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Abstract

Numerous applications in statistics, signal pro-
cessing, and machine learning regularize us-
ing Total Variation (TV) penalties. We study
anisotropic (ℓ1-based) TV and also a related
ℓ2-norm variant. We consider for both vari-
ants associated (1D)proximity operators, which
lead to challenging optimization problems. We
solve these problems by developing Newton-type
methods that outperform the state-of-the-art al-
gorithms. More importantly, our 1D-TV al-
gorithms serve as building blocks for solving
the harder task of computing 2- (and higher)-
dimensional TV proximity. We illustrate the
computational benefits of our methods by apply-
ing them to several applications: (i) image de-
noising; (ii) image deconvolution (by plugging in
our TV solvers into publicly available software);
and (iii) four variants of fused-lasso. The results
show large speedups—and to support our claims,
we provide software accompanying this paper.

1. Introduction

Applications in statistics, signal processing, and machine
learning frequently involve problems of the form

min
x∈Rn

L(x) +R(x), (1)

whereL is a differentiable, convex loss, andR is a con-
vex, possibly nonsmooth regularizer. Nonsmoothness ofR
makes optimizing (1) hard; but often the difficulties raised
by this nonsmoothness can be alleviated by passing toR’s
proximity operator, defined by the following operation:

proxR(y) := argminx
1
2‖x− y‖22 +R(x). (2)
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Within machine learning and related fields, the bene-
fits of invoking the proximity operator (2) are well-
recognized (Nesterov, 2007; Combettes & Pesquet, 2009;
Duchi & Singer, 2009), and several choices ofR have al-
ready been considered.

We study a special choice forR: one and higher dimen-
sionaltotal-variation(TV)1; for x ∈ R

n, this is defined as

Tv1D
p (x) :=

(

∑n−1

i=1
|xi+1 − xi|

p
)1/p

, (3)

and for matricesX ∈ R
m×n it is defined as

Tv2D
p,q(X) :=

∑m

i=1

(

∑n−1

j=1
|xi,j+1 − xi,j |

p
)1/p

+
∑n

j=1

(

∑m−1

i=1
|xi+1,j − xi,j |

q
)1/q

, (4)

where usually p, q ∈ {1, 2}. We focus on two
key variants of (3) and (4): anisotropic-TV (see e.g.
Bioucas-Dias & Figueiredo, 2007), with p, q = 1; and TV
with bothp andq = 2. Extension of (3) to tensor data is
relegated to (Barbero & Sra, 2011), for paucity of space.

The regularizers Tv1D
1 and Tv2D

1,1 arise in many
applications—e.g., image denoising and deconvolu-
tion (Dahl et al., 2010), fused-lasso (Tibshirani et al.,
2005), logistic fused-lasso (Kolar et al., 2010), and
change-point detection (Harchaoui & Ĺevy-Leduc, 2010);
also see the related work (Vert & Bleakley, 2010). This
fairly broad applicability motivates us to develop efficient
proximity operators for TV. Before beginning the technical
discussion, let us summarize our key contributions.

Algorithms: For Tv1D
1 - and Tv1D

2 -proximity, we derive
efficient Newton-type algorithms, which we subsequently
use as building blocks for rapidly solving the harder case
of Tv2D

p,q-proximity (also higher-D TV) withp, q ∈ {1, 2}.

Applications: We highlight some of the benefits of our
fast algorithms by showing their application to image de-
noising; we also show their use as efficient subroutines in

1Our definitions of TV are different from the original ROF
model of TV (Rudin et al., 1992); also see§5.2.
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larger solvers for image deconvolution and for solving four
variants of fused-lasso.

Software: To support our numerical results, we provide
efficient implementations of our algorithms.2

An additional important message of our paper is: even for
large-scale machine learning problems, Newton-type meth-
ods can be superior to first-order methods, provided the
problem has enough structure. This viewpoint, though ob-
vious, seems to be espoused by a surprisingly small fraction
of researchers within the machine learning community.

The literature on TV is huge, so it cannot be summarized
here. However, we do mention here some of the most di-
rectly relevant work.

