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ABSTRACT
We formulate the multiframe blind deconvolution problem in an in-
cremental expectation maximization (EM) framework. Beyond de-
convolution, we show how to use the same framework to address: (i)
super-resolution despite noise and unknown blurring; (ii) saturation-
correction of overexposed pixels that confound image restoration.
The abundance of data allows us to address both of these without
using explicit image or blur priors. The end result is a simple but ef-
fective algorithm with no hyperparameters. We apply this algorithm
to real-world images from astronomy and to super resolution tasks:
for both, our algorithm yields increased resolution and deconvolved
images simultaneously.

Index Terms— multiframe, blind deconvolution, super-resolution,
saturation, incremental EM.

1. INTRODUCTION

The focus of this paper is multiframe blind deconvolution (MFBD):
the problem of recovering the underlying “true” image from a se-
quence of blurry and noisy observations. This problem arises nat-
urally in astronomy [1], for instance. One might think that having
access to a sequence of observations alleviates the typical difficul-
ties associated with blind deconvolution. But it is not so. MFBD is
still very challenging because each observation is noisy and differ-
ently blurred.

Recently, in [1], we proposed an algorithm for MFBD which,
though efficient, lacked several features crucial to realistic setups.
This paper overcomes the deficiencies of [1], while still retaining its
efficiency. As in [1] we do not employ any explicit image priors,
a valid simplification because several frames are available, and the
associated (linear) optimization is over-determined. Without an im-
age prior, the method is not only simpler, but also avoids additional
hyper parameters which otherwise would have to be tuned.

1.1. Summary of Contributions

The main contributions of this paper are summarized below.

• Super-resolution: We exploit the entire sequence of available
images to artificially enhance resolution of the reconstructed
image. The distinguishing feature is that we perform super-
resolution and blind-deconvolution simultaneously.

• Saturation correction: We use multiple frames to tackle over-
exposed pixels by essentially weighting them to not have an
impact on the reconstruction.

• Theoretical derivation: We show how to derive the algorithm
in [1] as an instance of incremental EM.

However, before describing further details, we put our contributions
in perspective by briefly summarizing related work (for more refer-
ences see [2]).

1.2. Related Work

Our preliminary work [1] presented an efficient method for MFBD,
but this method lacked the ability to perform super-resolution or sat-
uration correction. Moreover, it was only heuristically motivated,
while this paper provides a formal motivation via an incremental EM
framework. For the MFBD problem itself, there are numerous other
papers—e.g., [3, 4, 5, 6, 7]. All of these approach the multiframe
problem non-incrementally as opposed to our incremental method.
When the number of input frames grows large, such non-incremental
approaches rapidly become computationally (and storage-wise) pro-
hibitive. Also related is a somewhat restricted form of MFBD, where
usually two or merely a few frames are used [8, 9].

With regards to super-resolution we remark that even though
the literature on super-resolution is vast, only very few papers dis-
cuss settings where both blind deconvolution and super-resolution
are performed simultaneously. Here, directly relevant is the work
of Šroubek et al. [10, 11] who consider simultaneous (non-incremen-
tal) super-resolution and blind deconvolution, but depend on image
and blur priors. Šroubek et al. themselves note (Sec. 4.1 of [11]) that
their method becomes unstable for super resolution factors larger
than 2.5. In contrast, our model exploits the abundance of data by
not assuming any image or blur kernel priors, while still robustly
handling super resolution factors much larger than 2.5. In fact, in the
experiments section we successfully resolve up to a factor of eight
the images considered by Šroubek et al. [11].

2. BLIND DECONVOLUTION AS INCREMENTAL EM

For notational simplicity we describe our framework using one-
dimensional images and point spread functions (PSFs). Our expo-
sition generalizes straightforwardly to two-dimensional images and
PSFs—see our technical report [2] for details.

We denote the “true” image by x, each observed (input) image
by yt, and each unknown PSF by ft. Throughout the paper we use
f ∗ x to represent convolution (circular or non-circular).

First we derive the heuristic method of Harmeling et al. [1] as an
instance of incremental GEM. For this derivation we view the image
sequence y1, . . . , yT as observed random variables, while the PSFs
are seen as latent variables. The sought-after image x is a parameter
of a factorizing probabilistic model,

p(y1, . . . , yT |x) =
TY

t=1

Z
p(yt, ft|x)dft. (1)

Given the observed frames y1, . . . , yT , our goal is to find the max-
imum likelihood estimate of the parameter x. As usual, the log-
likelihood log p(y1, . . . , yT |x) can be bounded from below using
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Jensen’s inequality, so that

TX

t=1

log

Z
p(yt, ft|x)dft ≥

TX

t=1

Z
qt(ft) log

p(yt, ft|x)

qt(ft)
dft, (2)

where each qt is an arbitrary distribution of ft. We abbreviate the
integrals on the right hand side as F t(qt, x). Then, the incremental
variant of EM picks some image yt and estimates qt and xt via:

E-step: find qt that maximizes F t(qt, xt−1),
M-step: find xt that maximizes F t(qt, xt).

