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Abstract. This paper presents a decomposition method for efficiently
constructing �1-norm Support Vector Machines (SVMs). The decomposi-
tion algorithm introduced in this paper possesses many desirable proper-
ties. For example, it is provably convergent, scales well to large datasets,
is easy to implement, and can be extended to handle support vector re-
gression and other SVM variants. We demonstrate the efficiency of our
algorithm by training on (dense) synthetic datasets of sizes up to 20
million points (in R

32). The results show our algorithm to be several
orders of magnitude faster than a previously published method for the
same task. We also present experimental results on real data sets—our
method is seen to be not only very fast, but also highly competitive
against the leading SVM implementations.

1 Introduction

Traditionally Support Vector Machines (SVMs) are constructed by maximizing
an �2-norm margin, which is achieved by solving an associated quadratic pro-
gram. Researchers have also looked at maximizing margins measured using other
�p norms [1]—most notably the �1 and �∞ norms, both of which lead to linear
programming formulations1. The book chapter by Bennett [1] lists some fur-
ther useful references related to such formulations. Some recent relevant papers
studying the �1-norm SVM are [2, 13, 19].

Most work on SVMs, however, ends up focusing on the details of the �2-
norm SVM, relegating the solution of the �1 (or �∞) norm SVM to an off-the-
shelf linear programming (LP) solver such as CPLEXTM. For real world data,
especially for large-scale data, such an approach can be very expensive, if not
impractical. The �2-SVM has on the other hand witnessed a lot of research and
efficient implementations for solving it are available (e.g., SVMlight [10], SMO
[16], LIBSVM [4]). It is desirable that some of the algorithmic progress made for
the �2-SVM be carried over to the �1-SVM too.

We are aware of one previous work, namely that of Bradley and Mangasarian
[2] that attempts to make learning �1-SVMs practical for large data sets. These
authors introduce a method called Linear Programming Chunking (LPC) that

1 In general, maximizing margin using an �q norm can be done by minimizing ‖w‖p,
where 1

p
+ 1

q
= 1.
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decomposes a linear program into smaller chunks and solves them using any LP
solver. However, despite its efficiencies, LPC can be prohibitively slow for large
problems. Thus, an efficient method for solving LP based SVM formulations is
needed, and this paper presents such a method. Our approach yields a scalable
and efficient decomposition method for solving the �1-SVM, which is several
orders of magnitude faster than the LPC approach and makes learning large scale
�1-SVMs practical. Furthermore, our method is simple to implement, provably
convergent, easily extensible to solve other SVM variants, and yields accuracies
competitive with well established SVM software.

Much of the speed of our algorithm lies in the fact that we solve the primal
as opposed to the dual formulation of the �1-SVM.2 Recently Chapelle [5] has
provided motivation for reconsidering the solution of the primal formulation of
the SVM. Since many years, owing to its simplicity and extensibility to nonlin-
ear cases, researchers have focused on solving the dual problem for SVMs. For
example, when number of training points greatly exceeds the dimensionality of a
single point, it is advantageous to solve the primal rather than the dual (despite
the novel efficiencies introduced in [14]).

2 The �1-Norm SVM

As per the standard two-class classification problem, we assume the input to
be the set {(xi, yi) : 1 ≤ i ≤ N}, where xi ∈ R

M are the training points, and
yi ∈ {±1} are their associated class labels. The aim is to learn a function or
classifier f(x) such that given a new data point x, we can accurately predict its
class label. A linear classifier is commonly constructed by computing a function
f(x) = sgn(wT x + b). The corresponding �1-SVM problem may be written as

min
w,b

‖w‖1 + C
∑

i

ξi,

subject to yi(〈xi, w〉 + b) ≥ 1 − ξi, ξi ≥ 0, 1 ≤ i ≤ N.

(2.1)

The parameter C is a cost (penalty) parameter and is provided as input (nor-
mally after having been determined using cross-validation). Observe that in (2.1)
we seek to minimize ‖w‖1 instead of ‖w‖2

2, as is done in the traditional �2-SVM.
Minimizing ‖w‖1 leads to sparser solutions, which in turn imply better dimen-
sion reduction, greater robustness, and faster classifiers [1, 2, 19].

