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ABSTRACT
High dimensional directional data is becoming increasingly
important in contemporary applications such as analysis of
text and gene-expression data. A natural model for multi-
variate directional data is provided by the von Mises-Fisher
(vMF) distribution on the unit hypersphere that is anal-
ogous to the multi-variate Gaussian distribution in Rd. In
this paper, we propose modeling complex directional data as
a mixture of vMF distributions. We derive and analyze two
variants of the Expectation Maximization (EM) framework
for estimating the parameters of this mixture. We also pro-
pose two clustering algorithms corresponding to these vari-
ants. An interesting aspect of our methodology is that the
spherical kmeans algorithm (kmeans with cosine similarity)
can be shown to be a special case of both our algorithms.
Thus, modeling text data by vMF distributions lends theo-
retical validity to the use of cosine similarity which has been
widely used by the information retrieval community. As part
of experimental validation, we present results on modeling
high-dimensional text and gene-expression data as a mix-
ture of vMF distributions. The results indicate that our
approach yields superior clusterings especially for difficult
clustering tasks in high-dimensional spaces.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; I.5.3 [Pattern Recognition]:
Clustering

Keywords
Clustering, directional data, mixtures, von Mises-Fisher, EM

1. INTRODUCTION
Clustering or segmentation of data is a fundamental data
analysis step that has been widely studied across various dis-
ciplines [19]. However, several large datasets that are being
acquired from scientific domains, as well as the world wide
web, have a variety of complex characteristics that severely
challenge traditional methods for clustering [15]. This ar-
ticle is concerned with the clustering of high-dimensional
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directional data that is becoming increasingly common in
several application domains.

One can broadly categorize clustering approaches into gener-
ative (parametric) [29, 18] and discriminative (non-parametric)
[17, 27] ones. The performance of an approach (and of a spe-
cific method within that approach) is quite data dependent;
there is no clustering method that works the best across
all types of data. Generative models, however, often pro-
vide better insight into the nature of the clusters. From an
application point of view, a lot of domain knowledge can
be incorporated into generative models so that clustering of
data uncovers specific desirable patterns that one is look-
ing for. Clustering algorithms using the generative model
framework, often involve an appropriate application of the
Expectation Maximization (EM) algorithm [8, 5] on a prop-
erly chosen statistical generative model for the data under
consideration. For vector data, there are well studied clus-
tering algorithms for popular generative models such as a
mixture of Gaussians, whose effect is analogous to the use
of Euclidean or Mahalanobis type distances from the dis-
criminative perspective.

1.1 Motivation and Related Work
There are several application domains where clustering based
on minimizing Euclidean distortions yields poor results [30].
For example, empirical studies in information retrieval ap-
plications show that cosine similarity is a far more effective
measure of similarity for analyzing and clustering text docu-
ments. Such domains require the use of directional data [22]
— data that deals only with the directions of unit vectors.
Thus, there is a need for generative models that are more ap-
propriate for the analysis and clustering of directional data.
In this article, we propose a generative mixture model for
directional data on the unit hypersphere and derive two clus-
tering algorithms using this mixture model. We show the
connection between the proposed algorithms and a class of
existing algorithms for clustering high-dimensional, direc-
tional data and present detailed experimental comparisons
among them.

As already mentioed, one important domain where direc-
tional data is encountered is text analysis, and text clus-
tering in particular. It has been experimentally shown that
in order to remove the bias arising due to the length of a
document, it often helps to normalize the data vectors [11].
Further, the spkmeans algorithm [11], that performs kmeans
using cosine similarity instead of Euclidean distortion, has
been found to empirically outperform several other schemes.



There are quite a few other domains such as bioinformat-
ics [13], collaborative filtering [26] etc., in which directional
data is encountered. A similarity measure that has been
found to be useful in these domains is the Pearson corre-
lation coefficient. Given x,y ∈ Rd, the Pearson product
moment correlation between them is given by ρ(x,y) =

Pd
i=1(xi−x̄)(yi−ȳ)√Pd

i=1(xi−x̄)2×
√Pd

i=1(yi−ȳ)2
, where x̄ = 1

d

Pd
i=1 xi, ȳ =

1
d

Pd
i=1 yi. Considering the mapping x 7→ x̃ such that x̃i =
xi−x̄√Pd
i=1(xi−x̄)2

, we have ρ(x,y) = x̃T ỹ. Further, ‖x̃‖2 = 1.

Thus, the Pearson correlation is exactly the cosine similarity
between x̃ and ỹ Hence, analysis and clustering of data us-
ing Pearson correlations is essentially a clustering problem
for directional data.

