and employ
nondiagonal gradient scaling based on the quasi-Newton
method for Problem Eq. (5), which is a constrained mini-
mization problem. However, since the constraints are partic-
ularly simple, this approach remains feasible and relatively
simple.

3.1. Overview of our Method for NNLS

Our algorithm for solving Eq. (5) is iterative and at each
iteration it partitions the variables into two groups, namely
the free and fixed variables. The fixed variables are the
components of x k with active constraints (equality satisfied)
that have a corresponding positive derivative at iteration k.
We index them by the fixed set, i.e.

I+ = {i|xk
i = 0, [∇f (x k)]i > 0}. (8)

For brevity, we will slightly manipulate the notation and
say that xk

i ∈ I+ whenever i ∈ I+.
We denote the free variables and the fixed variables

at iteration k by yk and z k respectively. Without loss
of generality, we can assume that x k and ∇f (x k) are
partitioned as

x k =
[

yk

z k

]
, ∇f (x k) =

[∇f (yk)

∇f (z k)

]
,

where yk
i �∈ I+ and zk

i ∈ I+. Once the free variables at the
current iteration are identified, we compute the projection

y (onto the nonnegative orthant) as follows

y = P+[yk − αD
k∇f (yk)], (9)

where α ≥ 0, and D
k

is an appropriate positive definite gra-
dient scaling matrix. Note that ∇f (yk) is the gradient vector
restricted to the free variables, and D

k
is a corresponding

restricted scaling matrix.
Finally, given y we update x k to obtain

x k+1 ←
[

y
z k

]
=

[
P+[yk − αD

k∇f (yk)]
0

]
, (10)

where the last equality uses the fact that z k is fixed to zero.
Now we can compute ∇f (x k+1) and update the fixed set
I+ to obtain yk+1 and z k+1.

Note that any algorithm that finds y such that

gk(y) < gk(yk), y ≥ 0, (11)

where

gk(y) = 1
2‖G[y; z k] − h‖2

2, (12)

can be used to update x k in Eq. (10), but since Eq. (11)
is again a constrained problem, Eq. (9) remains a good
choice for feasibility and efficiency of the overall algorithm.
Furthermore, due to the resemblance of Eq. (9) to an
iteration of the standard quasi-Newton update, it is possible
to exploit the curvature information of gk to obtain a faster
convergence rate.

However, the computation of a proper D
k

at each itera-
tion is not a trivial task as the size of yk may vary across
iterations, and it may be necessary to vary the size of
D

k
from one iteration to the next. To address this diffi-

culty, we note that the curvature information from {yk} is
essentially captured by the sequence {x k}. Therefore, D

k

can be approximated by taking a proper sub-matrix of Dk ,
which contains curvature information from the vectors {x k}.
On the basis of the above rationale, we maintain a gradi-
ent scaling matrix Dk that covers the entire vector x k at
each iteration and build the restricted matrices D

k
from Dk

according to the free variables yk .
There are many possible choices for Dk , ranging from

the identity matrix to the inverse of the Hessian. We
provide three well-established schemes for selecting the
gradient scaling matrix Dk: (i) the inverse of the Hessian,
(ii) the BFGS update and (iii) the memoryless BFGS
update [16]. Briefly, the use of inverse Hessian, which
leads to the Newton method for unconstrained problems,
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is suitable when the Hessian is available and sparse.1

The BFGS update incrementally approximates the inverse
of the Hessian using only gradient information at each
iteration, whereas it is recommended for problems where
the computation involving the Hessian is expensive. The
memoryless BFGS is for larger problems where the storage
for Dk itself is too expensive. For the least squares objective
function, the memoryless BFGS update becomes equivalent
to the conjugate gradient method.