We introduce an auxiliary variable f = |w| (elementwise) to write (2.1) as
the linear program (LP)

min
w,b,f ,ξ

1T (f + Cξ)

yi(〈xi, w〉 + b) ≥ 1 − ξi, 1 ≤ i ≤ N,

−w − f ≤ 0, w − f ≤ 0, ξ ≥ 0.

(2.2)

2 Our approach has a more primal-dual flavor, but since we never form the dual, we
continue referring to it as a primal approach.
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For large-scale data solving the LP (2.2) using off-the-shelf software can be very
expensive. Bradley and Mangasarian [2] described a method called Linear Pro-
gramming Chunking for efficiently solving (2.2). However, despite their “chunk-
ing” approach, their method can still be extremely slow for large data sets. In
Section 3 below, we describe a fast decomposition procedure for solving (2.2). We
remark that our techniques can be easily adapted to solve the �∞-norm SVM.
Furthermore, nonlinear SVMS via the LP-machines [8] can also be handled with
equal ease. We omit the details due to space limitations (these will be published
elsewhere).

3 Algorithm

It may not seem obvious how to solve (2.2) using a simple decomposition method.
Problem (2.2) lacks strict convexity, a necessary ingredient for the application
of many decomposition techniques. Fortunately, we can exploit a very useful
result of Mangasarian [12, Theorem 2.1-a-i] (adapted as Theorem 1 below) that
permits us to transform (2.2) into an equivalent quadratic program that has the
necessary strict convexity.

Theorem 1 (�1 SVM). Let g = [w; b; f ; ξ] and c = [0; 0;1; C1] be partitioned
conformally. If (2.2) has a solution, then there exists an ε0 > 0, such that for
all ε ≤ ε0,

argmin
g∈G

‖g + ε−1c‖2
2 = argmin

g∈G�

‖g‖2
2, (3.1)

where G is the feasible set for (2.2) and G� is the set of optimal solutions to (2.2).
The minimizer of (3.1) is unique.

Theorem 1 essentially states that the solution of (3.1) yields the minimum �2-
norm solution out of all the possible solutions of (2.2). This seemingly counter-
intuitive replacement of a linear program by a corresponding quadratic program
lies at the heart of building a decomposition method for the �1-SVM.

3.1 Decomposition

To permit a clearer description we rewrite (3.1) in the more explicit form

min
g=[w;b;f ,ξ]

1
2‖g − (− 1

ε )c‖2, (3.2)

subject to − yix
T
i w − yib + 0T f − ξi ≤ −1 (TR)
−wi + 0b − fi + 0ξi ≤ 0 (A1)

wi + 0b + fi + 0ξi ≤ 0 (A2)
0wi + 0b + 0fi − ξi ≤ 0, (XI)

where g and c are as in Theorem 1, and 1 ≤ i ≤ N . Let z denote the vector
of dual variables associated with the training (TR), absolute value (A1), (A2),
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and soft-margin (XI) constraints. Further, let A denote the matrix of all these
constraints put together.

Let L(g, z) denote that Lagrangian for (3.2). A first order necessary condition
of optimality is

∂

∂g
L(g, z) = g + ε−1c + AT z = 0, z ≥ 0. (3.3)

The decomposition procedure that we use consists of the following main steps:

1. Start with a dual feasible solution, and obtain a corresponding primal so-
lution so that the first-order necessary conditions (3.3) are satisfied. For
example, z = 0 and g = −ε−1c is a valid initialization.

2. Go through each constraint individually and enforce it. Enforcing each con-
straint is equivalent to updating the corresponding dual variable zj (1 ≤ j ≤
4N) so that zj ≥ 0 is maintained, while recomputing g to ensure that (3.3)
remains satisfied.

3. Repeat Step 2 until some convergence condition is satisfied (such as small
net violation of all the KKT constraints, change below a certain threshold
to the objective function etc.).

This decomposition procedure is based upon Bregman’s method [3]3, which
is a generic decomposition method for minimizing a strictly convex function
subject to linear inequality constraints. This procedure generates a sequence
of primal ({gt}t≥0) and dual ({zt}t≥0) iterates that converge to the optimal
solution of the associated problem (see [3, Chapter 6] for a proof). Pseudo-code
and associated implementation details for this algorithm are omitted from this
paper due to space limitations.