The application domains described above share another char-
acteristic, namely that the objects to be clustered reside in a
very high dimensional space, with d sometimes in the thou-
sands or more. Clustering of such high-dimensional data has
been of great interest lately [9], with most of the proposed
methods following a density-based heuristic or a discrimi-
natory approach [15, 1, 16]. Perhaps the most noteworthy
generative approach for clustering high-dimensional data is
to use mixtures of Gaussians [7]. Certain other works such
as [24] use a generative model from the exponential fam-
ily and have been explicitly developed for modeling text.
The spkmeans algorithm for clustering normalized data was
proposed in [11], while the connection between a genera-
tive model involving vMF distributions and the spkmeans

algorithm was first observed in [3]. An online competitive
learning scheme using vMF distributions for minimizing a
KL-divergence based distortion was proposed in [28]. How-
ever, these approaches do not cluster directional data using
explicit probabilistic generative models. In this work, the
directional nature of the data is used explicitly resulting
in significantly better clustering performances over certain
standard techniques, (such as kmeans with cosine similar-
ity) especially for difficult clustering tasks: when clusters
overlap, when cluster sizes are skewed, and when cluster
sizes are small relative to the dimensionality of the data.
Interestingly, as we shall see later on, one of our proposed
approaches has an implicit simulated annealing type behav-
ior that seems to alleviate some of the problems associated
with high-dimensionality.

Before proceeding further, we give a brief outline of the pa-
per. We first present the vMF distribution on the sphere in
section 2. In section 3, we introduce the generative model
for a mixture of vMF distributions and analyze the max-
imum likelihood parameter estimate of the mixture model
from a given dataset using the EM framework. Based on
the analysis of section 3, two clustering algorithms using
soft and hard-assignments respectively are proposed in sec-
tion 4. We present detailed experimental results on the pro-
posed algorithms in section 5. Some interesting aspects of
the proposed algorithms are discussed in section 6. Section 7
presents concluding remarks and directions for future work.

A word about the notation: bold faced variables, e.g., x,µ,
etc., represent vectors; ‖ · ‖ denotes the L2 norm; sets are
represented by calligraphic upper-case letters, e.g., X , Z,
etc.; R denotes the set of reals, Sd−1 denotes the (d − 1)-

dimensional sphere embedded in Rd. Probability density
functions are denoted by lower case alphabets, e.g., f(·),
p(·), etc.; probability of a set of events is denoted by P . If
a random variable z is distributed as p(·), expectations of
functions of z are denoted by Ep[·].

2. THE VON MISES-FISHER (VMF) DIS-
TRIBUTION

A d-dimensional unit random vector x (i.e., ‖x‖ = 1) is said
to have d-variate von Mises-Fisher (vMF) distribution if its
probability density function is given by:

f(x|µ, κ) = cd(κ)eκµ
T x, (1)

where ‖µ‖ = 1, κ ≥ 0. Thus, x,µ ∈ Sd−1. The normalizing
constant cd(κ) is given by:

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
, (2)

where Ir(·) represents the modified Bessel function of the
first kind of order r, see [22] and [12] for more details on
vMF distributions. The density f(x|µ, κ) is parameterized
by the mean direction, µ, and the concentration parameter,
κ, so-called because it characterizes how strongly the unit
vectors drawn according to f(x|µ, κ) are concentrated about
the mean direction µ. Larger values of κ imply stronger
concentration about the mean direction. In particular when
κ = 0, f(x|µ, κ) reduces to the uniform density on Sd−1,
and as κ→∞, f(x|µ, κ) tends to a point density.

The von Mises-Fisher distribution is natural for directional
data and has properties analogous to those of the multi-
variate Gaussian distribution for multi-variate data in Rd.
For example, the maximum entropy density on Sd−1 subject
to the constraint that E[x] is fixed is a vMF density (see [25]
and [21] for details).

3. EM ON MIXTURE OF VMFS
In this section, we introduce a mixture of k vMF (movMF)
distributions as a generative model for directional data, and
then derive the mixture-density parameter estimation up-
date equations from a given data set using the expectation
maximization (EM) framework. The probability density
function of the movMF generative model is given by

f(x|Θ) =
kX

h=1

αhfh(x|θh), (3)

where Θ = {α1, · · · , αk, θ1, · · · , θk} with
Pk
h=1 αh = 1,

αh ≥ 0, and fh(x|θh) is a single vMF distribution with pa-
rameters θh = (µh, κh). In order to sample a point from
the generative model perspective, the h-th vMF is chosen
at random with probability αh, and then a point is sam-
pled from Sd−1 following fh(x|θh). Let X = {x1, · · · ,xn}
be a data set generated by sampling independently following
this generative model. Let Z = {z1, · · · , zn} be the corre-
sponding set of the so-called hidden random variables such
that zi = h when xi has been generated following fh(x|θh).
Then, with the knowledge of the values of the hidden vari-
ables, the log-likelihood of the observed data is given by

lnP (X ,Z|Θ) =
nX

i=1

ln (αzifzi(xi|θzi)) , (4)



from which maximum likelihood parameter estimates can be
obtained. However, the values of the hidden variables are
not known and so (4) is really a random variable dependent
on the distribution of Z, and will be called the complete data
log-likelihood. Now, for a given (X ,Θ), it is possible to es-
timate the most likely conditional distribution of Z|(X ,Θ),
and this forms the E-step of the EM framework. The exact
details of how this estimation is done will be deferred for
the moment. In fact we will discuss two ways of estimating
the hidden variable distributions that lead to significantly
different algorithms. For now, we will assume that the dis-
tribution p(h|xi,Θ) = p(zi = h|x = xi,Θ), ∀h, is known for
all the data points.