If instead of searching for arbitrary distributions qt over the PSFs
we restrict ourselves to distributions that are concentrated at a sin-
gle PSF, then we obtain the “winner-take-all” variant of incremental
EM [12]. This choice greatly simplifies the E- and M-steps, reduc-
ing them to a maximization of p(yt, ft|x); a further flat prior on ft

reduces this to maximizing p(yt|ft, x) with respect to ft and x.
Modeling each observed frame yt as a convolution of the under-

lying image (parametrized by) x with some unknown PSF ft plus
Gaussian noise, the density p(yt|ft, x) can be chosen to be a Gaus-
sian with mean ft ∗ x and some diagonal covariance,

p(yt|ft, x) ∝ exp
`− 1

2

‚‚yt − ft ∗ x
‚‚2´

. (3)

This choice is computationally simple, and leads to E- and M-steps
that are (nonnegative) least squares problems of the form

min
z≥0

‖y − Az‖2
C , where ‖v‖2

C = vT Cv. (4)

When both A and C are also nonnegative, (4) can be solved via
multiplicative updates (see [2]),

zt+1 = zt � AT C y

AT CA zt
, (5)

starting with positive z0 > 0. Here � and the fraction bar denote
pixel-wise multiplication and division. Note, that we rely crucially
on the fact that the convolution f ∗ x can be represented by both
matrix-vector products: Fx and Xf .

The M-step requires further discussion. When updating the pa-
rameter x, it is beneficial to perform only a few steps towards min-
imizing ‖yt − ft ∗ x‖2 with respect to x. Doing so is particularly
useful if we consider non-circular convolution, for which x is longer
than yt and as such we have an under-determined system. Perform-
ing a few steps also has a regularizing effect.

Summarizing the above discussion we see that the “winner-take-
all” variant yields the (generalized EM) updates:

E-step: find ft ≥ 0 that minimizes

‖yt − ft ∗ xt−1‖2, (6)

M-step: find xt ≥ 0 such that

‖yt − ft ∗ xt‖2 ≤ ‖yt − ft ∗ xt−1‖2, (7)

which when applied to each input frame yt, immediately yield a for-
mal derivation for the two alternating steps proposed by [1].

3. IMPROVED MULTIFRAME BLIND DECONVOLUTION

The basic algorithm described above can recover the underlying,
clear image given a sequence of blurry images [1]. Now we extend
the basic method and show how to incorporate super-resolution and
saturation correction. Our method is simple, but highly effective as
it exploits the abundance of data without sacrificing efficiency.

3.1. Super-resolution

Since we are interested in a single image x but have several observa-
tions yt, despite blurring we could potentially infer a super-resolved
image—provided we incorporate change of resolution into the for-
ward model. To this end we define the resizing matrix,

Dn
m = (Im ⊗ 1T

n )(In ⊗ 1m)/m, (8)

where Im is the m × m identity matrix, 1m is an m dimensional
column vector of ones, and ⊗ denotes the Kronecker product. The
matrix Dn

m transforms a vector v of length n into a vector of length
m. Note that the sum of v’s entries 1T

nv = 1T
mDn

mv is preserved.
This is a favorable property for images, as the number of photons ob-
served should not depend on the resolution. Note that even if m and
n are not multiples of each other, Dn

m will interpolate appropriately.
Let n be the length of y. For k times super-resolution we choose

x and f large enough so that f ∗ x has length kn. Now we use the
image model p(yt|ft, x) ∝ exp

`− 1
2
‖yt − Dkn

n (ft ∗ x)‖2
´
, which

leads to the modified update steps:

E-step: find ft ≥ 0 that minimizes

‖yt − Dkn
n (ft ∗ xt−1)‖2, (9)

M-step: find xt ≥ 0 such that

‖yt − Dkn
n (ft ∗ xt)‖2 ≤ ‖yt − Dkn

n (ft ∗ xt−1)‖2. (10)

Note that the positive scaling factor k is not restricted to be integral.
Only kn needs to be integral.

3.2. Overexposed pixels

Saturated (overexposed) pixels can impact image restoration ad-
versely, particularly so in astronomical imaging where we might
want to capture faint stars together with stars that are orders of mag-
nitude brighter. A realistic deconvolution method should be able to
deal with pixels that are saturated, i.e., those that hit (or come close
to) the maximal possible pixel value.

One reasonable way to deal with saturated pixels is to weight
them out. Since each frame yt can have different pixels that are
saturated (different frames are aligned differently), we must check at
each iteration which pixels are saturated. To ignore these pixels we
define a weighting matrix,

C = Diag
`
[yt < ρ]

´
(11)

where ρ denotes the maximum pixel intensity, and the Iverson brack-
ets [·] apply component-wise. Then, we can write the updates ig-
noring the saturated pixels simply by replacing the Euclidean norm
in (6) and (7) with the weighted norm ‖v‖2

C = vT Cv. Note that
this approach is equivalent to removing the saturated pixels from the
probabilistic model.

