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ABSTRACT

Compressed Sensing uses a small number of random, linear
measurements to acquire a sparse signal. Nonlinear algo-

rithms, such as �1 minimization, are used to reconstruct the

signal from the measured data. This paper proposes row-
action methods as a computational approach to solving the
�1 optimization problem. This paper presents a specific row-
action method and provides extensive empirical evidence that

it is an effective technique for signal reconstruction. This ap-

proach offers several advantages over interior-point methods,

including minimal storage and computational requirements,

scalability, and robustness.

1. COMPRESSED SENSING

The usual paradigm for source coding places the computa-

tional burden on the encoder so that the decoder can oper-

ate efficiently. This approach is appropriate for applications

such as video compression, where real-time decoding is es-

sential. One can imagine other types of applications—in sen-

sor networks, for example—where the encoder is severely

constrained but the decoder can afford to do some work. In

this setting, it is natural to ask how to design an encoding

process that performs a limited amount of nonadaptive com-

putation.

An approach calledCompressed Sensing has recently been
promoted by the computational harmonic analysis commu-

nity [1, 2, 3, 4]. The basic idea is that certain classes of

compressible signals are determined almost completely by a

low-dimensional random projection. To implement this com-

pression scheme, the encoder performs a linear operation on

the signal. In compensation, decoding requires more costly

nonlinear algorithms.

To be more concrete, we consider the set of d-dimensional
real-valued signals with no more thanm nonzero entries. We
refer to signals of this form as m-sparse. It is evident that no
coding scheme can represent an m-sparse signal using fewer
than m real numbers. In fact, a comparable amount of non-
adaptive information is sufficient to compress these signals.
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Theorem 1 (Rudelson–Vershynin [3]) Fix a number N ≥
Cm log(d/m), and draw a random N × d matrix Φ whose
entries are iid NORMAL(0, 1). With overwhelming probabil-
ity, all m-sparse signals in R

d can be recovered from their
images under Φ. The number C is an absolute constant.

In other words, an m-sparse signal in R
d can be compressed

losslessly using aboutm log(d/m) linear measurements. Sim-
ilar results hold for other signal classes, such as the �1 unit

ball, and for other types of random matrices [1, 2, 5].

To recover a signal from its compressed version, at least

three different algorithmic approaches are available.

• Orthogonal Matching Pursuit [4]
• Nonlinear programming [6]
• Convex relaxation [1, 2, 3]

This work concentrates on the latter approach. Suppose that

s is a signal that compresses to y = Φs. To reconstruct s,

convex relaxation elicits the signal ŝ of minimal �1 norm that

compresses to y. That is,

ŝ = arg min
x

‖x‖
1
subject to Φx = y. (P1)

Under the hypotheses of Theorem 1, the solution to (P1) is

identical with the original signal: ŝ = s.

The convex relaxation method provides a powerful ap-

proach to signal reconstruction. Unfortunately, the literature

on Compressed Sensing does not discuss some of the im-

portant algorithmic issues that arise in engineering contexts.

Most work assumes that an interior-point method is appropri-

ate for solving (P1). In this article, we describe another ap-

proach, called a row-action method, which has several quali-
ties that make it appealing for Compressed Sensing:

• Linear algebra. Row-action methods require only vec-
tor arithmetic, such as inner products and saxpy opera-
tions.

• Scalability. Row-action methods can be used for ex-
tremely large-scale problems.

• Streaming data. Row-action methods can take advan-
tage of a measurements that are presented sequentially.

• Robustness. Row-action methods perform well even
if the compressed data or measurement matrix are cor-

rupted.
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The major shortcoming of row-action methods is that they

typically converge linearly, in contrast with the quadratic con-

vergence of interior-point methods. This issue is not critical

unless it is necessary to reconstruct signals with very high ac-

curacy.

2. ROW-ACTION METHODS

The basic idea behind a row-action method is to enforce the

constraints in an optimization problem sequentially. This ap-

proach can be traced back to Hildreth’s Method for quadratic

programming [7] and Bregman’sMethod for convex program-

ming with linear constraints. These methods all require that

the objective function be strictly convex. To develop a row-

action method for solving (P1), therefore, we must first re-

place it with an equivalent quadratic program.