Previously,Vogel & Oman(1996) suggested a Newton ap-
proach for TV; they smoothed the objective, but noted that
it leads to numerical difficulties. In contrast, we solve the
nonsmooth problem directly. Recently,Liu et al. (2010)
presented tuned algorithms for Tv1D

1 -proximity based on a
careful “restart” heuristic; their methods show strong em-
pirical performance but do not extend easily to higher-D
TV. Our Newton-type methods outperform the tuned meth-
ods of (Liu et al., 2010), and fit nicely in a general algo-
rithmic framework that allows tackling the harder two- and
higher-D TV problems.

TV regularization in itself arises frequently in image de-
noising, whereby a large number of TV-based denois-
ing algorithms exist (see e.g.Zhu & Chan, 2008). How-
ever, in contrast to our paper, most TV-based methods
use the standard isotropic TV or ROF model (Rudin et al.,
1992), and there are few methods tailored to anisotropic
TV, except those developed in the context of fused-
lasso (Friedman et al., 2007; Liu et al., 2010).

It is tempting to assume that existing isotropic algorithms,
such as the state-of-the-art PDHG (Zhu & Chan, 2008)
method, can be easily adapted. But this is not so. PDHG
requires fine-tuning of its parameters, and to obtain fast
performance its authors apply non-trivial adaptive rules
that fail on our anisotropic model. ADMM-style algo-
rithms (Combettes & Pesquet, 2009), whose convergence
speed is highly sensitive to their stepsize parameters, also
pose similar problems. In stark contrast, our solvers do not
requireany parameter tuning, and run rapidly.

Our TV methods can be plugged in directly into solvers
such as TwIST (Bioucas-Dias & Figueiredo, 2007) or
SALSA (Afonso et al., 2010) for image deblurring, and
into methods such as FISTA (Beck & Teboulle, 2009) or
TRIP (Kim et al., 2010), for TV-regularized optimization.

2Seehttp://arantxa.ii.uam.es/∼gaa/software.html

2. One dimensional TV-Proximity

We begin with 1D-TV proximity, and devote most atten-
tion to it, since it forms a crucial part of our 2D-TV meth-
ods. Introduce thedifferencing matrixD ∈ R

(n−1)×n

with dij = 0, except fordii = −1 anddi,i+1 = 1. Let
Tv1D

p (x) = ‖Dx‖p; then the TV-proximity problem is

minx∈Rn
1
2‖x− y‖22 + λ‖Dx‖p. (5)

It is often easier to solve (5) via its dual

maxu − 1
2‖D

Tu‖22 + uTDy, s.t.‖u‖q ≤ λ, (6)

where‖·‖q is thedual-normto ‖·‖p. If u is dual feasible,
then the primal variablex = y−DTu. The corresponding
duality-gapis easily computed as

gap(x,u) := λ‖Dx‖p − uTDx. (7)

If u∗ is the optimal dual solution, then the optimal primal
solution is given byx∗ = y −DTu∗.

2.1. TV-L1: Proximity for Tv 1D
1

For 1D anisotropic TV, the dual (6) becomes

minu φ(u) := 1
2‖D

Tu‖22−u
TDy, s.t.‖u‖∞ ≤ λ. (8)

This is a box-constrained quadratic program; so it can
be solved by methods such as TRON (Lin & Mor é,
1999), L-BFGS-B (Byrd et al., 1994), or projected-Newton
(PN) (Bertsekas, 1982). But these methods can be inef-
ficient if invoked out-of-the-box, and carefully exploiting
problem structure is a must. PN lends itself well to such
structure exploitation, and we adapt it to develop a highly
competitive method for solving the dual problem (8).

