
Block-Iterative Algorithms for Non-Negative Matrix Approximation

Suvrit Sra
Max-Planck Institut für biologische Kybernetik

72076 Tübingen, Germany
suvrit.sra@tuebingen.mpg.de

Abstract

In this paper we present new algorithms for non-negative
matrix approximation (NMA), commonly known as the
NMF problem. Our methods improve upon the well-known
methods of Lee & Seung [12] for both the Frobenius norm
as well the Kullback-Leibler divergence versions of the
problem. For the latter problem, our results are especially
interesting because it seems to have witnessed much lesser
algorithmic progress as compared to the Frobenius norm
NMA problem. Our algorithms are based on a particular
block-iterative acceleration technique for EM, which pre-
serves the multiplicative nature of the updates and also en-
sures monotonicity. Furthermore, our algorithms also nat-
urally apply to the Bregman-divergence NMA algorithms
of [6]. Experimentally, we show that our algorithms outper-
form the traditional Lee/Seung approach most of the time.

1. Introduction
Non-negative matrix approximation (NMA), which was

introduced under the name positive matrix factorization
by [15], and later popularized as non-negative matrix fac-
torization or NMF by [12], is a popular matrix decomposi-
tion technique that is now increasingly employed for data
analysis. In its most common incarnation, given a non-
negative input matrix A, NMA seeks to minimize

F (A; Â) = ‖A− Â‖2F , (1.1)

where Â = WH and W,H ≥ 0. Several algorithms exist for
this Frobenius norm version of NMF and its variations—see
for e.g., [12, 11, 2, 20]. The Kullback-Leibler (KL) diver-
gence NMA problem that seeks to minimize

F (A; Â) =
∑

ij
aij log(aij/âij)− aij + âij , (1.2)

where Â = WH and W,H ≥ 0, has received much lesser
attention. Both (1.1) and (1.2) are special cases of the more
general Bregman-divergence NMA problem [6]

F (A; Â) =
∑

ij
Dφ(aij ; âij), (1.3)

where Â is as usual and we define the Bregman-divergence

Dφ(x; y) = φ(x)− φ(y)− φ′(y)(x− y), (1.4)

for a given strictly convex function φ1. With φ(x) = 1
2x

2

one obtains (1.1) from (1.3), and with φ(x) = x log x one
obtains (1.2). Note that since Dφ is asymmetric we also
consider the NMA problem that seeks to minimize

F (Â; A) =
∑

ij
Dφ(âij ; aij). (1.5)

We derive new algorithms for (1.1)–(1.3), and (1.5). Our
approach highlights important connections to previously
known work and sheds light on the genesis of the well-
known Lee & Seung algorithms. In fact, we follow in
the footsteps of Lee&Seung [12], who extended the vec-
tor based EM methods to NMA via alternating descent, and
obtain block-iterative algorithms for NMA by building on
techniques used for accelerating the EM algorithm.

1.1. Related Work

Exact NMF, i.e., where A = WH, was studied in linear
algebra in the 70s [14]. Later Paatero et al. studied NMA
under the name of positive matrix factorization [15]. How-
ever, NMA became popular after Lee&Seung described
simple alternating descent algorithms for it in [12]. Since
then interest in this problem has literally exploded; we refer
the reader to the articles [2, 20, 13] for extensive references.

Most of the algorithmic progress on NMA has concen-
trated on (1.1) with a few exceptions [6, 9, 4]. In this paper
we develop new algorithms that apply to not only (1.1) but
also to (1.2), (1.3), and (1.5). Subject to certain convexity
assumptions, our techniques also extend to other loss func-
tions. However, we limit our discussion to Bregman diver-
gences because of lack of space.