3.1 The M-step: Parameter Estimation
Suppose the posterior distribution, p(h|xi,Θ), ∀h, i, of the
hidden variables Z|(X ,Θ) is known. Unless otherwise spec-
ified, henceforth all expectations will be taken over the dis-
tribution of the (set of) random variable(s) Z|(X ,Θ). Now,
expectation of the complete data log-likelihood, given by
(4), over the given distribution p is

Ep[lnP (X ,Z|Θ)] =

kX

h=1

nX

i=1

(lnαh) p(h|xi,Θ)

+

kX

h=1

nX

i=1

(ln fh(xi|θh)) p(h|xi,Θ). (5)

In the parameter estimation or M-step, Θ is re-estimated
such that the above expression is maximized. Note that in
order to maximize this expression, we can maximize the term
containing αh and the term containing θh separately since
they have no functional dependencies (note that p(h|xi,Θ)
is fixed).

To find the expression for αh, we introduce the Lagrangian
multiplier λ with the constraint that

Pk
h=1 αh = 1. Tak-

ing partial derivatives of the Lagrangian objective function
w.r.t. each αh and solving, we get

α̂h =
1

n

nX

i=1

p(h|xi,Θ). (6)

Next we concentrate on the terms containing θh = (µh, κh)
under the set of constraints µThµh = 1, κh ≥ 0,∀h. Then, us-
ing Lagrange multipliers λ1, · · · , λk corresponding to these
constraints1, the Lagrangian is given by

L({µh, λh, κh}kh=1) =

kX

h=1

"
nX

i=1

(ln cd(κh)) p(h|xi,Θ)

+
nX

i=1

κhµ
T
hxi p(h|xi,Θ) + λh(1− µThµh)

#
. (7)

Taking partial derivatives of (7) with respect to {µh, λh, κh}kh=1

and setting them to zero, for h = 1, 2, . . . , k we get:

µ̂h =

Pn
i=1 xip(h|xi,Θ)

‖Pn
i=1 xip(h|xi,Θ)‖ , (8)

Ad(κ̂h) =
‖Pn

i=1 xip(h|xi,Θ)‖Pn
i=1 p(h|xi,Θ)

. (9)

1analysis using the KKT conditions is skipped for brevity.
κh ≥ 0 is accounted for by taking positive square roots. The
final estimates come out to be the same [2].

where Ad(κ) =
Id/2(κ)

Id/2−1(κ)
. A closed form solution of (9) is

not possible and one can use numerical techniques to solve
for κ̂h. A reasonable approximation to the solution is ob-
tained by setting

κ̂h =
r̄hd− r̄3

h

1− r̄2
h

, (10)

where r̄h = Ad(κ̂h) [2].

3.2 The E-step: Distribution estimation
From the standard setting of the EM algorithm [8, 5], (6),
(8), and (9) give the update equations for the parameters in-
volved. Given this set of parameters, in this section we out-
line two schemes for updating the distributions of Z|(X ,Θ)
so that the likelihood of the data is maximized.

The first update scheme exactly follows the soft-assignment
scheme for learning mixture models using EM. From the
standard EM framework, the distribution of the hidden vari-
ables [23] is given by:

p(h|xi,Θ) =
αh fh(xi|Θ)Pk
l=1 αl fl(xi|Θ)

. (11)

Our second update scheme is based on the widely used hard-
assignment heuristic for unsupervised learning. In this case,
the distribution of the hidden variables is given by

q(h|xi,Θ) =

8
<
:

1, if h = argmax
h′

p(h′|xi,Θ),

0, otherwise.
(12)

Though soft-assignments are theoretically very well moti-
vated [5, 23], hard-assignments have not received much the-
oretical attention (though some discussion can be found
in [20]). In the rest of this section, we formally study the
connection between soft and hard-assignments in the EM
framework. Note that this analysis is applicable to general
mixture model learning in the EM framework.

At first, following the arguments in [23], we introduce the
function F (p̃,Θ) given by

F (p̃,Θ) = Ep̃[lnP (X ,Z|Θ)] +H(p̃). (13)

where p̃ is some distribution of Z|(X ,Θ). From a maximum-
likelihood perspective, the primary objective function that
we want to maximize to get the correct mixture model is
the incomplete data log-likelihood lnP (X|Θ). Now, one in-
teresting property of the function F is that it lower bounds
lnP (X|Θ) over choices of p̃. Hence, it makes sense to try
to maximize F with respect to p̃. For a given Θ, the p̃ that
maximizes F (·,Θ) is given by (11) [23]. The corresponding
optimal value of the function is given by

F (p,Θ) = Ep[lnP (X ,Z|Θ)] +H(p)

= Ep[lnP (X ,Z|Θ)]− Ep[lnP (Z|(X ,Θ))]

= Ep

»
ln

„
P (X ,Z|Θ)

P (Z|(X ,Θ))

«–
= Ep[lnP (X|Θ)]

= lnP (X|Θ), (14)

the incomplete data log-likelihood. Further, one can easily
see that for a given p̃, the Θ that optimizes F (p̃, ·) is the
the same as the one that optimizes the expectation of the
complete data log-likelihood in (5). Hence, the M-step is



equivalent to optimizing F with respect to Θ for a given p̃.
It follows [5, 23], that the incomplete data log-likelihood,
ln p(X|Θ), is non-decreasing at each iteration of the alter-
nate maximization of the function F in terms of Θ and p̃,
or equivalently the parameter and the distribution updates
given by (6), (8), (9), and (11). Iteration over this set of
updates forms the basis of our algorithm soft-movMF to be
discussed in section 4.