3.1.1. The BFGS update

Suppose H k is the current approximation to the Hessian.
The BFGS update adds a rank-two correction to H k to
obtain

H k+1 = H k − H kuuT H k

uT H ku
+ wwT

uT w
, (13)

where w = ∇f (x k+1) − ∇f (x k), and u = x k+1 − x k . Let
Dk denote the inverse of H k, then applying the Sherman-
Morrison-Woodbury formula to Eq. (13) yields

Dk+1 = Dk − (DkwuT + uwT Dk)

uT w

+
(

1 + wT Dkw
uT w

)
uuT

uT w
. (14)

Since, ∇f (x k) = GT Gx k − GT h for the NNLS problem,
Eq. (14) can be rewritten as

Dk+1 = Dk − (DkGT GuuT + uuT GT GDk)

uT GT Gu

+
(

1 + uT GT GDkGT Gu

uT GT Gu

)
uuT

uT GT Gu
. (15)

REMARK 1: Note that ‖Gu‖2
2 appears as the denomina-

tor in the last two terms of Eq. (15). When G is of full-rank,
Eq. (15) is always well-defined, since

‖Gu‖2 = 0, iff u = 0,

which in turn implies that the method has converged and
the update Eq. (15) is not needed anymore. In general,
even if G is rank-deficient, we can avoid trouble by simply
bypassing the update. The only requirement that we need to
satisfy is that Dk+1 remains positive and definite, which can
be easily satisfied by simply setting Dk+1 = Dk . However,
in practice Eq. (15) remains well-defined, and we do not
usually encounter ‖Gu‖ = 0.

1 In the implementation, we use the Q-less QR-decomposition
of the Hessian instead of computing the inverse Hessian.

3.1.2. Memoryless BFGS update

By simply resetting the matrix Dk to an identity matrix at
each iteration k, we obtain the memoryless BFGS update.
Assume that at each iteration, we compute an optimal
parameter α in Eq. (9). It can be shown that the equality

∇f (x k+1)T u = 0

holds under this assumption. Let d k+1 = −Dk+1∇f (x k+1),
then from Eq. (14),

d k+1 = −Dk+1∇f (x k+1)

= −∇f (x k+1) −
(

1 + wT w
uT w

)
uuT

uT w
∇f (x k+1)

+ (wuT + uwT )

uT w
∇f (x k+1)

= −∇f (x k+1) + uwT

uT w
∇f (x k+1)

= −∇f (x k+1) +
(∇f (x k+1)T w

uT w

)
u

= −∇f (x k+1) +
(

∇f (x k+1)T GT Gu

uT GT Gu

)
u.

3.1.3. Line-search

From Eq. (9) we see that in addition to the computation
of Dk , the update also involves a parameter α > 0. Like
many other iterative optimization procedures, standard line-
search methods can be used to choose the step-size α. We
omit a discussion of the same for brevity and refer the
reader to ref. [8].

3.2. Convergence

In this section, we prove that our method for NNLS as
described above is an exact method, i.e. it converges to the
globally optimal solution of Eq. (5). The main result of this
section is the following theorem.

THEOREM 1: (Convergence and Optimality). If G is
of full-rank and {x k} is the sequence of points generated
by Eq. (10), then every limit point of {x k} is a stationary
point of Problem Eq. (5), and hence optimal since Eq. (5)
is strictly convex.

The proof of this theorem depends on several lemmas
that we prove below. Our proof is structured as follows.
First we show that the update Eq. (10) ensures a monotonic
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descent in the objective function value (Lemma 1). Then
we show that the resulting sequence of iterates {x k} has
a limit-point (Lemma 2). Finally, we show that any limit
point of the sequence {x k} is also a stationary or KKT point
of Eq. (5), thereby concluding the proof.

LEMMA 1: (Descent). If x k is not a stationary point of
Eq. (5), then there exists some constant α such that

f (x k+1) < f (x k), ∀α ∈ (0, α],

where x k+1 and f(x) are given by Eq. (10) and Eq. (5)
respectively.

PROOF: By the construction of I+, all components of
yk satisfy:

either yk
i �= 0 or [∇f (yk)]i ≤ 0.

Furthermore, since x k is not a stationary point, there
exists at least one i such that

[∇f (yk)]i �= 0.

Thus letting d = −D
k∇f (yk), we see that

∇f (yk)T d < 0,

since D
k

is a principal submatrix of the positive definite
matrix Dk, and is therefore itself positive definite. This
establishes the fact that d is a feasible descent direction.
Now let γ (α) = yk + αd denote a step in the direction
given by d and consider partitioning the free variables into
two disjoint sets of indices such that

I1 = {i|yk
i > 0 or (yk

i = 0 and

di ≥ 0)}, and I2 = {i|yk
i = 0 and di < 0}.