The generic PN procedure runs iteratively: it first identi-
fies a special subset of the active variables and uses these
to compute a reduced Hessian. Then, this Hessian is used
to scale the gradient and move in direction opposite to it,
scaling by a stepsize, if needed. Finally, the next iterate is
obtained by projecting onto the constraints, and the cycle
repeats. At each iteration we select the active variables:

I := {i|
(

ui = −λ and[∇φ(u)]i > ǫ
)

or
(

ui = λ and[∇φ(u)]i < −ǫ
)

},

whereǫ ≥ 0 is small scalar. Let̄I := {1 . . . n} \I be the
set of indices not inI. From the HessianH = ∇2φ(u)
we extract thereduced HessianHĪ by selecting rows and
columns indexed bȳI, and compute the “reduced” update

uĪ ← P (uĪ − αH−1
Ī

[∇φ(u)]Ī), (9)

whereα is a stepsize, andP denotes elementwise projec-
tion onto the constraints. Let us now see how to exploit
structure to efficiently perform the above steps.
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First, notice that the HessianH = DDT is symmetric
and tridiagonal, with2s on the main diagonal and−1s
on the sub- and superdiagonals. Next, observe that what-
ever the active setI, the corresponding reduced Hessian
HĪ remains symmetric tridiagonal. This is crucial be-
cause then we can quickly compute the updating direction
dĪ by solvingHĪdĪ = [∇φ(ut)]Ī . This linear system
can be solved by computing the Cholesky decomposition
HĪ = RTR in linear time using the LAPACK routine
DPTTRF (Anderson et al., 1999). The resultingR is bidi-
agonal, so we can solve fordĪ in linear time too. Thus, a
full PN iteration takesO(n) time.

The next crucial ingredient is stepsize selection.Bertsekas
(1982) recommends Armijo-search along projection arc.
However, for our problem Armijo-search is disproportion-
ately expensive. So we resort to a backtracking strategy
using quadratic interpolation (Nocedal & Wright, 2000).
This strategy is as follows: if the current stepsizeαk does
not provide enough decrease inφ, we build a quadratic
model usingφ(u), φ(u−αkd), and∂αφ(u−αkd). Then,
stepsizeαk+1 is set to the value that minimizes this model.
If the newαk+1 is larger than or too similar toαk, its value
is halved. Note that the gradient∇φ(u) might be mis-
leading ifu has components at the boundary andd points
outside this boundary (because then, due to the subsequent
projection no real improvement would be obtained by step-
ping outside the feasible region). To address this concern,
we modify the computation of the gradient∇φ(u), replac-
ing by zeros the entries that relate to direction components
pointing outside the feasible set.

Algorithm 1 PN algorithm for TV-L1-proximity

SolveDDTu∗ = Dy.
if ‖u∗‖∞ ≤ λ return u∗; end if
u0 = P [u∗], t = 0
while duality-gap> tolerancedo

Identify set of active constraintsI; let Ī = {1 . . . n} \ I
Construct reduced HessianHĪ

SolveHĪdĪ = [∇φ(ut)]Ī
Compute stepsizeα using backtracking + interpolation
Updateut+1

Ī
= P [ut

Ī
− αdĪ ].

t← t+ 1.
end while
return ut.

Finally, we must account for the case whenλ is so large that
the unconstrained optimum coincides with the constrained
one. In this case, we just obtainu∗ via DDTu∗ = Dy.
All the above ideas are encapsulated as Algorithm1.

2.2. TV-L2: Proximity for Tv 1D
2

For TV-L2 proximityp = 2, so the dual (6) becomes

minu φ(u) := 1
2‖D

Tu‖22 − uTDy, s.t.‖u‖2 ≤ λ.
(10)

Algorithm 2 MSN based TV-L2 proximity

Initialize: α0 = 0, t = 0.
while (¬ converged)do

Compute Cholesky decomp.DDT + αtI = RTR.
Obtainu by solvingRTRu = Dy.
Obtainq by solvingRTq = u.
Updateα using (15)
t← t+ 1.

end while
return ut

Problem (10) is an instance of the well-known trust-region
subproblem, whereby a variety of numerical methods are
available for it (Conn et al., 2000). Below we derive an
algorithm based on the Moré-Sorensen Newton (MSN) it-
eration (Moré & Sorensen, 1983), which in general is ex-
pensive, but in our case proves to be efficient thanks to the
tridiagonal Hessian. Curiously, experiments show that fora
certain range ofλ values, gradient-projection (GP) (without
line-search though) can also be competitive. Thus, for best
performance we prefer a hybrid MSN-GP method for (10).