In the hard-assignment case, effectively each of the hidden
random variables has a distribution that has probability 1
for one of the mixture components, and 0 for all the oth-
ers. We shall denote this class of distributions by H. The
important question is: is there a way to optimally pick a dis-
tribution from H and then perform a regular M-step, and
guarantee, as before, that the incomplete log-likelihood of
the data is non-decreasing at each iteration of the update?
Unfortunately, this is not possible in general. However, we
show that it is possible to reasonably lower bound the in-
complete log-likelihood of the data using expectations over
q ∈ H as in (12). The distribution q ∈ H is optimal in
the sense that it gives the tightest lower bound to the in-
complete log-likelihood among all distributions in H. The
lower bound is reasonable in the sense that the expecta-
tion over q is itself lower bounded by (5), the expectation
of the complete log-likelihood over the distribution p given
by (11). Then, an iterative update scheme analogous to
regular EM guarantees that this tight lower bound on the
incomplete log-likelihood is non-decreasing at each iteration
of the update. The parameter estimation, or, M-step re-
mains practically unchanged, with p replaced by q in the
update equations (6), (8), and (9).

Since p given by (11) optimizes F for a given Θ, the func-
tional value F (·,Θ) is smaller for any other choice of p̃. In
particular, if p̃ = q as in (12), we have

F (q,Θ) ≤ F (p,Θ) = lnP (X|Θ). (15)

Now, all distributions in H have the property that their
entropy is 0. In particular, H(q) = 0. Then, from the
definition of the function F , we have

Eq[lnP (X ,Z|Θ)] ≤ lnP (X|Θ). (16)

So, the expectation over q actually lower bounds the likeli-
hood of the data. Using the definitions of p and q, one can
easily prove [2] that Ep[lnP (Z|(X ,Θ))] ≤ Eq[lnP (Z|(X ,Θ))].
Now, adding the incomplete data log-likelihood lnP (X|Θ)
to both sides of this inequality, we have

Ep[lnP (X ,Z|Θ)] ≤ Eq[lnP (X ,Z|Θ)]. (17)

Combining (16) and (17), we get

Ep[lnP (X ,Z|Θ)] ≤ Eq[lnP (X ,Z|Θ)] ≤ lnP (X|Θ). (18)

Thus, the expectation over q lies in between the incomplete
data likelihood and the expectation of the complete data
likelihood over p and hence is a reasonable lower bound to
the incomplete data likelihood value.

Finally, we show that our choice of the distribution q is opti-
mal in the sense that the expectation over q gives the tightest
lower bound among all distributions inH. Let q̃ be any other
distribution in the subset so that q̃(hi|xi,Θ) = 1. Let h∗i =

argmax
h

p(h|xi,Θ). Hence, p(h∗i |xi,Θ) ≥ p(hi|xi,Θ),∀i.
Then,

Eq̃[ lnP (X ,Z|Θ)]

=
NX

i=1

kX

h=1

q̃(h|xi,Θ) ln p(h|xi,Θ) =
NX

i=1

ln p(hi|xi,Θ)

≤
NX

i=1

ln p(h∗i |xi,Θ) =
NX

i=1

kX

h=1

q(h|xi,Θ) ln p(h|xi,Θ)

= Eq[lnP (X ,Z|Θ)].

Hence, the choice of q as in (12) is optimal. This analysis
forms the basis of our algorithm hard-movMF to be discussed
in section 4.

4. ALGORITHMS
In this section, we propose two algorithms for clustering
directional data based on the development of the previous
section. The two algorithms are based on soft and hard-
assignment schemes and are respectively called soft-movMF

and hard-movMF. The soft-movMF algorithm, presented in
Algorithm 1 estimates the parameters of the mixture model
exactly following the derivations in section 3 using EM.
Hence, it assigns soft (or probabilistic) labels to each point
that are given by the posterior probabilities of the compo-
nents of the mixture conditioned on the point. On termina-
tion, the algorithm gives the parameters Θ = {αh,µh, κh}kh=1

of the k vMF distributions that model the data set X ,
as well as the soft-clustering, i.e., the posterior probabili-
ties p(h|xi,Θ), ∀h, i. Appropriate convergence criteria de-
termine when the algorithm should terminate.