Algorithmically, the most popular approach to NMA is
alternating descent [12, 6], though some researchers have
also considered alternating minimization [11, 2] for (1.1). If

1Actually φ must satisfy certain other technical conditions [3, 1], but
for our purposes strict convexity is enough.



we trace the origins of the well-known Lee/Seung NMA al-
gorithms, we see that they are essentially generalizations (to
matrices via alternating descent) of the successful EMML
algorithm of [19], or the ISRA algorithm of [5]. This con-
nection has been largely ignored in the literature (except by
some authors [4]), and it turns out to be particularly im-
portant because the EMML algorithm and its derivatives
have been the subject of intense study in the field of medical
imaging [17]—Indeed, one can exploit some of the develop-
ments for EMML in a manner analogous to Lee/Seung [12].
In fact we go even further, because we not only handle more
general objective functions but also permit principled incor-
poration of regularization terms.

2. Background
To avoid clutter, we concentrate on the two factor ver-

sion of NMA where Â = WH, i.e., we aim to compute
W, H ≥ 0 such that F (A; Â) = F (A; WH) is minimized.
Owing to the product BC the resulting problem is almost
never convex, whereby it is unrealistic to expect to find a
globally optimal solution; this intuition is supported by the
recent formal proof of the NP-Hardness of exact NMA [21].
Many times, for instance in (1.1), (1.2), and (1.5), the ob-
jective function is individually convex in W and H, which
allows one to invoke an alternating minimization procedure.

However, two main difficulties arise. First, even per-
forming alternating minimization can be too expensive, es-
pecially when the matrices become large. Second, it could
easily happen that the objective function is not even individ-
ually convex in W or H, for e.g., often for (1.3). Therefore,
just settling for alternating descent, instead of minimiza-
tion becomes a practical choice. The general algorithmic
scheme is summarized in Figure 1.

1. Initialize W and/or H; set t← 0.
2. Fix W; find H′ s.t. F (W, H′) ≤ F (W, H),
3. Fix H′; find W′ s.t. F (W′, H′) ≤ F (W, H′),
4. Repeat steps 2 & 3 to convergence

Figure 1. Alternating Descent Scheme

Our algorithms follow this general scheme, as do the Lee
& Seung algorithms and most other NMA methods. Assum-
ing that our distortion function F is separable, i.e.,

F (A; WH) =
∑

j
F (aj ; Whj),

where F denotes the column-wise distortion, we can just
focus on solving the core problem

min
h≥0

F (a; Wh), (2.1)

for an arbitrary column h of matrix H, and correspond-
ing column a of A (similarly for rows). If we solve (2.1)

“exactly” over all columns h, then the resulting solution
Ht+1 clearly satisfies Step 3 of the above scheme. For the
Frobenius norm NMA problem, such an approach is fol-
lowed by [11], who derived an alternating non-negatively
constrained least-squares algorithm. In general, we will be
satisfied with “inexact” solutions to (2.1), where we merely
ensure descent in F (and thereby in F ).

2.1. Auxiliary functions
A simple approach to obtaining descent algorithms

for (2.1) is to first find an auxiliary function G(h; h̃) that
satisfies

1. G(h; h) = F (a; Wh) for all h ≥ 0
2. G(h; h̃) ≥ F (a; Wh) for all h, h̃ ≥ 0.

The function G is chosen so that it decouples the variables
h that occur as a linear combination Wh. If F is a convex
function of h, then it is easy to construct (see [6, 16] for
details) an auxiliary function G that is easier to optimize.
For example, the famous EM algorithm is essentially built
around exploiting the convexity of the − log x function for
obtaining an auxiliary function in the E-Step. We remark
that one need not always explicitly construct such auxiliary
functions. For example, in [6] the authors derive procedures
for (1.3) that are not based on auxiliary functions.

2.2. Block-iterative algorithms

We now present some background about some block-
iterative algorithms, especially with the motive of obtaining
new algorithms for NMA. Experience with EM has shown
that methods based on auxiliary functions usually converge
rather slowly. To overcome this hurdle a vast amount of ef-
fort has been invested in trying to speed up EM. One of
the simplest (and most successful) ideas has been to di-
vide W into blocks, and to build an auxiliary function for
each block. With this procedure one can still make progress
over each block without increasing the overall computa-
tional costs. For minimizing the KL-divergence (for vec-
tors) such a block-iterative method was popularized under
the name ordered subsets EM (OSEM) by [10]. In this paper
we extend the block-iterative idea in three main directions:

1. Block-iteration for NMA via alternating descent for
matrices (§§ 3, 4),

2. Extension to general objective functions such as
Bregman-divergences,

3. Extension to NMA problems without using the concept
of auxiliary functions (Section 4).

3. Algorithms based on auxiliary functions

Formally, without loss of generality let the rows (in-
dices) of W be partitioned into p disjoint blocks (or subsets)



S1, . . . , Sp such that ∪iSi = {1, . . . ,m}, where a ∈ Rm+ .
We process the data by going through these subsets one by
one, indexing the current subset of interest by s. Let t de-
note the index for one complete pass through all the sub-
sets. Since we assumed separability of F over both rows
and columns, we can write

F (a; Wh) =
p∑
s=1

∑
i∈Ss

F (ai; [Wh]i).

Assuming F is convex, we can easily generate auxiliary
functions for each block of rows Ss separately. For simplic-
ity, we use the same form of auxiliary functions for each
block, though this is not a necessity. Let Gs(h, h̃) denote
the auxiliary function for block s, then we have the updates

h(k,s+1) = argmin
h≥0

Gs(h, h(k,s)), (3.1)

where h(1,1) = ht, and ht+1 = h(k+δ,p+1), i.e., the value
obtained after cycling through all the blocks δ times. It
is easy to see that going through all the blocks essentially
involves the same number of operations as going through
all the rows at the same time (which is tantamount to using
p = 1). The Lee & Seung-type NMA algorithms go through
all the rows just once (δ = 1) and return the resulting ht+1.
We use the index k in (3.1) to highlight the fact that we per-
mit our algorithm to perform a few iterations (δ ∈ {1, 4})
of (3.1) before obtaining ht+1. In practice, this choice can
lead to better objective function values.

We are now ready to look at important specific instances
of the block-iterative scheme.

Example 1 (Block-KLNMA). The standard auxiliary func-
tion based update for the KLNMA problem (1.2) is [12]

ht+1
j = htj

1∑
i wij

∑
i

aiwij
[Wht]i

.

Using an appropriate auxiliary function we can replace
this with a block-iterative update, where for each block
s = 1, . . . , p, we have

h
(k,s+1)
j = h

(k,s)
j

1∑
i∈Ss

wij

∑
i∈Ss

aiwij
[Wh(k,s)]i

. (3.2)

We set h(1,1) = ht, h(k+1,1) = h(k+1,p+1), and ht+1 =
h(k+δ,p+1) where δ ∈ {1, 4}. Similarly we can perform
blocked updates for W by partitioning the columns of the
matrix H into subsets. This alternation between W and H, as
well as performing just a few iterations of (3.2) distinguish
our approach from the vector version of the block-iterative
updates of [10].

Lemma 1 (Monotonicity). To establish monotonicity of the
algorithm based on (3.2) it suffices to show that

∑
i∈Ss

(
ai − [Wh(k,s+1)]i

)
log

[Wh(k,s+1)]i
[Wh(k,s)]i

≥ 0. (3.3)

Proof. Inequality (3.3) measures the decrease in the objec-
tive function restricted to subset Ss, and adding over all sub-
sets we obtain the net decrease, hence overall monotonic-
ity. This inequality follows easily by two applications of
the log-sum inequality in combination with the update (3.2),
and is omitted for brevity.

Example 2 (Block-LSNMA). The block-iterative version
for the Frobenius norm NMA problem is

h
(k,s+1)
j = h

(k,s)
j

∑
i∈Ss

wijai∑
i∈Ss

wij [Wh(k,s)]i
, (3.4)

where we set h(1,1) and ht+1 as in Example 1.

Monotonicity of (3.4) follows by an easy generalization
of proof of unblocked version [12] combined with adding
across all subsets.

Example 3 (Block-BregNMA). The block-iterative version
of Bregman-divergence NMA algorithms of [6] is

φ′(h(k,s+1)
j ) = φ′(h(k,s)

j )

∑
i∈Ss

wijφ
′(ai)∑

i∈Ss
wijφ′([Wh(k,s)]i)

.