Consider the KKT conditions for (10):

(DDT + αI)u = Dy,

α(‖u‖2 − λ) = 0, α ≥ 0,
(11)

whereα is a Lagrange multiplier. There are two cases:
‖u‖2 < λ; or ‖u‖2 = λ. If ‖u‖2 < λ, thenα = 0 andu
is obtained by solvingDDTu = Dy. Conversely, if the
solution toDDTu = Dy lies in the interior, then it solves
(11). Thus, we need to only consider‖u‖2 = λ.

Given α, one hasu(α) = (DDT + αI)−1Dy. So we
must compute the “true”α. This can be done by solving
‖u(α)‖22 = λ2, or alternatively solving the MSN equation

h(α) := λ−1 − ‖u(α)‖−1
2 = 0, (12)

which is written so, as it is almost linear in the search
interval, resulting in fast convergence (Moré & Sorensen,
1983). Newton’s iteration for (12) is

α← α− h(α)/h′(α), (13)

and a simple calculation shows that

1

h′(α)
=

‖u(α)‖32
u(α)T (DDT + αI)−1u(α)

. (14)

The key idea in MSN is to eliminate the matrix in-
verse in (14) by introducing the Cholesky decomposition
DDT +αI = RTR and defining a vectorq = (RT )−1u.
As a result, iteration (13) becomes

α← α−
‖u‖22
‖q‖22

(

1−
‖u‖2
λ

)

. (15)



Fast Newton-type Methods for Total Variation Regularization

Observe that bothR andq can be computed in linear time,
so the overall iteration (15) runs in linear time.

The MSN iteration (15) is fairly sophisticated. Let us look
at a much simpler one: GP with afixedstepsizeα0

ut+1 = P‖·‖2≤λ(u
t − α0∇φ(u

t)), (16)

which is set to the inverse of the largest eigenvalue of the
HessianDDT . This is easily done as the eigenvalues have
a closed-form expression, namelyλi = 2− 2 cos

(

iπ
n

)

(for

0 ≤ i ≤ n). The largestλn−1 = 2 − 2 cos
(

(n−1)π
n

)

,

which tends to4 asn→∞; soα0 = 1/4 is a good approx-
imation. Furthermore, the projectionP‖·‖2≤λ is also triv-
ial. Thus, the GP iteration (16) can be attractive, and it in-
deed can outperform the more sophisticated MSN method,
though only for a very limited range ofλ values. Therefore,
in practice we recommend a hybrid of GP and MSN.

3. Two-dimensional TV Proximity

Now we advance to the harder problem of two-dimensional
TV. Let X ∈ R

m×n be an input matrix, and letxi denote
its i-th row, andxj its j-th column. Further, letDn and
Dm be differencing matrices for the row and column di-
mensions. Then, the regularizer (4) can be written as

Tv2p,q(X) =
∑

i
‖Dnx

i‖p +
∑

j
‖Dmxj‖q. (17)

The corresponding Tv2D
p,q-proximity problem is

min
X

1
2‖X − Y ‖2F + λTv2p,q(X), (18)

whereλ > 0 is a penalty parameter. Unfortunately, in gen-
eral, the proximity operator for a sum of convex functions
is difficult to compute. However, if we could split (18) into

min
X

1
2‖X − Y ‖2F + λ

∑

i
‖Dnx

i‖p (19)

min
X

1
2‖X − Y ‖2F + λ

∑

j
‖Dmxj‖q, (20)

then our task would be greatly simplified, especially be-
cause (19) and (20) themselves further decompose into
1D-TV proximity problems. Fortunately, at the cost of
slight additional storage, we can do precisely this splitting
via the proximal Dykstramethod (Combettes & Pesquet,
2009). Algorithm 3 presents pseudocode.