Algorithm 1 soft-movMF

Input: Set X of data points on Sd−1

Output: A soft clustering of X over a mixture of k vMF
distributions
Initialize all αh,µh, κh, h = 1, · · · , k
repeat
{The E (Expectation) step of EM}
for i = 1 to n do

for h = 1 to k do
fh(xi|θh)← cd(κh)eκhµ

T
h xi

p(h|xi,Θ)← αhfh(xi|θh)Pk
l=1 αlfl(xi|θl)

end for
end for
{The M (Maximization) step of EM}
for h = 1 to k do

αh ← 1

n

nX

i=1

p(h|xi,Θ)

µh ←
Pn
i=1 xip(h|xi,Θ)

‖Pn
i=1 xip(h|xi,Θ)‖

κh ← A−1
d

„‖Pn
i=1 xip(h|xi,Θ)‖Pn
i=1 p(h|xi,Θ)

«

end for
until convergence

The hard-movMF algorithm estimates the parameters of the
mixture model by a hard assignment, based on a derived



posterior distribution given by (12). The algorithm is ob-
tained from Algorithm 1 by replacing all the posteriors p by
the hardened posteriors q as in (12). Thus, after the hard
assignments in every iteration, each point belongs to a single
cluster. As before, the updates of the component parameters
are done using the posteriors of the components given the
points. The only difference in this case is that the posterior
probabilities can take values only in {0, 1}. On termination,
the algorithm gives the parameters Θ = {αh,µh, κh}kh=1

of the k vMFs that model the data set X under the hard
assignment setup, and the hard-clustering, i.e., a disjoint k-
partitioning of X based on the conditional posteriors q on
the component vMF distributions.

4.1 Revisiting Spherical Kmeans
We briefly revisit the spkmeans algorithm [11], that has been
shown to perform well on real life text clustering tasks [11,
3], in the light of the developments of sections 3 and 4.
First, we present the spkmeans procedure in Algorithm 2.
The main observation is that the spkmeans algorithm can
be looked upon as a special case of the soft-movMF as well
as the hard-movMF algorithms under certain restrictive as-
sumptions on the generative model. To be more precise,
say we assume that the generative model of the mixture of
vMFs is such that the priors of all the components are the
same, i.e., αh = 1/k,∀h. In order to get spkmeans as a
reduction from soft-movMF, we further assume that all the
components have (equal) infinite concentration parameters,
i.e., κh = κ → ∞,∀h. With these assumptions, the E-step
reduces to assigning a point to its nearest cluster where near-
ness is computed as a cosine similarity between the point and
the cluster representative. Thus, a point xi will be assigned
to cluster h∗ = argmax

h
xTi µh, since

p(h∗|xi,Θ) = lim
κ→∞

eκ xTi µh∗

Pk
h=1 e

κ xTi µh
→ 1 (19)

and p(h|xi,Θ)→ 0,∀h 6= h∗.

To show that spkmeans can also be seen as a special case
of the hard-movMF algorithm, in addition to assuming the
priors of the components to be equal, we further assume
that the concentration parameters of all the components
are equal, i.e., κh = κ, ∀h. Then, hard-movMF reduces to
spkmeans. With these assumptions on the model, the es-
timation of the common concentration parameter becomes
unessential since the hard assignment will depend only on
the value of the cosine similarity xTi µh. Given a set of values
for {µh}kh=1, define Xh = {x : x ∈ X , h = argmaxh′ xTµh′}.
It is easy to see that {Xh}kh=1 forms a disjoint k-partitioning
of X . For a given set of values for {µh, κh}kh=1, we can
rewrite the hard-movMF algorithm using a similar notation of
set partitions, Xh = {x : x ∈ X , h = argmaxh′ κh′x

Tµh′}.

In addition to the above three algorithms, we report ex-
perimental results on another algorithm fskmeans [3] that
belongs to the same class in the sense that, like spkmeans, it
can be derived from the mixture of vMF models with some
restrictive assumptions. In fskmeans, the centroids of the
mixture components are estimated as in hard-movMF. The
dispersion, 1/κ, of a component is set to be inversely propor-
tional to the number of points in the cluster corresponding
to that component in order to simulate a frequency sensitive

Algorithm 2 spkmeans

Input: Set X of data points on Sd−1

Output: A disjoint k-partitioning {Xh}kh=1 of X
Initialize µh, h = 1, · · · , k
repeat
{The E (Expectation) step of EM}
Set Xh ← φ, h = 1, · · · , k
for i = 1 to n do
Xh ← Xh ∪ {xi} where h = argmax

h′
xTi µh′

end for
{The M (Maximization) step of EM}
for h = 1 to k do

µh ←
P

x∈Xh x

‖Px∈Xh x‖
end for

until convergence

competitive learning that implicitly prevents the formation
of null clusters, a well-known problem in regular kmeans [4].

5. EXPERIMENTAL RESULTS
In this section we briefly describe the datasets and exper-
imental methodology used. Then, we discuss the perfor-
mance of the four algorithms under consideration on the
various datasets.

5.1 Datasets
We present results on two standard text datasets: 20 News-
groups2, and Yahoo News3, and a dataset of Yeast gene-
expression levels.