(3.5)
Note that these updates are of the form φ′(ht+1

j = φ′(htj)ηj ,
and one must compute the inverse of the function φ′. Fortu-
nately, this can usually be done in closed form.

4. Non-auxiliary function methods

The authors of [6] presented a heuristic approach for
minimizing (1.3), which was shown to empirically decrease
the objective function monotonically. In our description of
block-iterative algorithms above, the concept of auxiliary
functions was used only for establishing monotonicity guar-
antees, not for applying the block-iterative scheme itself.
Therefore, we easily obtain block-iterative versions of the
algorithms of [6].

Example 4 (Block-BregNMA2). The block-iterative ver-
sion of Bregman-divergence NMA algorithms of [6] corre-
sponding to (1.3) is

h
(k,s+1)
j = h

(k,s)
j

∑
i∈Ss

wijφ
′′([Wh(k,s)]i)ai∑

i∈Ss
wijφ′′([Wh(k,s)]i)[Wh(k,s)]i

,

(4.1)
where we set h(1,1) and ht+1 as in Example 1.



4.1. Handling Regularization

Assume that we have the following regularized subprob-
lem

min
h≥0

F (a; Wh) + µQ(h), (4.2)

where µ > 0 is the regularization parameter. A particularly
simple method to tackle (4.2) is the so-called one-step late
(OSL) heuristic [8] that was rediscovered in the context of
NMA by [6]. Here, while deriving updates such as (3.2)–
(4.1) one replaces ∇[Q(h)]j by ∇[Q(ht)]j (i.e., the deriva-
tive at the previous step). For example, for (3.2) this leads
to the update

h
(k,s+1)
j =

h
(k,s)
j∑

i∈Ss
wij + µ[∇Q(h(k,s))]j

∑
i∈Ss

aiwij
[Wh(k,s)]i

.

However, despite its simplicity this update can be invalid
because it does not assure monotonicity like its unregular-
ized counterpart (3.2). In general for Problem (4.2) if F is
as in Section 3 and Q is the form Q(h) =

∑
j q([Ph]j),

where q is also convex, then we can construct an auxiliary
function G+ Q̄ as in §2.1 and use the update

h(k,s+1) = argmin
h≥0

Gs(h, h(k,s)) + µQ̄(h; h(k,s)). (4.3)

Further note that whenever (4.3) is not solvable in closed
form, we can perform a few steps of Newton’s method to
obtain an approximate solution. The auxiliary functions G
and Q̄ are selected to decouple the variables h, whereby in-
voking Newton’s method or some other non-linear equation
solver is feasible for (4.3). However, Newton’s method or
other typical convex optimization methods could become
impractical for the original problem (4.2) due to the non-
negativity constraints and subproblem sizes.

5. Experiments

We now show experiments that demonstrate how block-
iteration helps to improve upon the standard algorithmic
techniques. The methods that we compare are:

1. LSNMA–Frobenius norm algorithm of [12] against BI-
LSNMA, our block-iterative version based on (3.4)

2. KLNMA–KL-Divergence algorithm of [12] against BI-
KLNMA, our block-iterative version based on (3.2).

3. BREGNMA of [6] against BI-BREGNMA, our block-
iterative version based on (4.1)

LSNMA, KLNMA, and BREGNMA were obtained from
http://www.cs.utexas.edu/ suvrit/work/progs/nnma.m. Our
algorithms were also implemented in MATLAB. To ensure
fairness for LSNMA and KLNMA, we edited the BREGNMA

source-code to make it more efficient. Our experiments
show that within the same running time, the block-iterative
versions of the NMA codes obtain better objective function
values than the non-blocked versions.

For comparing the different algorithms we ran an exten-
sive suite of experiments across a range of ranks (of ma-
trices W and H) and degree of noise in the dataset. The
basic methodology was: 1) for each given value of the
rank K of the NMA, we generated random matrices W0

and H0 and formed the dataset A; 2) we added uniform
random or Poisson noise N to A so that (after scaling)
‖(A + N)− A‖F / ‖A‖F corresponds to a given level of dis-
tortion (2%, 5%, 10%, or 20%); 3) ran all algorithms until
the relative change in iterates fell below 10−3 or a running
time threshold was exceeded.