To that end, we rewrite (P1) as a linear program

min
x,f

〈0, x〉 + 〈1, f〉 subject to

Φx = y, −x − f ≤ 0, x − f ≤ 0 (LP)

where the auxiliary variable f = |x|. Define the concatena-
tion z = [x;f ] and the conformal vector c = [0;1]. Now, we
replace the linear program (LP) with the quadratic program

min
z∈Z

‖z + λc‖2 (QP)

where Z is the feasible set for (LP) and λ is a positive param-
eter. Theorem 2.1 of [8] states that the unique minimizer of

(QP) is identical with the minimum �2-norm solution of the

linear program (LP), provided λ exceeds a constant λ0 > 0.
The quadratic program (QP) can be solved using a row-

action method. At each iteration, this approach enforces all

the equality constraints. Then it enforces the inequality con-

straints, applying corrections to ensure convergence to the

global optimum. Algorithm 1 implements this procedure.

Theorem 2 Algorithm 1 converges to the solution of (QP).

Proof. The problem (QP) has a strictly convex objective func-
tion and a convex constraint set. Standard convergence results

for row-action methods in [9, Chapter 6] ensure that Algo-

rithm 1 converges to the optimal solution of (QP).

Algorithm 1 requires three inputs: the measurement ma-

trix Φ, the compressed signal y, and a parameter λ. It can
be shown that λ0, the minimum value for this parameter, is

obtained as the solution to a linear-fractional program. Un-

fortunately, this approach does not seem to yield theoretical

predictions for λ0. Experiments with different values of λ re-
veal that the algorithm is quite stable with respect to a range

of λ values.
The empirical convergence of Algorithm 1 is linear. This

fact yields error estimates that can be used to halt the algo-

rithm automatically. We omit this discussion.

ALGORITHM 1: Row-action method for (QP).

ROW ACTION(Φ, λ, y)
Output: z = arg minz∈Z ‖z + λc‖2

x ← 0; f ← −λ1; µ ← ν ← 0.
while not converged

{Enforce the hyperplane constraints}
foreach i : 〈φi, x〉 = yi

x ← x − ‖φi‖
−2[〈φi, x〉 − yi] φi

end
{Enforce the inequalities}
θ ← min{µ, 1

2
(f + x)}

µ ← µ − θ

x ← x − θ; f ← f − θ

θ ← min{ν, 1

2
(f − x)}

ν ← ν − θ

x ← x + θ; f ← f − θ

end.
return {z = [x; f ]}.

2.1. Nonnegative signals

We also mention the problem of compressing am-sparse non-
negative signal s. One approach to reconstructing the signal

from data y = Φs uses the following convex relaxation [10].

ŝ = arg min
x

〈x, 1〉 subject to

Φx = y, x ≥ 0 (P1+)

The row-action method for this problem is very similar, so we

omit the derivation.

3. NUMERICAL EXPERIMENTS

We have carried out numerous experiments to demonstrate

that row-action methods provide a competitive approach to

reconstructing signals from random measurements. We im-

plemented the row-action methods in C++, and we performed

a series of experiments on a Linux-based P4 3.0GHz machine

equipped with 1GB RAM. In the sequel, a random measure-

ment matrix is a matrix with iid entries drawn from {0,±1}
with probabilities 0.5, 0.25 and 0.25. For Compressed Sens-

ing, these matrices behave like Gaussian matrices [5], but they

permit faster arithmetic and they can be stored efficiently. A

random m-sparse signal has its nonzero entries at uniformly
random locations, and each nonzero is iid NORMAL(0, 1).
Unless otherwise stated, all experiments use Algorithm 1 to

solve (P1), halting after 5000 iterations.

Our first experiment is designed to provide some insight

on selecting the parameter λ. For three different choices of
the sparsity levelm, the number of measurements N , and the
signal length d, we draw a random measurement matrix. For
each choice of λ, we execute the algorithm with 20 random
signals, and we calculate the median relative error. The results

appear in Figure 1. It is clear that, when λ is sufficiently large,
at least half the random experiments lead to reconstruction
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Fig. 1. The median relative error in reconstruction as a func-
tion of λ for three different pairs (m,N, d). The dashed line
marks a relative error of 0.02.
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Fig. 2. Absolute reconstruction error as a function of iteration
number for three choices of (m,N, d).

with a relative error ‖ŝ − s‖
2
/‖s‖

2
≤ 0.02. The empirical

evidence also suggests that the choice λ = km for a small
constant k leads to accurate reconstruction in fewer iterations.
The remaining experiments select λ according to this rule.