It is easy to see that there exists α1 > 0 such that ∀i ∈ I1,

yk
i + αdi ≥ 0, ∀α ≤ α1.

Let us define a new search direction d ,

di =
{
di, i ∈ I1,

0, otherwise.

Then we have,

P+[γ (α)] = yk + αd, ∀α ∈ (0, α1].

Since [∇f (yk)]i ≤ 0 and di < 0 for i ∈ I2, we get∑
i∈I2

[∇f (yk)]i · di ≥ q0. Now we can conclude that

∇f (yk)T d =
∑
i∈I1

[∇f (yk)]i · di ≤
∑

i∈{I1∪I2}
[∇f (yk)]i

× di = ∇f (yk)T d < 0.

Hence, d is also a feasible descent direction. Therefore,
letting y = P+[γ (α)], there exists α ∈ (0, α1] such that

gk(y) < gk(yk), ∀α ∈ (0, α]

where gk is as in Eq. (12). From Eq. (10), since z k remains
fixed in x k+1, we conclude that

f (x k+1) < f (x k), ∀α ∈ (0, α].

LEMMA 2: (Limit point). Let {x k} be a sequence of
points generated by Eq. (10). Then this sequence has a limit
point.

PROOF: Assume that we start the iteration at x 0 where
f (x 0) = M . By Lemma 1, {f (x k)} is a monotonically
decreasing sequence, whereby x 0 is a maximizer of f over
the M-level set of f . If a convex quadratic function f is
bounded above, its M-level set is also bounded. Denote this
M-level set by X. Then we can choose u ∈ X such that

‖u‖2 ≥ ‖x‖2, ∀x ∈ X.

Then {x k} is bounded as 0 ≤ ‖x k‖2 ≤ ‖u‖2 for all k, hence
the sequence has a limit point. This concludes the proof of
the lemma.

3.2.1. Gradient related condition

Let {x k} be a sequence generated by Eq. (10). Then for
any subsequence {x k}k∈K that converges to a nonstationary
point,

lim sup
t→∞

‖x kt+1 − x kt ‖ < ∞, (16)

lim sup
t→∞

∇f (x kt )T (x kt+1 − x kt ) < 0. (17)

This is known as the gradient related condition in opti-
mization literature and plays a crucial role to prove the
convergence of a number of methods. Inequality Eq. 16 fol-
lows from Lemma 2 and it can be shown that our method
also satisfies condition Eq. (17) [8].

Finally we present a proof of our main Theorem 1.
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PROOF: Assume {x k} converges to a nonstationary
point x . From Lemma 1, it can be shown that there exists
some ∈k such that limk→∞ ∈k= 0 and

f (x k) − f (x k+1) = −∇f (x k)T (x k+1 − x k)− ∈k> 0,

Since f is continuous, limk→∞ f (x k) = f (x). Conse-
quently,

lim
k→∞

f (x k) − f (x k+1) = 0.

In turn, it implies

lim
k→∞

∇f (x k)T (x k+1 − x k) = 0,

which contradicts Eq. (17).

3.3. FNMAE: An Exact Method for NNMA

Now we extend the ideas from Section 3.1 to the matrix
case. To that end, we need to redefine various quantities in
terms of matrices. First, observe that the gradient matrices
∇CF(B; C ) and ∇BF(B; C ) are

∇CF(B ; C ) = BT BC − BT A, and

∇BF(B ; C ) = BCC T − AC T .

Then we redefine the fixed set accordingly. For example,
the fixed set corresponding to B is defined as:

I+ = {(i, j)|Bij = 0, [∇BF(B; C )]ij > 0}.

