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a b s t r a c t

This paper studies fundamental aspects of modelling data using multivariate Watson
distributions. Although these distributions are natural for modelling axially symmetric
data (i.e., unit vectors where ±x are equivalent), for high-dimensions using them can be
difficult—largely because for Watson distributions even basic tasks such as maximum-
likelihood are numerically challenging. To tackle the numerical difficulties some approx-
imations have been derived. But these are either grossly inaccurate in high-dimensions
[K.V. Mardia, P. Jupp, Directional Statistics, second ed., John Wiley & Sons, 2000] or when
reasonably accurate [A. Bijral,M. Breitenbach, G.Z. Grudic,Mixture ofWatson distributions:
a generative model for hyperspherical embeddings, in: Artificial Intelligence and Statistics,
AISTATS 2007, 2007, pp. 35–42], they lack theoretical justification.We derive new approxi-
mations to themaximum-likelihood estimates; our approximations are theoretically well-
defined, numerically accurate, and easy to compute.We build on our parameter estimation
and discuss mixture-modelling withWatson distributions; here we uncover a hitherto un-
known connection to the ‘‘diametrical clustering’’ algorithm of Dhillon et al. [I.S. Dhillon,
E.M. Marcotte, U. Roshan, Diametrical clustering for identifying anticorrelated gene clus-
ters, Bioinformatics 19 (13) (2003) 1612–1619].

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Life on the surface of the unit hypersphere is more twisted than you might imagine: designing elegant probabilistic
models is easy but using them is often not. This difficulty usually stems from the complicated normalising constants
associated with directional distributions. Nevertheless, owing to their powerful modelling capabilities, distributions on
hyperspheres continue finding numerous applications—see e.g., the excellent book Directional Statistics [16].

A fundamental directional distribution is the von Mises–Fisher (vMF) distribution, which models data concentrated
around a mean-direction. But for data that have additional structure, vMF can be inappropriate: in particular, for axially
symmetric data it is more natural to prefer the (Dimroth–Scheidegger)–Watson distribution [16,21]. And this distribution
is the focus of our paper.

Three main reasons motivate our study of the multivariate Watson (mW) distribution, namely: (i) is fundamental to
directional statistics; (ii) it has not receivedmuch attention inmoderndata-analysis setups involving high-dimensional data;
and (iii) it provides a theoretical basis to ‘‘diametrical clustering’’, a procedure developed for gene-expression analysis [7].

Somewhat surprisingly, for high-dimensional settings, themWdistribution seems to be fairly under-studied. One reason
might be that the traditional domains of directional statistics are low-dimensional, e.g., circles or spheres. Moreover, in
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low-dimensions numerical difficulties that are rife in high-dimensions are not so pronounced. This paper contributes
theoretically and numerically to the study of the mW distribution. We hope that these contributions and the connections
we make to established applications help promote wider use of the mW distribution.

1.1. Related work

Beyond their use in typical applications of directional statistics [16], directional distributions gained renewed attention
in data-mining, where the vMF distribution was first used by Banerjee et al., [2,3], who also derived some ad-hoc parameter
estimates; Non ad-hoc parameter estimates for the vMF case were obtained by Tanabe et al. [20].

More recently, the Watson distribution was considered in [4] and also in [18]. Bijral et al. [4] used an approach similar
to that of [2] to obtain a useful but ad-hoc approximation to the maximum-likelihood estimates. We eliminate the ad-
hoc approach and formally derive tight, two-sided bounds which lead to parameter approximations that are accurate and
efficiently computed.

Our derivations are based on carefully exploiting properties (several new ones are derived in this paper) of the confluent
hypergeometric function, which arises as a part of the normalisation constant. Consequently, a large body of classical work
on special functions is related to our paper. But to avoid detracting from the main message and due to space limitations, we
relegate highly technical details to the Appendix and to an extended version of this paper [19].