The aim of the next experiment is to identify the order of

convergence of Algorithm 1 for m-sparse signals. Figure 2
displays the absolute error ‖ŝ − s‖

2
as a function of the it-

eration number for three different choices of (m,N, d). The
semilog plot clearly indicates a linear order of convergence in

all three sequences. It appears that arithmetic errors prevent

the row-action method from attaining an arbitrarily small er-

ror. Note that the algorithm yields comparable relative errors

in all three experiments, which may not be apparent because

the input signals have different norms.

Although the empirical convergence of Algorithm 1 is

only linear, the method is still quite fast because of its sim-

plicity. The next set of experiments attempts to determine
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Running time versus sparsity level for (N,d) = (800, 4096)

Fig. 3. Running time to achieve a relative error of 0.02 as a
function of the sparsity level m. Here, N = 800 and d =
4096. The regression line has equation t = 0.147m − 2.01.
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Fig. 4. Running time to achieve a relative error of 0.02 as
a function of the signal length d. Here, m = 40 and N =
1.5m log

2
(d/m).

how the running time of the algorithm depends on (m,N, d).
In these cases, we halt the algorithm as soon as the relative

error declines below 0.02. Figure 3 demonstrates that the
running time is approximately a linear function of the spar-

sity level m, when the number of measurements N and the
signal length d are fixed. As a specific example, the row-
action method achieves a relative error of 0.02 in less than
20 seconds for a 156-sparse signal of length d = 4096 using
N = 800 measurements. Figure 4 reports the dependence of
the running time on the signal length d. In this experiment,
m = 40 and N = 1.5m log

2
(d/m). For these choices, it

appears that the running time is approximately O(d log d).
Our final two experiments are designed to show that row-

action methods succeed across the entire regime where N
measurements characterizem-sparse signals fromR

d, accord-

ing to theory [11, 10]. Fix the signal length d = 200. We
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Fig. 5. [Top] Probability of correctly reconstructing an m-
sparse signal using Algorithm 1 to solve (P1). [Bottom] Prob-

ability of reconstructing a nonnegative m-sparse signal using
a row-action method to solve (P1+). The horizontal axis is

the compression factor N/d, and the vertical axis is the over-
sampling factorm/N . The signal length d = 200.

let the number of measurements N range from 0 to d in 10
equal steps, and for each value of N , we let the sparsity level
m range from 0 to N in 10 equal steps. For each choice of
(m,N), we draw a random matrix. Then we use Algorithm
1 to solve (P1) for each of 20 random vectors. If the rel-
ative error in reconstruction is less than 0.02, we deem the

experiment a success. Figure 5 charts the probability of suc-

cess. Figure 5 also exhibits the results of a similar experiment

using a row-action method to solve (P1+). For the second

experiment, the nonzero entries of the random signals have

UNIFORM(0,1) entries. Observe the sharp phase transition
between success and failure, which matches the theoretical

predictions in Donoho’s work [11, 10].

Table 1 reports comparisons against CPLEXTM, a state-
of-the-art optimization package. Row-action methods achieve

relative errors 10−2 smaller in the same amount of time.

m C1 (Time/Err) C2 (Time/Err) Row (Time/Err)

32 279s / 3.7e-7 7.3s / 2.1e-1 6.7s / 9.1e-4

140 595s / 5.0e-7 83s / 9.1e-1 79.8s / 5.0e-3

Table 1. Relative errors: CPLEX vs. row-action. Headings
C1, C2 refer to running CPLEX until convergence or halting

it early. Signal parameters are (N, d) = (800, 4096)

4. CONCLUSIONS AND FUTUREWORK

These experiments show that row-action methods offer a com-

pelling approach to signal reconstruction in Compressed Sens-

ing problems. We are pursuing several other directions:

• Experiments for other signal classes, e.g., weak �p balls.
• Study potential gains arising from structured measure-
ment matrices.

• Extension to large-scale problems, via (parallel) SOR
row-action schemes.

• Develop row-action methods for related problems, such
as mixed �1/�2 objective functions.
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