Finally, we define the zero-out operator Z+ with respect
to the fixed set I+ so that

[Z+[X ]]ij =
{
Xij , (i, j) �∈ I+,

0, otherwise.
(18)

Algorithm 1 FNMAE

Input: A ∈ R
M×N
+ , K s.t. 1 ≤ K ≤ min{M, N}

Output: B ∈ R
M×K
+ , C ∈ R

K×N
+

1. Initialize B0, C 0, t = 0, S = I .
repeat

2. B ← B t , C old ← C t .
repeat

3.1. Compute the gradient matrix ∇CF(B; C old).
3.2. Compute fixed set I+ for C old.
3.3. Compute the step length vector α using line-

search.

3.4. Update C old as

U ← Z+[∇CF(B ; C old)]; U ← Z+[SU ];
C new ← P[C old − U · diag(α)].

3.5. C old ← C new.
3.6. Update S if necessary.

until C old converges
4. C t+1 ← C old.
5. Repeat steps similar to Step 2–4 to obtain B t+1.
6. t ← t + 1.

until Stopping criteria are met

Now we have all the pieces to describe the overall algo-
rithm for solving the NNMA problem Eq. (2). Algorithm
1 presents our proposed method which we name fast non-
negative matrix approximationly—exact, i.e. FNMAE.

In Step 3.4 of Algorithm 1, the first Z+[·] eliminates the
“fixed” gradient information from the search direction, the
second Z+[·] ensures that the fixed set remains fixed, and
the projection P+[·] maintains feasibility of the next iterate.

Note that we maintain only one gradient scaling matrix
D at each alternating step even though our algorithm for
NNLS suggests that each column should have its own
gradient scaling matrix. We justify this strategy as follows.
In Problem Eq. (5), a series of BFGS updates for D aim
at estimating the inverse of the Hessian. However, the true
Hessian for Problem Eq. (5) is GT G which is a constant
matrix. Thus in Problem Eq. (2), a matrix-wise extension
of NNLS, every column shares the same true Hessian,
whereby each column can also share the approximation
of the inverse Hessian, namely D . As long as we retain
the positive definiteness of the matrix D , this shared D
provides an effective gradient scaling, and it does not
impede convergence of the algorithm. Also note that since
the Hessian is of size K × K , its exact inverse can be
used if K is not too large at a computational cost of
O (K2(M + N) + K3) operations. This strategy is included
in our second algorithm, FNMAI, in the next section.

THEOREM 2: (Convergence of FNMAE). If B t and C t

retain full-rank, then the sequence {B t , C t } generated by
Algorithm FNMAE converges to a stationary point of
Problem Eq. (2).

PROOF: Algorithm 1 essentially performs the following
alternating minimization at each outer iteration

C t+1 ← argmin
C ≥0

‖A − B tC ‖2
F, and B t+1

← argmin
B≥0

‖A − BC t+1‖2
F.
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Similar to the argument in Lemma 2, the domain of
Problem Eq. (2) can be considered to be compact. Since
{F(B t ; C t )} is monotone decreasing and bounded below,
it has a limit point, (B , C ), i.e.

lim
t→∞F(B t ; C t ) = F(B ; C ).

Since F is continuous, we have

lim
t→∞ B t = B , and lim

t→∞ C t = C .

Now we can invoke the proof of the two-block Gauss-Seidel
method [17] to conclude our claim.

3.4. FNMAI: An Inexact Method for NNMA

In this section we present an inexact version of our
approach. This method has the same underlying framework
as FNMAE, but uses some heuristics to reduce computa-
tional effort at each iteration.

Algorithm 2 gives the pseudocode for FNMAI and it dif-
fers from the exact method in three main aspects. First, it
uses the inverse of the Hessian as the nondiagonal gradi-
ent scaling matrix D . Whenever the rank K of the factor
matrices B and C is small, using the inverse Hessian can be
advantageous for problems where O (K3) costs are accept-
able. Second, the step-size α is made an input parameter,
and FNMAI guarantees monotonic descent on the objective
function for a sufficiently small α. Third, FNMAI accepts
the number of iterations for each alternating step as an input
parameter. This modification permits premature termination
of each alternating step, which naturally translates into large
computational savings by trading-off accuracy for speed.

THEOREM 3: (Monotonicity of FNMAI). If B t and
C t retain full-rank, then FNMAI decreases its objective
function monotonically for sufficiently small α.