In all the experiments reported we started each algorithm
with the same random initialization. The number of blocks
used by our algorithms was roughly chosen based on the av-
erage number of rows falling in each subset. For e.g., when
m = 1000, then usually between 2–10 subsets sufficed, and
for m = 3000 selecting between 20–50 subsets led to bet-
ter results. The iterative steps (3.2), (3.4), or (4.1) were run
between 1 to 4 times.

5.1. Least-squares NMA

Our first results are on the basic LSNMA algorithm [12]
that we compare to BI-LSNMA. Figure 2 compares the ob-
jective function values on a 1000× 1000 matrix for varying
ranks of decomposition across a range of distortion levels.
We can see that BI-LSNMA performs better than the basic
Lee & Seung algorithm, and these differences become more
significant as the rank of the approximation is increased.
Note that we ran both algorithms for the same amount of
time, whereby even when our algorithm is only slightly bet-
ter than the Lee& Seung algorithm, we do not lose anything.

5.2. KL-Divergence NMA

In Figure 3 proceeding row-wise, the figures show ob-
jective function values for different noise levels in the data
as the rank of approximation is varied for a 1000×1000 in-
put matrix. BI-KLNMA consistently outperforms KLNMA,
and this improvement becomes substantial as the rank of ap-
proximation is increased. For example, in Figure 3 for rank
320 decompositions, BI-KLNMA yields objective function
values up to almost 3 times smaller than the Lee/Seung KL-
NMA algorithm, in the same amount of running time.

5.3. Bregman-divergence NMA

We now illustrate our algorithm for Bregman-
Divergence NMA by showing results for Dφ(A; WH)



10 20 40 80 160 320
0

10

20

30

40

50

60

Rank of approximation (2% noise)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

x 
10

5

Objective function for A: 1000 x 1000

 

 

LSNMF

Bi−LSNMF

10 20 40 80 160 320
0

50

100

150

200

250

300

Rank of approximation (5% noise)
O

bj
ec

tiv
e 

fu
nc

tio
n 

va
lu

e 
x 

10
5

Objective function for A: 1000 x 1000

 

 

LSNMF

Bi−LSNMF

10 20 40 80 160 320
0

100

200

300

400

500

600

700

800

900

1000

Rank of approximation (10% noise)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

x 
10

5

Objective function for A: 1000 x 1000

 

 
LSNMF

Bi−LSNMF

10 20 40 80 160 320
0

500

1000

1500

2000

2500

3000

3500

4000

Rank of approximation (20% noise)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

x 
10

5

Objective function for A: 1000 x 1000

 

 

LSNMF

Bi−LSNMF

Figure 2. LSNMA vs. BI-LSNMA for a matrix of
size 1000× 1000 with varying noise-levels and
rank of approximation. Both algorithms were
run for ≈ 60 seconds each.

10 20 40 80 160 320
0

0.5

1

1.5

2

2.5

3

3.5

Rank of approximation (2% noise)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

x 
10

5

Objective function for A: 1000 x 1000

 

 
KLNMF
Bi−KLNMF

10 20 40 80 160 320
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Rank of approximation (5% noise)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

x 
10

5

Objective function for A: 1000 x 1000

 

 
KLNMF
Bi−KLNMF

10 20 40 80 160 320
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Rank of approximation (10% noise)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

x 
10

5

Objective function for A: 1000 x 1000

 

 
KLNMF
Bi−KLNMF

10 20 40 80 160 320
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Rank of approximation (20% noise)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

x 
10

5

Objective function for A: 1000 x 1000

 

 
KLNMF
Bi−KLNMF

Figure 3. KLNMA vs. BI-KLNMA for a matrix of
size 1000× 1000 with varying noise-levels and
rank of approximation. Both algorithms were
run for ≈ 200 seconds.

corresponding to φ = − log x. With this choice of φ, the
updates (4.1) simplify to become

h
(k,s+1)
j = h

(k,s)
j

∑
i∈Ss

wij [Wh(k,s)]−2
i ai∑

i∈Ss
wij [Wh(k,s)]−1

i

.

