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Abstract

Atmospheric turbulences blur astronomical images
taken by earth-based telescopes. Taking many short-time
exposures in such a situation provides noisy images of the
same object, where each noisy image has a different blur.
Commonly astronomers apply a technique called “Lucky
Imaging” that selects a few of the recorded frames that ful-
fill certain criteria, such as reaching a certain peak inten-
sity (“Strehl ratio”). The selected frames are then averaged
to obtain a better image. In this paper we introduce and
analyze a new method that exploits all the frames and gen-
erates an improved image in an online fashion. Our initial
experiments with controlled artificial data and real-world
astronomical datasets yields promising results.

1. Introduction
When we observe an astronomical object from the sur-

face of the earth its emitted or reflected light has to invari-
ably pass through the atmosphere, which yields a blurry
observed image. Deblurring images of an observed celes-
tial body is therefore a fundamental problem in Astronomy.
This problem is compounded by the fact that the blur is not
only unknown, but is also continually changing in time as
well as spatially due to refraction-index fluctuations caused
by atmospheric turbulence.

It is well known, that exposure times on a time scale
where the turbulences are stationary (i.e. shorter than the
tenth of a second) yield images that contain high-frequency
information of the celestial object under investigation [5].
This fact is exploited in Speckle Imaging, which is a col-
lection of various techniques and algorithms for recover-
ing high frequency information encapsulated in short-time
exposure images. Due to the stochastic nature of atmo-
spheric turbulence, Speckle Imaging techniques have to
take a large number of images into account to actually re-
gain diffraction-limited information.

In Speckle Interferometric Imaging short-exposure pic-
tures are processed in Fourier domain. Labeyrie [10]
showed that diffraction-limited information could be re-

trieved by averaging the auto-correlation function. Two
years later, Knox and Thompson presented an algorithm for
phase reconstruction in [8]. For averaging usually several
thousand images are taken into account.

Through new developments in CCD technology which
provide superior signal-to-noise ratio (Electron Multiply-
ing CCD cameras), in recent years so-called Lucky Imaging
methods have become popular. Usually a large number of
images (> 10000) is collected, of which only a very small
percentage is utilised to yield one high quality image. Dif-
ferent registration and super-resolution methods have been
proposed for combination of the selected images [6, 18].

To our knowledge, up to now all proposed approaches
that address the problem of high frequency information re-
trieval from a sequence of images are post-processing (or
batch-mode) methods. In this paper we introduce an effi-
cient online scheme that models the multi-frame problem
more realistically. We assume that the images are obtained
in a streaming fashion, and that they are potentially too nu-
merous to save or process efficiently, even if we could save
all of them. While this may appear artificial at first glance,
the rate of data acquisition in astronomy has been increas-
ing tremendously over the years, to the point where data
recorded in current sky surveys will take take years to be
analyzed.

Several different online methods could be designed to
model and tackle this multi-frame setting, and we introduce
a particular one. Our approach to solving the problem has
the following main advantages:

• It has low resource requirements because the images
are tackled in a streaming fashion; this obviates the
need to store the images, and results in a more efficient
algorithm (in terms of run-time and memory usage).

• Typical online methods usually require the setting of
a learning rate. Our method is based on multiplicative
updates to the image estimate that effectively bypasses
the need to set a learning rate, which simplifies the al-
gorithm and its implementation.

• Our method is very simple to implement, and it can be
implemented in the imaging hardware itself to provide
dynamic deblurring, if desired.
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Before discussing the formal problem setting and our al-
gorithm (Sections 2 and 3) we first provide a short summary
of additional related work in Section 1.1 below. Later, in
Section 4 we provide several experiments on both artificial
and real data to illustrate the benefits of our method. Our
initial results are encouraging and point to several avenues
of future work, which we summarize in Section 5.

1.1. Related Work

The general problem of image restoration in astronomy
has a long history; we refer the reader to a recent survey
for an introduction and useful references [11]. We limit our
discussion below only to work related to the multi-frame
deblurring problem, as that is the focus of our paper.

All the standard multi-frame methods known to us op-
erate in a batch-mode. For example, [2] used an ordered-
subset/expectation maximization (OS-EM) algorithm that is
a block-iterative version of the highly popular Richardson-
Lucy algorithm [14] applied to all input images simultane-
ously. Several other authors have also considered this multi-
frame deblurring problem for Astronomy [16, 20, 21, 1], all
of them functioning in a batch-mode.