PROOF: It is enough to consider Steps 2–3 from
FNMAI (the argument for Steps 4–5 is similar). Since B is
assumed to be full-rank at every step, (BT B)−1 is positive
definite. For a sufficiently small α that satisfies

α ≤ min{αi, i = 1, · · · , K},

Algorithm 2 FNMAI

Input: A ∈ R
M×N
+ , K, τ ∈ N, α ∈ R+.

Output: B ∈ R
M×K
+ , C ∈ R

K×N
+

1. Initialize B0, C 0, t = 0.
repeat

2. B ← B t , C old ← C t .

for i = 1 to τ do
3.1. Compute the gradient matrix ∇CF(B; C old).
3.2. Compute fixed set I+ for C old.
3.3. Update C old as:

U ← Z+[∇CF(B ; C old)]; U ← Z+[(BT B)−1U ];
C new ← P[C old − αU ].

3.4. C old ← C new.
end for
4. C t+1 ← C old.
5. Repeat steps similar to Step 2–4 to obtain B t+1.
6. t ← t + 1.

until Stopping criteria are met

where the αi are computed by Step 3.3 from FNMAE,
it can be shown that Steps 2-3 decrease the objective
monotonically by arguments similar to the ones in the proof
of Lemma 1.

REMARK 2: If any αi is zero, then the inner loop for the
current alternating step should be terminated to guarantee
monotonicity.

REMARK 3: A sufficiently small α is important to guar-
antee monotonicity of FNMAI, but too small a value will
hurt the computational benefit by slowing down conver-
gence. On the other hand, if α is too large, it can push the
search direction out of the feasible region, or introduce too
many zeros into the current iterate, resulting in a singular
or ill-conditioned Hessian for the next iterate.

To overcome these subtleties and to find a proper α in
practice, the following simple heuristic can be used. Writing
Step 3.3 from FNMAI in the form:

W ← P+[W − αU ],

1. Let number of inner iterations be small (τ = 2 or 3),
2. Start with a large scaling λ (typically 0.1) and com-

pute

α = λ
‖W ‖F

‖U ‖F

,

for each alternating step,
3. Decrease λ until it passes the inner steps without

error,
4. Increase the number of iterations (typically τ = 10).
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3.5. Extensions to Handle Regularization

The regularized NNMA problem Eq. (3) can be solved
by suitably modifying the FNMAE and FNMAI procedures.
Essentially the gradient and Hessian get redefined. For
example, the gradient

∇CF(B ; C ) = (BT B + λI )C − BT A,

and the Hessian

∇2
CF(B; C ) = (BT B + λI ),

are suitably modified to include the contribution of the reg-
ularization term. We just use these updated values in the
algorithms FNMAE and FNMAI to handle regularization.
Notice that regularization provides the benefit of ensuring
that the Hessian remains positive-definite. All the conver-
gence results carry over without any additional work.

3.6. Handling Box-Constraints

FNMAE and FNMAI can be easily extended to handle
box-constraints, i.e. constraints of the form p ≤ x ≤ q . We
motivate the details by first looking at the box-constrained
version of Eq. (5), which is also known as bounded least
squares (BLS) (Björck, 1996),

minimize
x

1
2‖Gx − h‖2,

subject to p ≤ x ≤ q .
(19)

Problem Eq. (19) can be solved just as we solved Eq. (2.1).
We need to modify the definition of the fixed-set Eq. (8) so
that

I+ = {i|(xk
i = pi, [∇f (x k)]i > 0) or

(xk
i = qi, [∇f (x k)]i < 0)},
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Fig. 2 Relative error of approximation against iteration count for ZC, FNMAI, and FNMAE. The relative errors achieved by both FNMAI

and FNMAE are lower than ZC. Note that ZC does not decrease the errors monotonically.
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and to replace the P+[·] projection by P�[·], where

[P�[x ]]i =



pi : xi ≤ pi

xi : pi < xi < qi

qi : qi ≤ xi

(20)

Given these definitions, it can be verified that Lemma 1
holds without significant modification and Theorem 1 also
follows. The fact that the domain of Eq. (19) is a compact
set obviates the need for Lemma 2 in this case.