The 20 Newsgroups dataset is a collection of 19997 docu-
ments from 20 different Usenet newsgroups with (approxi-
mately) equal number of documents from each group. We
present results on several subsets of this dataset. The full
dataset will be called news20. A smaller version small-news20

was created with 100 randomly chosen documents from each
of the 20 newsgroups. Various subsets of these two datasets
were studied to understand the impact of dataset properties
on the relative performance of the algorithms. news-diff3 is
a subset consisting of 3 very different newsgroups (alt.atheism,
rec.sport.baseball, sci.space) with 1000 documents per clus-
ter, and small-news-diff3 consists of the same 3 news-
groups with 100 documents per cluster. news-sim3 is a sub-
set consisting of 3 very similar newsgroups (comp.graphics,
comp.os.ms-windows, comp.windows.x) with 1000 documents
per cluster, and small-news-sim3 consists of the same 3
newsgroups with 100 documents per cluster.

The Yahoo News (K-series) dataset is a collection of 2340
Yahoo news articles from 20 different categories. We used
the full yahoo dataset for experimentation. The underlying
clusters in this dataset are highly skewed in terms of the
number of documents per clusters, with sizes ranging from
9 to 494.

The Rosetta Inpharmatics Yeast gene-expression dataset [14]
is a collection of gene-expression vectors constructed using

2http://www.ai.mit.edu/people/jrennie/20 newsgroups
3ftp://ftp.cs.umn.edu/users/boley/PDDPdata/



DNA microarray experiments on the Yeast genes. The origi-
nal dataset consists of 300 experiments measuring expression
of several yeast genes. We used a subset of 996 genes (with
known phylogenetic profiles) for our experiments.

5.2 Methodology
Performance of the four algorithms discussed in section4 on
all the text datasets have been analyzed using mutual infor-
mation (MI) between the cluster and class labels. The MI
gives the amount of statistical similarity between the clus-
ter and class labels [6]. If X is a random variable for the
cluster assignments and Y is a random variable for the pre-
existing labels on the same data, then their MI is given by

I(X;Y ) = E[ln p(X,Y )
p(X)p(Y )

] where the expectation is computed

on the joint distribution of (X,Y ) estimated from a particu-
lar clustering of the dataset under consideration. All results
reported are averaged over 10 runs and all algorithms were
started with the same random initialization. Since the the
standard deviations of MI were reasonably small for all al-
gorithms, to reduce clutter, error bars have not been shown
in the plots. Also note that for the gene-expression datasets,
since class labels are unavailable, the average cosine similar-
ity between each data-point and its cluster representative is
used to evaluate the performance of the algorithms.
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Figure 1: Clustering results on small-news20

5.3 Results on 20 Newsgroups
In this section, we briefly discuss the performance of the al-
gorithms on the 20 Newsgroups datasets. All the algorithms
performed similarly for the news20 dataset achieving a MI of
approximately 1.5 at the correct number of clusters. Exper-
iments with artificial directional data revealed the empirical
fact that if the clusters have almost equal priors, have suffi-
ciently large number of data points per cluster, and several
of them are reasonably separated the algorithms perform
similarly, since the clustering problem is rather simple. On
the other hand, if one or more of these conditions are vio-
lated, they give quite different clusterings according to their
respective biases. Lesion experiments with the various sub-
sets of news20 are performed to study these biases in detail.

For example, even though the small-news20 dataset is just
a sampled version of the news20 dataset, significant perfor-
mance differences are observed as shown in Figure 1. The
number of documents per cluster being small, spkmeans and
fskmeans do not perform that well, even for the true number
of clusters, since for a small number of points, they become
more susceptible to getting trapped in bad local minima
of their respective objective functions. On the other hand,
soft-movMF performs significantly better than all the other
algorithms over the entire range, while hard-movMF gives
satisfactory MI values till the true number of clusters after
which it falls sharply.
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Figure 2: Clustering results on news20-diff3

spkmeans soft-movMF

I II III I II III
Class I 815 1 184 957 5 38
Class II 21 972 7 14 981 5
Class III 58 13 929 27 11 962

Table 1: Confusion matrix for news20-diff3

Next, the effect of small number of points per cluster in
high-dimensions is studied more closely using the two vari-
ants of the news20-diff3 dataset. The basic news20-diff3

dataset is an easy dataset to cluster since it has equal priors,
reasonably separate clusters and sufficient number of docu-
ments per cluster. However, as we shall shortly see, when the
smaller version, small-news20-diff, of this simple dataset
is used, the performance of the algorithms change by signif-
icant amounts. The results on news20-diff3 are shown in
Figure 2. The performance of all the algorithms are compa-
rable, though the vMF based algorithms give higher values
of MI consistently over the entire range of the number of
clusters we experimented with. Further, at the correct num-
ber of clusters k = 3, the vMF-based algorithms perform
significantly better. We demonstrate this more clearly by
presenting confusion matrices generated by spkmeans and
soft-movMF for k = 3 in Table 1. Among the two vMF
based algorithms, soft-movMF performs consistently better
than hard-movMF over the entire range.