Vio et al. [20] compute an approximate single image rep-
resenting (in a least-squares sense) all the input images and
then work on the resultant image only. Their choice has
two main problems: first, it requires all the input image si-
multaneously, and second, the least-squares image can have
negative entries. In contrast, our method deals with input
images one by one, and non-negativity is enforced naturally
without any ad-hoc procedures. Furthermore, our method
does not assume that all the observed images are polluted by
the same noise—an assumption fundamental to the single-
image method of [20].

Intimately related to our problem is the general blind-
deconvolution problem for images [9], where one usually
has just one or two images [13]. If one observes an entire
sequence of differently blurred images of the same underly-
ing image, one could hope to do better deblurring.

Algorithmically, we perform a sequence of quadratic
loss minimizations, motivated by two important reasons,
viz., algorithmic simplicity and the observation that the
least-squares objective yields more robust results than the
traditional Poisson model for this multi-image problem. We
observed the latter claim to hold true in our experiments, a
fact further corroborated by [19]. However, our method can
be easily adapted to use a Poisson model if needed (we will
briefly remark on this later). We would also like to note that
even though there exist several papers dealing with online
convex optimization [7, 22], it seems difficult to leverage
their theoretical guarantees as our problem is non-convex.

2. Problem Formulation
In this section we describe the problem setting (§2.1) and

introduce a model formulating it (§2.2).

2.1. The setting

We assume that at each time point t = 1, 2, . . . our tele-
scope records a blurry image yt that is obtained from a com-
mon underlying image x by blurring it with some unknown
blur kernel ft and adding noise nt. The blurred images
{y1,y2, . . .} arrive in a streaming fashion, and to model re-
ality we assume that we have only a limited buffer of size
W (window-size) for saving them. A method is online if it
has access to only one image at a time, i.e., W = 1, while if
the image stream is terminated and all the observed (say T )
images are available, it is called a batch method (W = T ).
Naturally, when 1 < W < T one has a hybrid procedure.

The aim of blind deconvolution for this setting is to re-
cover the true underlying image x, given the input stream
of blurred images {yt}t≥1. Estimates for the individual blur
kernels ft are obtained as a byproduct.

2.2. Formalization

For notational simplicity we describe our method in
terms of one-dimensional images represented as column
vectors. However, our algorithm and results can be eas-
ily reformulated in terms of two-dimensional images. In-
deed, all our experiments are actually performed in the two-
dimensional (matrix) setting.

Let each recorded image yt be a vector of length ly , and
the unknown true image x have length lx. The atmospheric
blurring of x is modelled as a non-circular convolution with
a non-negative blur kernel (point spread function (PSF)) ft;
we denote this convolution by ft ? x, and ft can be rep-
resented as a column vector of length lf = lx − ly + 1.
Note that for streaming data coming from a telescope, each
observed image yt will be convolved by a different and un-
known PSF ft.

The non-circular convolution can be written equivalently
(with appropriate zero-padding) as a matrix-vector multipli-
cation, i.e., ft ?x = Ftx, in which the ly× lx matrix Ft de-
pends solely on ft. We will use ft and Ft interchangeably
in our discussion. Note that for an efficient implementation,
the special form of Ft allows for a fast computation of the
matrix-vector product Ftx via the Fast Fourier Transform
(FFT). We denote individual components of the vector Ftx
by (Ftx)j . Often we will write fractions of vectors that
should be understood as component-wise fractions.

2.2.1 Noise model and loss function

For high-intensity astronomy data one often models [19] the
relationship between yt, ft, and x as

yt = ft ? x + nt, (1)



where the noise nt is assumed to be Gaussian with mean 0
and diagonal covariance matrix σ2I . Assuming a fixed but
unknown σ one can deblur by minimizing the loss

Lt(x,ft;yt) = ‖yt − Ftx‖22 (2)

that must be minimized subject to non-negativity restric-
tions on x and ft. For low intensity data, the Poisson model
is considered more suitable,

yt ∼ Poisson(ft ? x), (3)

though as noted by [19] and also observed in our experi-
ence, the least-squares model is more robust. Hence, we
will focus our attention on (1) and (2) alone. However, we
note that our online optimization scheme generalizes triv-
ially to handle (3), in case it is really desired.