Given the above method for BLS we can appropriately
modify FNMAE and FNMAI for solving the bounded
matrix approximation (BMA) problem Eq. (4). We omit the
details for brevity, noting that the modifications needed are
minor, for example, the fixed set for B is redefined as

I� = {(i, j)|(Bij = Pij , [∇BF(B ; C )]ij > 0), or

(Bij = Qij , [∇BF(B ; C )]ij < 0)}.

By taking a projection step similar to Eq. (20) we can
construct the desired method.

4. EXPERIMENTS

We now present experimental results to demonstrate the
performance of our FNMAE and FNMAI methods. We give
numerical results to assess the performance of our methods
as compared to the standard LS method [4], ZC method
[15], and the ALS approach [1] for solving the least-squares
NNMA problem. Our experiments show that FNMAE and
FNMAI produce better quality approximations than the LS,
ZC, and the ALS procedures. We implemented LS, ALS,
FNMAE, and FNMAI in MATLAB, while the ZC method
was available in the NMFLAB toolbox [18]. We present
results for the ZC method only with small matrices as the
implementation available in NMFLAB was unable to run
on larger matrices.

Since NNMA enjoys a vast number of applications [19],
all of them stand to benefit from our new methods, espe-
cially because our methods achieve better objective function
values and come with theoretical guarantees. As an illustra-
tion, we include some simple results on image processing
in Section 4.2.

4.1. Error of Approximation

For our experiments, we initialize all the methods ran-
domly or with one step of LS. Our results below show
plots of the relative error of approximation, i.e. ‖A −
BC‖F/‖A‖F against the number of iterations. However, a
word of caution is in order—iterations of these different

methods are not strictly comparable to each other, since
some methods do more work than others in one itera-
tion. A more interesting plot would have been “time” on
the X-axis; however, at present we are unable to conduct
such experiments since different implementations of each
of the methods can change the running time substantially,
for example, implementations that use BLAS3 versus those
that do not. To perform timing comparisons, we intend to
compare C/C++ implementations of these methods in the
future.

4.1.1. Comparisons against ZC

The first experiment compares FNMAE and FNMAI

against ZC on three data matrices. The results are reported
in Fig. 2. As previously noted, the data matrices used
are fairly small since ZC (NMFLAB) seems to be unable
to cope with larger matrices. We initialized all methods
using one iteration of LS, which itself was initialized
randomly. However, in the figures we do not report the
relative error for the random initialization as it is too
large to display properly. Figure 2(a) indicates that our
methods outperform ZC. The differences between the three
algorithms are sharper in Fig. 2(b). Also note that ZC
actually increases the approximation errors after the first
iteration.

4.1.2. Comparisons against LS and ALS

On a larger matrix, Fig. 3 shows a comparison of the
approximation errors for LS, ALS, FNMAE, and FNMAI.
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Fig. 3 Relative error values against iteration count for a random
dense matrix of size 1600 × 320 for a rank 50 approximation.
All methods other than ALS show a monotonic decrease when
initialized with one step of LS.
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approximation (bottom).
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Fig. 5 Recovered nonnegative factors (matrix B ) from the swimmer dataset. The panels on the left are generated by Lee and Seung’s
algorithm while ones on the right by FNMAE. From top to bottom, the approximation is performed for rank 17 and 20, respectively.

We see that FNMAE achieves the best objective function
values of all the methods presented. However, FNMAE can
take more running time than the other methods because of
its exact nature. Therefore, FNMAE is to be preferred when
reconstruction accuracy is more important, while FNMAI

is recommended when running time is more important.
We now present two more experiments to highlight the
advantages of FNMAI over ALS, which owing to its ad-hoc
nature leads to inferior accuracies (see also Section 2.1).