One might ask whether we can really recover pixels in x that are
saturated in most of the frames yt? The answer is yes, and can be
understood as follows. The photons corresponding to such a pixel
in x have been spread across a whole set of pixels in each frame yt

because of the PSF ft. Thus, if not all these pixels in yt are saturated,
the true value for the corresponding pixel in x will be recovered.

4. EXPERIMENTAL RESULTS

We show now results of two main experiments: (i) comparison
against the super-resolution method of [11]; and (ii) MFBD results
on astronomical images.
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1x 2x 4x 8x Šroubek et al. [11]

Fig. 1. Text and disk data: typical example frames (top row), results of our method for blind deconvolution with increasing super-resolution
factor compared with Šroubek’s results taken from [11] (bottom row from left to right). Already at 2x our results appear to be better than
Šroubek’s. Note that Šroubek’s pictures seem to be postprocessed as their background appears to be darker than that of the input sequence.

4.1. Super-resolution example

The method most closely related to ours is the state-of-the-art blind
super-resolution approach of Šroubek et al. [11]. We compare their
method against ours by showing results on some datasets of S. Farsiu
and P. Milanfar1; we show Šroubek et al.’s results as reported in [11].
For brevity we consider only the “text” dataset (20 frames of size
57 × 49) and the “disk” dataset (20 frames of size 57 × 49).

The first and third rows of Figure 1 show typical input frames.
The second and fourth rows show the result of our method with in-
creasing super resolution factors (one, two, four, and eight times).
Already with a factor of two, our results compare favorably with

1Available from: http://www.soe.ucsc.edu/∼milanfar/software/sr-datasets.html.

Šroubek’s, which is surprising because our method does not depend
on any detailed image or blur priors like Šroubek’s method. The im-
age obtained using a factor eight super-resolution is clearly superior
to the result of [11], whose method could not super-resolve beyond
a factor of 2 because of algorithmic instability.

4.2. Astronomical imaging

For our astronomical imaging experiment, we used the fast AVT
PIKE camera to record a short video (191 frames acquired at 120
fps) of the Trapezium in the Orion constellation. This trapezium
is formed by four stars ranging in brightness from magnitude 5 to
magnitude 8, with angular separations around 10” to 20”.
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Fig. 2. Orion Trapezium Cluster: example sequence of observed frames, y1, . . . , y10.

(a) (b) (c) (d)

Fig. 3. Orion Trapezium Cluster: (a) the first observed frame, (b)
x191 for basic algorithm [1], (c) x191 for saturation corrected, and
(d) x191 for saturation corrected and four times super-resolved. Top
row shows the overall trapezium; bottom row shows the brightest
star enlarged. The bottom row should show large squared pixels
(this should work in Acrobat Reader).

Star A B C D

True magnitude 6.7 - 7.5 8.0 - 8.5 5.1 6.7
Est. mag. (w. sat. cor.) 6.4 8.0 5.2 6.0
Est. mag. (w/o sat. cor.) 6.8 8.0 6.5 6.4

Table 1. True star brightnesses (note that stars A and B have variable
brightness), and values estimated after deconvolution, normalizing
the brightness of star B to 8.0 and computed under the assumption
of zero offset. The latter assumption is unrealistic, rendering the
absolute values inaccurate; nevertheless it is reassuring that the pro-
posed method for saturation correction leads to the correct ordering
of brightness values, with star C being the brightest.

The individual frames recorded are blurred by atmospheric
turbulence—see Figure 2 for sample frames. Beyond blurring, these
images often have saturated pixels. We processed the sequence of
191 frames, and show sample results in Figure 3. Here the first row
shows from left to right: (a) an enlarged unprocessed frame; (b) the
deconvolution results obtained by the basic algorithm of [1]; (c) the
result of our method that handles saturated pixels; and (d) the results
if we additionally perform four times super-resolution.

Another application that we consider is the estimation of the
brightness of stars (Photometry), for which a linear sensor response
is required (for our purposes, the used CCD sensor may be assumed
linear). The intensity counts can then be translated into stellar mag-
nitudes.2 Clearly, doing so is not directly possible for stars that satu-
rate the CCD. However, we can use the proposed method for decon-
volution with saturation correction to reconstruct the photon counts
(image intensities) that we might have recorded were the pixel not
saturated. We then convert these counts into stellar magnitudes. For
the Trapezium stars we obtain encouraging results—see Table 1.

2E.g., http://en.wikipedia.org/wiki/Apparent magnitude.

5. CONCLUSION

We presented an incremental expectation maximization method
for the multiframe blind deconvolution problem. We showed how
to efficiently incorporate important enhancements such as super-
resolution and saturation correction, thereby effectively increasing
the dynamic range of the sensor. We compared our method against
the results of [11] on super resolution benchmark problems. We
also showed practical applicability via experiments on astronomical
images where saturation correction leads to better reconstructions.
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