So far we have not remarked upon the selection of the parameter ε. Two
approaches are possible. One can test the accuracy on a hold-out subset of the
training data and perform a search for a good value of ε. One can also pick an ε
from within a predefined range of values. The former approach might increase the
running time (albeit minimally), whereas the latter is simple and fast. We tried
both approaches, and found that usually a value of ε in [0.1–100] worked well
(i.e., resulted in high training and test accuracy, as well as rapid convergence).

4 Experimental Results

In this section we describe some of the experiments that we performed to assess
the quality of our implementation. We consider two types of experiments. The
first type is on real data (Section 4.1), while the second is on synthetic data
(Section 4.2). The purpose of the former is to illustrate that our implementation
performs competitively on real world data sets when compared to some of the
3 For the quadratic case, Bregman’s method reduces to Hildreth’s method [9], however

we continue using the name Bregman’s method to indicate that the same ideas could
be applied to handle other convex penalties too.
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leading SVM implementations. The latter set of experiments show two things:
i) the efficiency of our �1-norm SVM implementation, and ii) the importance of
solving the primal problem for data with highly skewed dimensions.

We implemented our algorithm in C++ using the the sparse matrix library
SSLib [18]. The experiments reported in Section 4.1 were performed on a Pentium
4, 3GHz Linux machine equipped with 1GB RAM, whereas those in Section 4.2
were performed on a Pentium Xeon 3.2GHz Linux machine with 8GB RAM.

4.1 Classification Experiments on Real Data

Below we report classification results for several real data sets. Table 1 presents
these results, wherein we report both training and test accuracies, as well as the
respective running times of the algorithms tested (excluding I/O). As attested
to by the results, our �1-SVM performs competitively against standard SVM
packages such as SVMlight and LIBSVM (version 2.82). The results given in
Table 1 are merely illustrative. More extensive parameter tuning would definitely
lead to better accuracies than reported.

We selected some of the data sets made available on the LIBSVM [4] webpage
and the UCI machine learning repository [7]. The datasets used were

1. Liver-UCI [7]—345 × 7. No test set.
2. W7A [16]—24,692 training points with 300 features; 25,057 test points.
3. Ijcnn [17]—49,990 training points with 22 features; 91,701 test points.
4. RCV1 [11]—20,242 training points with 47,236 features; 677,399 test points.

Table 1. Training accuracies and associated running times for our �1-SVM imple-
mentation with both soft and hard margins (C = ∞), and comparative numbers for
SVMlight and LIBSVM. The running times reported are exclusive of the time spent
in I/O. We added timing computation code to LIBSVM. For the data sets that came
with a separate test collection, we also report test accuracies and test times. Our im-
plementation was overall faster in both training and testing, with a marginal sacrifice
in terms of accuracies.

Data set �1-SVM (hard) �1-SVM (soft) SVMlight LIBSVM

Liver-UCI 69.6% (0.02s) 71.2% (0.04s) 74.8% (0.12s) 70.4% (0.03s))
W7A 97.7% (1.49s) 98.6% (3.3s) 98.7% (6.2s) 98.7% (12.6s)
W7A (test) 97.6% (0s) 98.6% (0s) 98.7% (0.01s) 98.7% (3.4s)
Ijcnn 90.3% (0.04s) 92.1% (1.5s) 92.4% (22.4s) 92.4% (84s)
Ijcnn (test) 90.1% (0.01s) 91.7% (0.01s) 92.1% (0.08s) 92.1% (85.1s)
RCV1 99.6% (0.08s) 98.8% (2.2s) 98.9% (19s) 98.9% (318s)
RCV1 (test) 96.0% (0.29s) 96.3% (0.30s) 96.3% (0.90s) 96.3%(∼ 82min)

For all the implementations tested, we used the same value for the cost pa-
rameter C. Further, for both SVMlight and LIBSVM we used the linear kernels.
Observe that our �1-SVM outperforms both SVMlight and LIBSVM in terms of
training and testing speed, with a small drop in accuracy—except for the RCV1
dataset, where the �1-norm SVM has higher training accuracy.
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4.2 Scalability Experiments on Synthetic Data