Figure 4 compares the relative errors of approximation
achieved by ALS and FNMAI for a dense random matrix
of size 6400 × 1280. We emphasize again that the number
of iterations is merely used as an indicator of progress
of the algorithms, and is not to be taken as an indicator
of time. From these figures one sees the interesting trend
that as the rank of approximation increases, ALS becomes
less and less competitive in terms of the objective function
value achieved. For a rank-200 approximation (see Fig. 4),
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Fig. 6 Image reconstruction as obtained by the ALS, LS, and FNMAI procedures. The figure illustrates two randomly chosen images out
of the 143 reconstructed images, each with 96 × 96 pixels. The reconstruction was computed from a rank-20 approximation to the input
image matrix, which was of size 9216 × 143. The first image in each row is the original, followed by reconstructions obtained via ALS,
LS, and FNMAI. From the images above, FNMAI is seen to obtain the best reconstruction and the relative errors as plotted on the right
attest to this observation. Observe how ALS leads to a nonmonotonic change in the objective function value (as explained in Section
2.1). Note that the error values for the initialization are not fully shown as they are too large to display properly without obscuring the
rest of the plot.

the accuracy achieved by FNMAI is 25% higher than that
achieved by ALS.

4.2. Application to Image Processing

NNMA was originally motivated by Lee and Seung [2]
using an image processing application. Many other authors
have also considered NNMA for image processing, graph-
ics, or face recognition applications. Figure 5 compares LS
method to FNMAE for the swimmer dataset [20]. In the

figure, the effect of differences in final objective function
values is more apparent. In our experiment, we run LS
method up to 3000 iterations and FNMAE up to 20 iter-
ations. We also set the minimal threshold in the objective
function value to be 10−5; hence both methods either stop
after the maximum number of iterations or if progress is
below the threshold. From Table 1, we can see that FNMAE

generally outperforms LS method, both in terms of the
elapsed CPU time and the final objective function value
achieved.

Statistical Analy Data Mining DOI:10.1002/sam



50 Statistical Analy Data Mining, Vol. 1 (2008)

Table 1. Results on the swimmer dataset.

Lee and Seung’s FNMAE

Rank 17 182.24 62.29 Elapsed CPU
time

2.41 × 107 6.85 × 10−4 Objective
function
value

Rank 20 156.18 41.93 Elapsed CPU
time

5.61 × 105 4.71 × 103 Objective
function
value

FNMAE also produces sparser images (factors)—each
image contains less number of component (limb) images.
The difference becomes even more pronounced as the
approximated rank approaches 17.2

Since, the quality of the reconstruction achieved by
NNMA is important to many image processing applications,
we provide a comparison of the various NNMA methods
in terms of reconstruction accuracy—sample results are
reported in Fig. 6, which shows accuracies for a rank-20
approximation to a 9216 × 143 matrix of face images.3

All methods were initialized with the same random B and
C values.

This image dataset is an example of a real-world dense
matrix for which ALS fails to decrease the objective func-
tion monotonically, resulting in a corresponding poorer
reconstruction accuracy. FNMAI achieves the best objective
values of all three algorithms compared, and a correspond-
ing better reconstruction is observed (see Fig. 6).

5. CONCLUSIONS

In this paper, we have presented new and improved
Newton-type methods for the least-squares NNMA prob-
lem. By employing a nondiagonal gradient scaling scheme,
our algorithms use curvature information and thus over-
come deficiencies of gradient descent-based methods. Our
methods also rectify serious draw-backs in existing methods
such as ALS and ZC quasi-Newton heuristic. We provide

2 In ref. [20], Donoho presents the result of a rank 16 estimation.
Since we are not aware of an efficient algorithm to compute
the nonnegative rank of matrix, we are not able to confirm the
true nonnegative rank of the dataset. However, it obviously lies
between the matrix rank 13 and the number of component images
17. We conjecture that the nonnegative rank is either 16 or 17 and
our experiment confirms this conjecture by achieving almost zero
error for a rank 17 approximation.

3 We preprocessed a publicly available face image database to
create a subset of 143 grey-scale images of dimension 96 × 96
for our experiments.

convergence guarantees for our algorithms and verify their
performance on real-life data from applications.

We provide two implementations based on the same
algorithmic framework. Our exact method FNMAE, which
shows good performance in terms of approximation accu-
racy, is suitable for applications that require superior accu-
racy. Our inexact implementation FNMAI is more suitable
for applications that are more constrained by computational
efficiency rather than accuracy.
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