2.2.2 The optimization problem

If one had access to all the images {yt}t≥1, then ideally one
would like to minimize the total overall loss

min
x,f1,f2,...,fT

T∑
t=1

Lt(x,ft;yt), (4)

where Lt(x,ft;yt) is the loss incurred at the tth step as
given by (2). However, in our problem setting (§2.1) two
main concerns must be addressed:

1. We observe the images yt in a streaming fashion with a
limited buffer of size W , while minimizing the overall
loss (4) requires saving all the yt.

2. The overall loss (4) is non-convex due to the joint de-
pendence between x and ft via the convolution ft ?x.

Below (§3) we develop an online algorithm that approx-
imately tackles both these difficulties. We describe the
method for the purely online case of W = 1, noting that
it can be easily generalized to deal with the hybrid scenario
with W > 1.

3. Algorithm
From each image yt that we observe we need to estimate

the PSF ft, as well as the underlying image x. Let xt−1

be the current estimate of the true image. Now we obtain
a new observation yt and we wish to update our estimate
of the true image, while at the same time estimating the
PSF ft. To this end, we can minimize the loss incurred at
time-step t. Formally stated, we seek to solve the following
non-negatively constrained problem

min
ft≥0,x≥0

Lt(x,ft;yt) = ‖yt − Ftx‖2, (5)

to obtain the updated estimate xt and the PSF ft.

Thus, by solving only Problem (5) at each step t we ob-
tain an online procedure that addresses the first concern
mentioned in §2.2.2. However, the second issue still re-
mains as even Problem (5) is non-convex, whereby in gen-
eral a globally optimal solution for it cannot be found ef-
ficiently. Fortunately, the objective function is sufficiently
well-behaved as it is individually convex in each variable if
the other is held fixed. This crucial property lies at the heart
of a simple alternating minimization or descent scheme for
solving (5). Such a scheme constructs a sequence of iterates
{xk

t ,fk
t } ensuring descent, i.e.,

Lt(xk+1
t ,fk+1

t ;yt) ≤ Lt(xk
t ,fk

t ;yt), (6)

and under some weak assumptions it can be shown [12] to
converge to a stationary point of (5).

However, performing alternating descent too well comes
at a price, namely the overfitting of yt. To avoid overfitting,
one can perform just a few iterations of alternating descent,
and as our experiments will show one or two iterations suf-
fice for good results. The question to answer now is how to
perform such iterations so that the descent condition (6) is
satisfied. We propose the following two steps:

1. ft = argminf≥0 ‖yt − Fxt−1‖2

2. xt = argminx≥0 gt(x,xt−1),

where gt(x; x̃) is an “auxiliary” function (similar to the one
used by the ISRA algorithm [4]) that must fulfill

∀ x, x̃ : gt(x; x̃) ≥ gt(x;x) = Lt(x,ft;yt).

This condition ensures that our choice of xt in Step 2 can
only decrease our loss function since by definition

gt(xt−1;xt−1) ≥ gt(xt,xt−1) ≥ gt(xt;xt)

It is easily seen that for the quadratic loss such a function is
given by

gt(x, x̃) = yT
t yt − 2yT

t Ftx + x̃T F T
t Ft

(x� x

x̃

)
.

where � denotes elementwise product and division of two
vectors is understood componentwise.

Step 1 is a non-negative least-squares (NNLS) problem
and it can be solved efficiently using the LBFGS-B algo-
rithm of [3]. The solution to Step 2 is obtained in closed
form by solving ∇xgt(xt,xt−1) = 0 for xt, which yields
the following multiplicative update (same as the ISRA [4]
update),

xt = xt−1 �
F T

t yt

F T
t Ftxt−1

. (7)

Note that this update respects the non-negativity constraint
on x as all involved quantities are non-negative.



At this point the reader might wonder why we solve for
ft using NNLS, while for x we merely perform descent us-
ing the technique of auxiliary functions. The reasoning is
as follows: The unknown image x is common to all the ob-
served images, while the PSFs differ from image to image.
Hence, x and ft need to be treated differently. To that end,
given the current estimate of the image xt−1 and the new
input image yt, we minimize the loss Lt w.r.t. ft, while for
x we merely descend on Lt. Doing so essentially ensures
that ft is fit well1, and that xt is not too different from xt−1.