Remarks: Since (19) and (20) decompose into indepen-
dent 1D-TV subproblems, we could solve these subprob-
lems in parallel if desired. Also, as shown, Algorithm (3)
cannot solve (19) and (20) in parallel due to the shared de-
pendence onZt. A variant of Algorithm3 allows us to
overcome this limitation, though it is usually more prefer-
able for multi-dimensional TV (Barbero & Sra, 2011). Em-
pirically, Algorithm 3 converges rapidly and usually (19)

Algorithm 3 Proximal Dykstra Algorithm for (18)

InitializeX0 = Y , P0 = 0, Q0 = 0, t = 0
while (¬ converged)do

Zt = Solve (19) with Y = Xt + Pt

Pt+1 = Xt + Pt −Zt

Xt+1 = Solve (20) with Y = Zt +Qt

Qt+1 = Zt +Qt −Xt+1

t← t+ 1
end while
return Xt

and (20) must be solved only about 4–6 times. When
p, q ∈ {1, 2}, we invoke our Newton-type methods to effi-
ciently solve the corresponding 1D-TV subproblems.

4. Numerical Results: Proximity operators
In this section, we provide experimental results illustrating
the performance of our Newton-type algorithms for 1D-TV
proximity. We test them under two scenarios: (i) with in-
creasing input sizen; and (ii) with varying penalty param-
eterλ. For scenario (i) we select a randomλ ∈ [0, 50]
for each run; the data vectory is also generated randomly
by pickingyi ∈ [−2λ, 2λ] (proportionally scaled toλ) for
1 ≤ i ≤ n. For scenario (ii),yi ranges in[−2, 2], while the
penaltyλ is varied from10−3 (negligible regularization) to
103 (the TV-term dominates).

4.1. Results for TV-L1 proximity
We compare running times of our PN approach (C imple-
mentation) against two methods: (i) the FLSA function
(C implementation) of the SLEP library (Liu et al., 2009),
which seems to be the state-of-the-art method for Tv1D

1 -
proximity (Liu et al., 2010); and (ii) the Pathwise Coordi-
nate Optimization method (R + FORTRAN implementation)
from (Friedman et al., 2007). For PN and SLEP, we use du-
ality gap of10−5 as the stopping criterion. For Coordinate
Optimization, duality gap is not supported so we use its de-
fault stopping criteria. Timing results are presented in Fig-
ure 1 (left panel) for increasing input sizes and penalties.
From the plots we see that both SLEP and PN are much
faster than Coordinate Optimization. Though, it must be
mentioned that the latter returns the full regularization path,
while SLEP and PN compute the solution for only oneλ.
But this is no limitation; SLEP and PN run much faster
and with warm-starts one can rapidly compute solutions for
severalλ values, if needed.

With increasing input sizes PN finds a solution faster than
SLEP, taking roughly at most 60% of the time: explicit nu-
merical values are reported Table1 for easy reference. Fig-
ure1 indicates that larger speedups are observed for small
λ, while for largeλ, both SLEP and PN perform similarly.
The rationale behind this behavior is simple: for smaller
λ the active setI is prone to become larger, and PN ex-
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Figure 1.Running times (in secs). Left panel: PN, SLEP and Coordinate Optimizationsolvers for Tv1D
1 -proximity with increasing input

sizes and penalties. Right panel: MSN, GP, and hybrid MSN-GP solvers for Tv1D
2 -proximity with increasing input sizes and penalties.

Table 1.Running times (in milliseconds) for PN, SLEP and Coor-
dinate Optimization solvers for TV-L1 problems with increasing
input sizes (in log-scale);n denotes problem size.

log10 n SLEP PN COORD.