We performed a series of experiments on synthetically generated data to test
the scalability of our �1-SVM. We sampled an equal number of points from two
multidimensional von Mises-Fisher distributions [15], with overlapping means,
so that the data were not linearly separable. We compare our implementation
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Fig. 1. Running time of our �1-SVM to demonstrate its scalability. The plot ranges
from N = 100,000 to 20 million, and the corresponding times range from 0.89s to 181s.
The run time can be seen to grow linearly in the number of training points (because
the number of training points N � M , no effect of dimensionality is discernible).

against the Linear Programming Chunking (LPC) approach of [2]. Empirically,
our method for solving the �1-SVM is several orders of magnitude faster than
the LPC method. An exact number representing the speedup is not possible to
provide since the authors of LPC ran their experiments on a different platform
than ours. Nevertheless, we offer a conservative estimate of speed to permit a
rough comparison. LPC was run on a cluster with 64 Sun UltraSPARC II pro-
cessors, with a total of 8GB of RAM. We ran our �1-SVM code on an Intel Xeon
3.2GHz Linux machine with 8GB RAM. Conservatively assuming that both ma-
chines run at approximately the same speed (i.e., disregarding the fact that the
cluster had 64 processors)4 we can give a crude comparison between the two
implementations. Note that these numbers are merely indicative of the speedup,
since LPC and �1-SVM were run on different machines. The LPC method con-
sumed 6.94, 25.91, and 231.32 hours, for 200,000, 500,000, and 1 million points,
respectively. In comparison, our method took 1.76, 4.43, and 8.8 seconds for the
same sized datasets. These numbers are compelling and show that our �1-SVM
runs several orders of magnitude faster than the LPC algorithm while trying to
solve the same problem. Hence, for such large scale datasets, it should be the

4 This estimate is conservative because if one compares the performance of the cluster
with that of a single Xeon based machine, the cluster is a few times faster—as can
be ascertained by going through CPU/System comparison benchmarks.
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method of choice. Our speed gains come from two sources: i) the decomposition
approach, and ii) solving the primal problem instead of the dual.

We mention in passing that Mangasarian and Musicant [14] solve a particular
version of the �2-norm SVM problem by attacking the dual formulation using
an active set approach. Our �1-norm implementation can be modified to solve
the primal version of their problem and once again outperforms the dual. Man-
gasarian and Musicant [14] reported running times of (on a 400MHz Pentium II
Xeon processor with 2GB RAM) of 38 minutes for a problem size of 4 million
points (in R

32), and 96.57 minutes for 7 million points. Comparative numbers
for our implementation can be obtained from Figure 1. Interpolation yields the
estimates 36 seconds for 4 million points and 63 seconds for 7 million points.

5 Discussion

In this paper we treated the solution of a linear programming based �1-norm
SVM problem by converting it into a quadratic program, which was then solved
by an efficient decomposition method. As far as we know, nobody has applied this
idea to the solution of �1-SVMs before. We saw that the decomposition method
permits efficient solution of extremely large-scale problems. Furthermore, our re-
sults corroborate the non-surprising, but often overlooked fact that for problems
where the number of training points vastly outnumbers their dimensionality,
solving the primal problem is more efficient.

Since the decomposition procedures that we invoked are quite general, they
can easily be adapted to solve related problems such as SV-regression, linear
programming SVMs [6, 8], and the so-called ε- and ν-SVM variants.

5.1 Future Work

The �1-SVM presented in this paper is a preliminary piece of work. Many further
refinements need to be incorporated into it to make it a highly competitive and
accurate SVM training engine. Notable extensions to it that are currently under
preparation include:

– Automatic determination of a good values for the cost parameter C and the
control parameter ε.

– Improved methods for automatically determining early stopping criteria so
that the algorithm takes minimum amount of running time without sacrific-
ing too much accuracy.

– Additional improvements to the algorithm itself to improve its rate of con-
vergence, and decrease errors due to numerical difficulties.
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