After performing Steps 1 and 2 it is clear that we
have improved the estimates of ft and x, because Step 1
minimizes over f , while in Step 2 the auxiliary function
gt(x;xt−1) ensures we make a descent. Thus, the descent
guarantee (6) holds, and takes the form

Lt(xt,ft;yt) ≤ Lt(xt−1,f ;yt),

for arbitrary xt−1 and f . At a glance we illustrate the
pseudo-code of our method as Algorithm 1.

Input: Stream of images yt for t ≥ 1
Output: Reconstructed image x
t← 1;
xt ← yt padded with zeros or with mean;
while another image yt+1 available do

t← t + 1;
xt ← xt−1;
for a few steps do

ft = argminf≥0 ‖yt − Fxt‖2;

xt ← xt � F T
t yt

F T
t (Ftxt)

;

end
end
return last estimate xt

Algorithm 1: Online Blind Deconvolution

Digression (Poisson): We mention in passing that for the
Poisson case, our approach takes the form:

1. ft = argminf≥0 KL(yt;f ? xt−1)
2. xt = argminx≥0 gt(x,xt−1),

where KL denotes the generalized Kullback-Leibler diver-
gence and g(x; x̃) is an appropriate “auxiliary” function for
the associated loss. Step 1 can be again solved using the
LBFGS-B method, while the EM derivation of [17] yields

gt(x, x̃) = 1T Ftx− yT
t Λ log(x) + c,

where c is a constant independent of x, and Λ is the ma-
trix Λ = [λjk] = [(Ft)jkx̃k/(Ftx̃)j ]. Algorithm 1 can be
modified appropriately to accommodate these changes.

1For cases where ft does not differ too much from ft−1, it could be
updated in a regularized fashion or even via a multiplicative update similar
to that for xt.

4. Experiments
Having introduced our method, we first test it in a con-

trolled setup where the ground truth is known to study
how noise influences its performance. Then, we apply our
method to real astronomy image sequences of a binary star
system and of the planet Mars; both datasets were obtained
from ground-based telescopes and were subject to atmo-
spheric turbulences.

4.1. Controlled experiments to test influence of noise
We analyze below how the performance of our method

is affected by varying noise levels. As the true image x
we chose the well-known Lena image that was subsam-
pled to 128×128, and scaled between zero and one. We
added noise as per (1), i.e., yt = ft ? x + nt, where nt

was normally distributed with mean 0 and diagonal covari-
ance matrix σ2I . The PSFs ft were generated as Gaussian
blurs with randomly chosen covariances with varying rota-
tion and scaling along the axes. The additive noise was sam-
pled independently for each blurry image ft ? x with vary-
ing standard deviation σ ∈{0.0000, 0.0100, 0.0167, 0.0278,
0.0464, 0.0774, 0.1292}. The randomly generated PSFs ft

were the same for all seven tested noise levels.
The initial examples (y1) of our dataset are shown in the

first row of Fig. 1 (with increasing σ from left to right).
The bottom row shows the corresponding estimates xt after
having seen the blurry images y1, . . . ,y100 for the different
noise levels. In all these seven runs we see that the sharp-
ness is improved. Further, as expected, the noisier the input
blurry images, the noisier is the resulting reconstruction.

The top panel of Fig. 2 shows how the relative error de-
velops as the seven runs proceed (plotted with noise level in-
creasing from bottom to top). Naturally, the achievable per-
formance depends on the amount of noise. Since all curves
are decreasing, we see that the relative error is reduced for
the plotted noise levels, which means that the initial esti-
mate x1 = y1 is improved as the algorithm progresses.

The bottom panel of Fig. 2 shows the loss Lt at time
t. It is noteworthy that whenever the loss was large, i.e., if
the currently observed image yt could not be fit well by
ft ? xt−1, the relative error decreased substantially: by the
update formula, large errors lead to large updates. We have
also observed that large errors often occur for observed im-
ages yt that are particularly sharp. Such images can be
called “lucky” as they provide high frequency details that
benefit the algorithm.