2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n 

va
lu

e

MI values on small−news20−diff3

fskmeans
spkmeans
hard−movMF
soft−movMF

Figure 3: Clustering results on small-news20-diff3

spkmeans soft-movMF

I II III I II III
Class I 31 28 41 94 2 4
Class II 26 53 13 1 80 19
Class III 41 21 51 0 18 82

Table 2: Confusion matrix for small-news20-diff3

Results on the small-news20-diff3 dataset are presented in
Figure 3. We note that the vMF-based algorithms perform
significantly better than fskmeans and spkmeans, which show
a rather poor performance since the number of data points
per cluster is relatively small compared to the dimension-
ality of the data. In fact, for such high-dimensional data
with sparse representation, such as text documents, a few
points chosen at random have a high probability of being
orthogonal to each other, so that a kmeans-based iterative
update scheme may get stuck at a local minimum at the
very point it is initialized (see [10]). As a result, kmeans-
based algorithms suffer in high-dimensions, especially when
the number of data points available is small. This explains
the performance of fskmeans and spkmeans. Among the
vMF-based algorithms, soft-movMF performs significantly
better than hard-movMF over the entire range. This can be
attributed to a very interesting implicit simulated annealing
type behavior that soft-movMF demonstrates. This behav-
ior will be discussed in some detail in section 6. Typical
confusion matrices generated by spkmeans and soft-movMF

for the correct number of clusters are presented in Table 2.

spkmeans soft-movMF

I II III I II III
Class I 618 100 282 644 120 236
Class II 88 629 283 120 766 114
Class III 225 225 550 55 122 823

Table 3: Confusion matrix for news20-sim3

The next two datasets help us study the effect of high-
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Figure 4: Clustering results on news20-sim3

dimensional overlapping clusters on the performance of the
algorithms. Results on the news20-sim3 data are presented
in Figure 4. Though each of the clusters has sufficient
number of points, this is a rather difficult dataset to clus-
ter because the 3 newsgroups are on very similar topics.
Since there are enough points to work with, fskmeans and
spkmeans attain reasonable performance all along, but suffer
a little due to the cluster overlaps. Again, the vMF-based
algorithms consistently perform better than the kmeans-
based algorithms. Among the two vMF-based algorithms,
soft-movMF seems to achieve higher values of MI, though
the differences are not always significant. Representative
confusion matrices generated by spkmeans and soft-movMF

are presented in Table 3.
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Figure 5: Clustering results on small-news20-sim3

The small-news20-sim3 dataset is perhaps the most diffi-
cult dataset to cluster among the news20 subsets that we



spkmeans soft-movMF

I II III I II III
Class I 43 28 29 82 47 8
Class II 33 38 29 2 21 27
Class III 34 31 35 16 32 65

Table 4: Confusion matrix for small-news20-sim3

consider. It has overlapping clusters with a relatively small
number of points per cluster. As expected, fskmeans and
spkmeans do poorly on this dataset. The vMF-based algo-
rithms perform significantly better as before. Again, soft-movMF
achieves much higher values of MI over the entire range of
cluster values over which experiments were performed. Typ-
ical confusion matrices are presented in Table 4.
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Figure 6: Clustering results on yahoo

5.4 Results on Yahoo News
The Yahoo News dataset is a difficult dataset for cluster-
ing in the sense that in addition to having some amount of
overlap in the clusters and insufficient points per cluster, the
clusters are highly skewed in terms of the number of points
per cluster. We present results for the different algorithms
in Figure 6. Over the entire range, soft-movMF consistently
performs better than the other algorithms. Even at the cor-
rect number of clusters k = 20, it performs significantly bet-
ter than the other algorithms. fskmeans and spkmeans have
a very similar behavior till a moderate number of clusters.
For higher numbers of clusters, spkmeans generates empty
clusters because of which its MI does not increase as fast
as fskmeans that has an explicit mechanism for preventing
null clusters. The performance of hard-movMF is interest-
ing; its MI values are comparable and at times worse than
those of fskmeans and spkmeans. Though it seems to per-
form marginally better at the correct number of clusters, the
improvement is not statistically significant. As seen earlier,
hard-moVMF performed significantly better than the kmeans-
based algorithms on the other datasets that we discussed.
In fact, similar behavior is observed on all other datasets we
experimented with [2]. The skewness of yahoo in terms of
cluster sizes can be a possible reason for its bad performance
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Figure 7: Clustering results on Yeast gene-
expression data

on this dataset, but experiments on other skewed datasets
[2] do not explain this behavior.

5.5 Results on Yeast Gene-expression
Results on the Yeast gene-expression dataset are presented
in Figure 7. As can be clearly seen, for a rather differ-
ent clustering domain with a different performance measure,
the vMF-based algorithms perform significantly better than
the kmeans-based algorithms. Among the vMF-based algo-
rithms, the performance of hard-movMF is marginally better
than soft-movMF, but the differences are not significant. It
is interesting to note that the vMF-based algorithms, while
trying to maximize rather different objective functions, ac-
tually perform significantly better than spkmeans in terms of
the average cosine similarity, even though the latter is the
objective function that spkmeans explicitly tries to maxi-
mize.