1.00 1.19 3.6561 1.63
1.53 0.17 0.2476 1.37
2.06 0.30 0.29 1.52
2.58 0.59 0.41 2.69
3.11 1.33 1.04 6.74
3.64 5.25 3.10 22.20
4.17 15.10 8.22 92.41
4.70 67.60 39.35 359.50
5.23 221.58 137.81 1550.27
5.75 759.62 464.32 5678.25
6.28 2874.83 1655.25 23285.00
6.81 9457.11 5659.42 93366.00

plicitly takes advantage of this set by updating only the not
indexed byI. On the other hand, for largeλ, PN’s strategy
becomes similar to that of SLEP, hence the similar perfor-
mance. Finally, as Coordinate Optimization computes the
full regularization path, its runtime is invariant toλ.

4.2. Results for TV-L2

To compare the running times of MSN and GP, we again
use duality gap of10−5 as the stopping criterion. Further,
as MSN might generate infeasible solutions during the op-
timization, we also apply a boundary proximity criterion
for MSN with tolerance10−6. Looking at the results it
can be seen that the performance of MSN and GP differs
noticeably in the two experimental scenarios. While Fig-
ure 1 (first plot; right panel) might indicate that GP con-
verges faster than MSN for large inputs, it does so depend-
ing on the size ofλ relative to‖y‖2. Indeed, Figure1 (last
plot) shows that although for small values ofλ, GP runs
faster than MSN, asλ increases, GP’s performance wors-
ens dramatically, so much that for moderately largeλ it is
unable to find an acceptable solution even after 10000 it-

erations (an upper limit imposed in our implementation).
Conversely, MSN finds a solution satisfying the stopping
criterion under every situation, thus showing a more ro-
bust behavior. Therefore, we propose a hybrid approach
that combines the strengths of MSN and GP. This hybrid is
guided using the following (empirically determined) rule of
thumb: ifλ < ‖y‖2 use GP, otherwise use MSN. Further,
as a safeguard, if GP is invoked but fails to find a solution
within 50 iterations, the hybrid should switch to MSN. This
combination guarantees rapid convergence in practice. Re-
sults for this hybrid approach are included in the plots in
Figure1, and we see that it successfully mimics the behav-
ior of the better algorithm amongst MSN and GP.

5. Numerical Results: Applications

To highlight the potential benefits of our algorithms we
show below three main applications: (i) fused-lasso; (ii)
image denoising; and (iii) image deblurring. However, we
note here that the exact application itself is not as much a
focus as the fact that our solvers apply to a variety of appli-
cations while leading to noticeable empirical speedups.

5.1. Results for 1D Fused-Lasso
Our first application is to fused-lasso for which we plug in
our algorithms as subroutines into the generic TRIP solver
of Kim et al. (2010). We then apply TRIP to solve the fol-
lowing variants of fused-lasso:

1. Fused-lasso (FL):HereL(x) = 1
2‖y −Ax‖22, and

R(x) = λ1‖x‖1 + λ2‖Dx‖1; this is the original
fused-lasso problem introduced in (Tibshirani et al.,
2005), and used in several applications, such
as in bioinformatics (Tibshirani & Wang, 2008;
Rapaport & Vert, 2008; Friedman et al., 2007).

2. ℓ2-variable fusion (VF): Same as FL but with
λ2‖Dx‖2 instead. This FL variant seems to be new.

3. Logistic-fused lasso (LFL):A logistic lossL(x, c) =
∑

i log
(

1 + e−yi(a
T

i
x+c)

)

can be introduced in the

FL formulation to obtain a more appropriate model for
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classification on a dataset{(ai, yi)}. For an applica-
tion to time-varying networks seeKolar et al.(2010).

4. Logistic + ℓ2-fusion (LVF): This model combines lo-
gistic loss with the VF setting.

Table 2.Running times (secs) for SLEP and TRIP for optimizing
different versions of fused-lasso with increasing input sizes. Both
methods were run to satisfy the same convergence criterion.