We also specialized the generic Bregman-NMA code of [6]
to take advantage of similar simplifications.

Figure 4 shows experiments on input data matrices of
size 1000×1000 with varying ranks and noise levels for the
associated NMA. In the figure, for lower rank approxima-
tions, both the blocked and unblocked algorithms perform
almost the same. The differences for higher rank approxi-
mations are overshadowed due to the bad scaling of the y-
axis. To highlight the differences better, we summarize the
objective function values for the rank ≥ 80 approximations
in Table 1, which show that BI-BREGNMA actually yields
objective function values twice as good as BREGNMA.

10 20 40 80 160 320
0

1

2

3

4

5

6

7

8

9

Rank of approximation (2% noise)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

x 
10

4

Objective function for A: 1000 x 1000

 

 
BregNMF
Bi−BregNMF

10 20 40 80 160 320
0

5

10

15

Rank of approximation (5% noise)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

x 
10

4

Objective function for A: 1000 x 1000

 

 
BregNMF
Bi−BregNMF

10 20 40 80 160 320
0

2

4

6

8

10

12

14

16

18

20

Rank of approximation (10% noise)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

x 
10

4

Objective function for A: 1000 x 1000

 

 
BregNMF
Bi−BregNMF

10 20 40 80 160 320
0

5

10

15

20

25

Rank of approximation (20% noise)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

x 
10

4

Objective function for A: 1000 x 1000

 

 
BregNMF
Bi−BregNMF

Figure 4. BREGNMA vs. BI-BREGNMA for a ma-
trix of size 1000 × 1000 with varying noise-
levels and ranks. Both algorithms were run
for ≈ 60 seconds.

2% 5% 10% 20%
6.75 / 5.65 23.49 / 20.80 49.89 / 46.20 88.84 / 84.42
2.37 / 1.50 9.12 / 6.36 23.03 / 17.17 48.73 / 39.27
0.82 / 0.40 3.11 / 1.53 9.22 / 4.62 24.11 / 13.09

Table 1. Objective function values (×103) for
ranks 80, 160, and 320 (row-wise) and noise-
levels (column-wise) corresponding to Fig-
ure 4. Bold indicates results of BI-BREGNMA.



6. Conclusions and Future Work

In this paper we introduced block-iterative algorithms
for solving the NMA problem. We showed the generic
technique, and applied it to the Frobenius norm, KL-
Divergence, and Bregman-divergence NMA problems (of
which the first two are special cases). Our use of block-
iterative methods was motivated by the successful exploita-
tion of EM techniques for NMA by Lee & Seung [12]. We
performed extensive experiments to show the benefits ob-
tained by using a block-iterative scheme, mainly showing
that in the same running time, the block-iterative algorithms
achieve lower objective function values that the traditional
approaches. Furthermore, block-iterative methods are not
much more complicated to implement.

The following variants and generalizations of the NMA
problem are easy candidates that can be extended via the
block-iterative technique.

1. Multi-factor Problem. Here we wish to minimize
F (A; W1W2 . . .WT ), where each W ≥ 0. Clearly, by
cycling through all the factors and applying a block-
iterative method to each subproblem our methods gen-
eralize trivially in this case.

2. Convex and Semi-NMA. These generalized varia-
tions of the NMA problem [7] that drop some non-
negativity constraints can also benefit from block-
iterative methods. As a first attempt, one can just take
the algorithms of [7] and apply the block-iterative tech-
niques to immediately obtain new algorithms.

3. Non-negative tensor factorization. NTF is gener-
alization of the NMA idea to tensors, see for e.g.,
[18, 22], and the block-iterative idea can be easily ex-
tended to the EM style algorithms for NTF.

References

[1] H. H. Bauschke and J. M. Borwein. Legendre functions and
the method of random Bregman projections. Journal of Con-
vex Analysis, 4:27–67, 1997.