6. DISCUSSION
The mixture of vMF distributions gives a parametric model-
based generalization of the widely used cosine similarity
measure. As discussed in section 4.1, the spherical kmeans
algorithm that uses cosine similarity arises as a special case
of the EM on mixture of vMFs when, among other things,
the dispersion κ of all the distributions is held constant.
From a different perspective, we argue that if a particular
dataset has been sampled following a vMF distribution with
a given κ, say κ = 1, the natural similarity between any pair
of data points in that set is given by the cosine similarity.
More precisely, if data-points are represented in a feature-
space with orthonormal basis, the Fisher-Information ma-
trix is identity, and hence, the Fisher kernel similarity [18]
is given by

K(xi,xj) = (∇µ ln f(xi|µ))T (∇µ ln f(xj |µ)) (see (1))

= (∇µ(µTxi))
T (∇µ(µTxj)) = xTi xj ,

which is exactly the cosine similarity. In other words, when-
ever cosine similarity is used in a particular application (not



necessarily clustering), the implicit assumption one makes
is that the data has been drawn from a vMF distribution.

In terms of performance, the magnitude of improvement
shown by the soft-movMF algorithm for the difficult cluster-
ing tasks was surprising, especially since for low-dimensional
non-directional data, the improvements using a soft-assignment
based kmeans over the standard hard-assignment based ver-
sions are oftentimes quite minimal. In particular, we were
curious regarding a couple of issues: (i) why is soft-movMF

performing substantially better than hard-movMF, even though
the final probability values obtained by soft-movMF are ac-
tually very close to 0 and 1; and (ii) why is soft-movMF,
which needs to estimate more parameters, doing better even
when there are insufficient number of points relative to the
dimensionality of the space, e.g., all the small- datasets.

It turns out that both these issues can be understood by
taking a closer look at how the soft-movMF converges. In
all our experiments, we initialized κ to 10, and initial cen-
troids to small random perturbations of the global centroid.
Hence, for soft-movMF, the initial posterior membership dis-
tributions of the data points are almost uniform and the
entropy H(p) of the hidden random variables is very high.
The change of this entropy over iterations for the news20

subsets is presented in Figure 8. The behavior is similar
for all the other datasets. Unlike kmeans-based algorithms
where most of the relocation happens in the first two or
three iterations with only minor adjustments later on, in
soft-movMF the data points are noncommittal in the first
few iterations, and the entropy remains very high (the max-
imum possible entropy can be log2 3 = 1.585). The cluster
patterns are discovered only after several iterations, and the
entropy drops drastically within a small number of iterations
after that. When the algorithm converges, the entropy is
practically zero and all points are effectively hard-assigned
to their respective clusters. Note that this behavior is strik-
ingly similar to simulated annealing approaches where κ can
be considered as the inverse of the temperature parameter.
The drastic drop in entropy after a few iterations is the typ-
ical critical temperature behavior observed in annealing.

As text data has only non-negative features values, all the
data points lie in the first orthant of the d-dimensional hy-
persphere and hence, is naturally very concentrated. The
gene-expression data, though spread all over the hypersphere
seemed to have some high concentration regions. In either
case, the final κ values on convergence are very high, reflect-
ing the concentration in the data, and implying a low final
temperature from the annealing perspective. Then, initial-
izing κ to a low value, or equivalently a high temperature,
is a good idea because in that case when soft-movMF is run-
ning, the κ values will keep on increasing over successive
iterations to get to its final large values, giving the effect
of a decreasing temperature in the process, without any ex-
plicit simulated annealing strategy. This explains why the
soft-movMF algorithm performs so well for difficult cluster-
ing tasks in high-dimensions. The hard-movMF algorithm,
instead of using the more general vMF model, suffers be-
cause of hard-assignments from the very beginning. The
�fskmeans and spkmeans do not do well for difficult datasets
due to their hard assignment scheme as well as their signif-
icantly less modeling capabilities.
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Figure 8: Variation of Entropy of hidden variables
with number of Iterations

7. CONCLUSIONS AND FUTURE WORK
In this paper we have proposed two algorithms for clustering
directional data. The algorithms are essentially expectation
maximization schemes applied to an appropriate generative
model, namely a mixture of von Mises-Fisher distributions.
We show that the spkmeans algorithm [11], that has been
shown to work well for text clustering, is a special case of
both the proposed schemes. Another high-dimensional clus-
tering algorithm, fskmeans [3], is also a special case of one
of the proposed algorithms. All the algorithms are compre-
hensively evaluated using several real-life high dimensional
datasets with varying degrees of complexity. From the ex-
perimental results, it seems that certain high-dimensional
datasets, e.g., text, gene-expression etc., after L2 normal-
ization have properties that match well with the modeling
assumptions of the vMF mixture model. Hence, the pro-
posed algorithms form powerful clustering techniques for
such datasets.

The vMF distribution that we considered in the proposed
techniques, is one of the simplest parametric distributions
for directional data. More general models, e.g., the Fisher-
Bingham distribution, have added expressive power and may
be useful under certain circumstances. However, the param-
eter estimation problem is significantly more difficult for
such models. Also, one needs substantially more data to
get reliable estimates of the parameters. Hence these more
complex models may not be viable for most problems. Nev-
ertheless, the tradeoff between model complexity (in terms
of the number of parameters), and sample complexity needs
to be studied in more detail in the context of directional
data. We could also adapt a local search strategy such as
the one in [10], for incremental EM to yield better local
minima for both hard and soft-assignments.
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