MODEL SLEP TRIP

n 103 104 105 103 104 105

FS 0.089 1.43 41.80 0.02 0.10 0.86
VS 0.16 1.26 35.77 0.02 0.10 0.90
LFL 0.21 15.01 144.81 0.78 5.35 53.88
LVF 0.86 0.02 132.13 0.81 0.15 11.24

Synthetic data. We first compare TRIP equipped with our
proximity solvers with the approach ofLiu et al. (2010).
Here random matricesA ∈ R

n×m are generated, whose
entries are selected to follow a zero mean, unit variance
normal distribution. We fixm = 100, and setλ1 = λ2 =
0.01. Then, we sample matrices with number of columns
n varying as103, 104, and105. To select the vector of re-
sponsesy, we use the formulay = sgn(Axt + v), where
xt, and v are random vectors whose entries have vari-
ances1 and0.01, respectively. The numerical results are
summarized in Table2, where we compare SLEP (version
4.0) (Liu et al., 2009) against the TRIP-based approach.3

While for smaller matrices withn = 103 both methods run
similarly fast, as the size of the input matrices increases,the
TRIP-based fused-lasso solvers run much faster than SLEP.

Real Data. We tested each of the four FL mod-
els on binary classification tasks for the following mi-
croarray datasets: ArrayCGH (Stransky et al., 2006),
Leukemias (Golub et al., 1999), Colon (U. Alon et al.,
1999), Ovarian (Rogers et al., 2005) and Rat (Hua et al.,
2009). Each dataset was split into three equal parts (en-
suring both classes are present in every split) for training,
validation and test. The penalty parameters where found by
grid search in the rangeλ1, λ2 ∈ [10−3, 101] to maximize
classification accuracy on the validation splits.

Table 3 shows test accuracies. We see that in general,
logistic-loss based FL models yield better classification ac-
curacies than those based on least-squares. This result is
natural: logistic-loss is more suited for classification in
tasks like the ones proposed for these datasets. Regarding
the TV-regularizer, three out of five datasets seem to be in-
sensitive to this choice, though the Tv1D

1 -penalty performs
better for Ovarian, while Tv1D

2 works best for ArrayCGH.

3Both TRIP and SLEP are implemented in MATLAB ; only the
crucial proximity operators are implemented in C.

Table 3.Classification accuracies on microarray data.

DATASET FL VF LFL LVF

ARRAYCGH 73.6% 78.9% 73.6% 73.6%
LEUKEMIAS 92.0% 92.0% 96.0% 96.0%
COLON 77.2% 77.2% 77.2% 77.2%
OVARIAN 88.8% 83.3% 77.7% 77.7%
RAT 67.2% 65.5% 70.4% 70.4%

5.2. Results for 2D-TV

We now show application of our two-dimensional Tv2D
1,1-

proximity solver. We are not aware of natural applications
for two or higher-dimensional Tv2D

2,2-proximity, so we do
not discuss it further. The most basic and natural applica-
tion of our Tv2D

1,1-proximity is to image denoising. Among
the vast number of denoising methods, we compare against
the well-established method based on the classic ROF-TV
model (Rudin et al., 1992). This model takes ann×n noisy
imageY and denoises it by solving

minX
1
2‖X − Y ‖2F + λTvrof(X), (21)

where the ROF version of TV is defined as

Tvrof(X) =
∑

1≤i,j<n
‖(∇x)i,j‖2,

(∇x)i,j =

[

xi+1,j − xi,j

xi,j+1 − xi,j

]

.

That is, the TV operator is applied on the discrete gra-
dient over the image. This TV regularization is known
as isotropic TV, in contrast to our anisotropic TV. Al-
though often the isotropic version Tvrof is preferred, for
some applications anisotropic TV shows superior denois-
ing. We show a simple example that illustrates this set-
ting naturally, namely, denoising of two-dimensional bar-
codes (Choksi et al., 2010). We apply our 2D-TV op-
erator to this setting and compare against the isotropic
model which we solved using the state-of-the-art PDHG
method (Zhu & Chan, 2008). For further reference we also
compare against: (i) the anisotropic TV solver proposed
in (Friedman et al., 2007); (ii) an adapted (anisotropic)
PDHG solver obtained easily by modifying the original for-
mulation; and (iii) a median filter. We note that the step-
size selection rules recommended for PDHG, failed to pro-
duce fast runtimes when applied to anisotropic TV. Thus, to
make PDHG competitive, we searched for optimal stepsize
parameters for it by exhaustive grid search.