4.2. Application to astronomical data
Before we describe our results on real astronomical data,

a few words about the physical setup are in order.
Diffraction-index fluctuations caused by atmospheric

turbulence significantly degrade image quality (called
“seeing” in astronomy) and result in a time and spatially



Figure 1. Top row: observed y1 with increasing noise level from left to right. Bottom row: corresponding recovered images x100.
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Figure 2. Top panel: relative error at time t for increasing noise
standard deviations from bottom to top. Bottom panel: The corre-
sponding instantaneous losses at time t.

varying PSF. In the Kolmogorov model, the effect of tur-
bulent air layers is included in so-called phase screens that
can be modelled as Gaussian random fields obeying cer-
tain second order statistics. These phase screens are sta-
tionary on a time scale of a few milliseconds and depend
on the temporary seeing conditions. Thus, for images with
short enough exposures the turbulence is effectively frozen.
Long-exposures that essentially perform a time average in-
evitably wipe out high frequency information, while short-
exposures encapsulate information up to the diffraction-
limited upper frequency bound.

Because of their large distance from our solar system,
observed stars may be considered as point sources. The im-
age and diffraction pattern of a single star recorded by an
earth-based observatory corresponds to the combined PSF
of the telescope and the atmosphere. The region within
which this PSF is constant is called an isoplanatic patch.
In both of the following datasets we assume that the whole
image is covered by a single isoplanatic patch, i.e., we as-
sume the PSF to be invariant in a given frame.

The first dataset is an image sequence of the binary star

Figure 3. Epsilon Lyrae 1: typical observed image y300 (left), re-
construction x300 after iterations (middle), estimated PSFs f300

for each color channel.

system Epsilon Lyrae 1 of the constellation Lyra. This se-
quence consists of 333 frames, each 132×112 pixels in
size. Fig. 5 shows in two columns the first 40 frames. Each
row shows from left to right the original image yt, the im-
age estimated by our algorithm, and the averaged image
t−1

∑t
i=1 yi. We chose PSFs of size 30×30 pixels. Fig. 3

shows the result of our algorithm after 300 iterations along
with the estimated PSFs for each color channel. Note how
noisy the observed image yt is (left), while our estimate is
almost noise free (middle). Furthermore we see that both
stars have almost identical diffraction patterns which more-
over look very similar to the estimated PSFs (shown on the
right). This finding justifies our assumption about a con-
stant PSF for the whole image, which is further reconfirmed
by the fact that the stars of Epsilon Lyrae 1 are separated by
only 2” (two arc seconds). Thus our assumption that they lie
in the same isoplanatic patch is highly realistic for Epsilon
Lyrae 1.

Next we evaluate our method on an extended celestial
object. We run it on an image sequence of Mars. The orig-
inal recording consists of 1450 frames, each 160×170 pix-
els in size. Fig. 6 shows the temporal evolution of our al-
gorithm in two columns, where in each row from left to
right the input frame, the estimated, and the averaged im-
ages are shown. After just a few iterations our estimated
image reveals more detailed structure than what can be seen
in any single frame of the original sequence. Unfortunately,
some ringing artifacts on the right half of Mars also become



Figure 4. Mars: typical observed frame y36 (left), estimated image
x36 (middle), an image reconstructed by REGISTAX (right).

visible. At present, we can not tell whether these effects
are solely caused by overfitting, or whether the assumption
of a PSF which is invariant all over Mars (which had an
angular size of around 19” in May 2001 when our dataset
was recorded2) is somewhat unrealistic and thus limiting the
achievable performance. Nonetheless, Fig. 4 compares our
estimated image after 36 iterations (center) with a typical
frame from the image sequence (left) and a reconstruction
obtained by REGISTAX (right), a widely used lucky imag-
ing software. For reconstruction REGISTAX combined the
best 30 frames out of all 1450 frames by image registration.
No post-processing or finishing was performed in any case.
In spite of the presence of some ringing artifacts, in some
image regions our proposed algorithm reveals finer details
than REGISTAX.

5. Conclusions and Future Work
In this paper we studied blind deconvolution for astron-

omy images, introducing an efficient online algorithm for it.
Controlled experiments and applications to real astronomy
pictures showed that our proposed online methods works,
and that it alleviates some of the distortions caused by at-
mospheric turbulences to astronomical images.

Several interesting aspects remain yet to be analyzed.
Currently our method does not rely on additional assump-
tions like image priors or PSF priors. However, incorpo-
rating such prior knowledge is a promising extension. For
instance, regularization schemes can model the fact that the
PSFs vary slowly over a sequence of very short exposures.
Generalizing our approach to more difficult image distor-
tions, such as spatially variant PSFs or nonlinear PSFs will
open up new challenging directions of research.
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