[2] M. Berry, M. Browne, A. Langville, P. Pauca, and R. J.
Plemmons. Algorithms and Applications for Approximation
Nonnegative Matrix Factorization. Computational Statistics
and Data Analysis, 2006. Preprint.

[3] Y. Censor and S. A. Zenios. Parallel Optimization: The-
ory, Algorithms, and Applications. Oxford University Press,
1997.

[4] A. Cichocki, R. Zdunek, and S. Amari. Csiszar’s Diver-
gences for Non-Negative Matrix Factorization: Family of
New Algorithms. In 6th International Conference on Inde-
pendent Component Analysis and Blind Signal Separation,
volume Springer LNCS 3889, pages 32–39, Charleston SC,
USA, 2006.

[5] M. E. Daube-Witherspoon and G. Muehllehner. An Iterative
Image Space Reconstruction Algorthm Suitable for Volume
ECT. IEEE Tran. Medical Imaging, 5(2):61–66, 1986.

[6] I. S. Dhillon and S. Sra. Generalized Nonnegative Matrix
Approximations with Bregman Divergences. In NIPS 18,
Vancouver, Canada, 2006.

[7] C. Ding, T. Li, and M. I. Jordan. Convex and Semi-
Nonnegative Matrix Factorization. Technical Report LBNL
TR # 60428, LBNL, 2006.

[8] P. J. Green. On Use of the EM for Penalized Likelihood
Estimation. J. Roy. Stat. Soc. Series B, 52(3):443–452, 1990.

[9] D. Guillamet, J. Vitrià, and B. Schiele. Introducing a
weighted nonnegative matrix factorization for image clas-
sification. Pattern Recognition Letters, 24(14):2447–2454,
2003.

[10] H. M. Hudson and R. S. Larkin. Accelerated image recon-
struction using ordered subsets of projection data. IEEE
Tran. Medical Imaging, 13(4):601–609, 1994.

[11] D. Kim, S. Sra, and I. S. Dhillon. Fast Newton-type meth-
ods for the least squares nonnegative matrix approximation
problem. In SIAM Data Mining, 2007.

[12] D. D. Lee and H. S. Seung. Algorithms for Nonnegative
Matrix Factorization. In Neural Information Processing Sys-
tems, pages 556–562, 2000.

[13] T. Li and C. Ding. The Relationships Among Various Non-
negative Matrix Factorization Methods for Clustering. In
Proc. IEEE Int. Conf. Data Mining, pages 362–371, 2006.

[14] T. L. Markham. Factorizations of completely positive matri-
ces. Proceedings of the Cambridge Philosophical Society,
69:53–58, 1971.

[15] P. Paatero and U. Tapper. Positive Matrix Factorization: A
Nonnegative Factor Model with Optimal Utilization of Er-
ror Estimates of Data Values. Environmetrics, 5(111–126),
1994.

[16] A. R. D. Pierro. A modified Expectation Maximization Al-
gorithm for Penalized Likelihood Estimation in Emission
Tomography. IEEE Tran. Med. Imag., 14(1):132–137, 1995.

[17] A. J. Reader and H. Zaidi. Advances in PET Image Recon-
struction. PET Clinics, 2(2):173–190, April 2007.

[18] A. Shashua and T. Hazan. Non-Negative Tensor Factoriza-
tion with Applications to Statistics and Computer Vision. In
ICML, 2005.

[19] L. A. Shepp and Y. Vardi. Maximum likelihood reconstruc-
tion for emission tomography. IEEE Tran. Medical Imaging,
1:113–122, October 1982.

[20] S. Sra and I. S. Dhillon. Nonnegative Matrix Approxima-
tion: Algorithms and Applications. Technical Report TR-
06-27, Univ. of Texas at Austin, 2006.

[21] S. Vavasis. On the complexity of nonnegative matrix factor-
ization. arXiv, September 2007. arXiv:0708.4149v2.

[22] M. Welling and M. Weber. Positive tensor factorization. Pat-
tern Recognition Letters, 22:1255–1261, 2001.