Table 4 presents runtimes and Improved Signal-to-Noise
Ratio (ISNR) values obtained for a series of denoising ex-
periments on barcode images that were corrupted by addi-
tive (variance0.2) and multiplicative (variance0.3) gaus-
sian noise. To compensate for the loss of contrast produced
by TV filtering, intensity values are rescaled to the range
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Table 4.Barcodes denoising results obtained via PN, Coordinate Optimization and adapted PDHG for the anisotropic model, genuine
PDHG for the isotropic model, and a median filter. ISNR (dB) values (higher is better) and running times in seconds are shown.

ANISOTROPIC ISOTROPIC MEDIAN

SIZE ISNR TIME PN TIME COORD. TIME PDHG ISNR TIME PDHG ISNR TIME

100× 100 2.39 0.11 2.85 0.64 2.04 0.03 1.24 0.00
175× 175 4.14 0.27 15.99 8.71 3.38 0.11 1.74 0.02
300× 300 5.48 0.88 140.78 128.72 4.38 0.37 2.35 0.03
375× 375 6.04 1.39 167.68 93.87 4.39 0.76 2.42 0.07
500× 500 4.42 2.59 228.55 203.19 3.58 1.30 2.18 0.09

(a) (b) (c) (d) (e)

Figure 2. Example of barcode denoising for the isotropic and anisotropic models ona 175× 175 image. a) Clean image. b) Noisy
image. c) Anisotropic denoising. d) Isotropic denoising. e) Median filter.

of the original image. The penalty parameterλ for each
model was chosen so as to maximize the on the 300× 300
image. As expected, the anisotropic TV regularizer is more
appropriate for the underlying structure of the image, and
thus obtains lower reconstruction errors. An example is
shown in Figure2, where we also observe visually better
reconstructions via the anisotropic model. Additional ex-
perimental results are in (Barbero & Sra, 2011).

Regarding running times, our PN solver vastly outper-
forms Coordinate Optimization and anisotropic PDHG.
The isotropic version of the problem is simpler than the
anisotropic one, so it is no surprise that the carefully tuned
PDHG approach requires less time than PN. It is also worth
mentioning that in (Choksi et al., 2010) anℓ1 loss is used,
and denoising cast as a Linear Program, to which a generic
solver is applied; this approach requires runtimes of over
103 seconds for the largest image.

5.3. Image deconvolution

With little added effort our two-dimensional TV solver can
be employed for the harder problem of image deconvolu-
tion, which takes the form

minx
1
2‖Kx− y‖22 + λR(x),

whereK is a blur operator,R is a regularizer, andx en-
codes an image. As stated before, this problem can also
be solved usingproxR as a building block. Precisely this
is done by the solver SALSA (Afonso et al., 2010). We
plug our 2D-TV solver directly into SALSA to obtain a fast

anisotropic deconvolution algorithm. Table5 presents nu-
merical results (visual results are in (Barbero & Sra, 2011))
for deconvolution of noisy barcode images subjected to
motion blurring. Comparing against SALSA’s default
isotropic denoising operator, again an anisotropic model
produces a better reconstruction. Results for Richardson-
Lucy (RL) (Biggs & Andrews, 1997) as implemented in
Matlab are also presented, showing much faster filtering
times but inferior reconstruction quality.

Table 5.Deconvolution results for anisotropic and isotropic mod-
els using the SALSA solver, and MATLAB ’s Richardson-Lucy
(RL) method. ISNR (dB) values and runtimes (in secs) are shown.

ANISOTROPIC ISOTROPIC RL

n ISNR TIME ISNR TIME ISNR TIME

100 1.55 1.19 1.10 0.12 0.73 0.04
175 2.79 0.81 2.15 0.55 0.79 0.18
300 4.07 3.34 3.07 2.40 1.07 0.46
375 4.05 5.41 2.92 3.71 1.13 0.61
500 3.21 8.98 2.37 5.71 1.04 1.26
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