Another line of related work is based on mixture-modelling with directional distributions, especially for high-
dimensional datasets. In [3], mixture-modelling using the Expectation Maximisation (EM) algorithm for mixtures of vMFs
was related to cosine-similarity based K -means clustering. Specifically, Banerjee et al. [3] showed how the cosine based
K -means algorithm may be viewed as a limiting case of the EM algorithm for mixtures of vMFs. Similarly, we investigate
mixture-modelling using Watson distributions, and connect a limiting case of the corresponding EM procedure to a clus-
tering algorithm called ‘‘diametrical clustering’’ [7]. Our viewpoint provides a new interpretation of the (discriminative)
diametrical clustering algorithmand also lends generative semantics to it. Consequently, using amixture ofWatson distribu-
tions we also obtain a clustering procedure that can provide better clustering results than plain diametrical clustering alone.

2. Background

Let Sp−1
= {x | x ∈ Rp, ∥x∥2 = 1} be the (p−1)-dimensional unit hypersphere centred at the origin.We focus on axially

symmetric vectors, i.e.,±x ∈ Sp−1 are equivalent; this is also denoted by x ∈ Pp−1, where Pp−1 is the projective hyperplane
of dimension p− 1. A natural choice for modelling such data is the multivariate Watson distribution [16]. This distribution
is parametrised by amean-direction µ ∈ Pp−1, and a concentration parameter κ ∈ R; its probability density function is

Wp(x;µ, κ) = cp(κ)eκ(µ
⊤x)2 , x ∈ Pp−1. (2.1)

The normalisation constant cp(κ) in (2.1) is given by

cp(κ) =
Γ (p/2)

2πp/2M
 1
2 ,

p
2 , κ

 , (2.2)

where M is the Kummer confluent hypergeometric function defined as [8, formula 6.1(1)] or [1, formula (2.1.2)]

M(a, c, κ) =

j≥0

aj

c j
κ j

j!
, a, c, κ ∈ R, (2.3)

and a0 = 1, aj = a(a+ 1) · · · (a+ j− 1), j ≥ 1, denotes the rising-factorial.
Observe that for κ > 0, the density concentrates around µ as κ increases, whereas for κ < 0, it concentrates around

the great circle orthogonal to µ. Observe that (Qµ)⊤Qx = µ⊤x for any orthogonal matrix Q . In particular for Qµ = µ,
µ⊤(Qx) = µ⊤x; thus, the Watson density is rotationally symmetric about µ.

2.1. Maximum likelihood estimation

We now consider the basic and apparently simple task of maximum-likelihood parameter estimation for mW distribu-
tions: this task turns out to be surprisingly difficult.

Let x1, . . . , xn ∈ Pp−1 be i.i.d. points drawn fromWp(x;µ, κ), theWatson density with mean µ and concentration κ . The
corresponding log-likelihood is

ℓ(µ, κ; x1, . . . , xn) = n

κµ⊤Sµ− lnM(1/2, p/2, κ)+ γ


, (2.4)

where S = n−1
n

i=1 xix
⊤

i is the sample scatter matrix, and γ is a constant term that we can ignore. Maximising (2.4) leads
to the following parameter estimates [16, Section 10.3.2] for the mean vector

µ̂ = s1 if κ̂ > 0, µ̂ = sp if κ̂ < 0, (2.5)
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where s1, . . . , sp are normalised eigenvectors (∈ Pp−1) of the scatter matrix S corresponding to the eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λp. The concentration estimate κ̂ is obtained by solving (to be more precise, we need λ1 > λ2 to ensure a unique
m.l.e. for positive κ , and λp−1 > λp, for negative κ):

g

1
2
,
p
2
; κ̂


:=

M ′
 1
2 ,

p
2 , κ̂


M
 1
2 ,

p
2 , κ̂

 = µ̂
⊤Sµ̂ := r (0 ≤ r ≤ 1), (2.6)

whereM ′ denotes the derivative with respect to κ̂ . Notice that (2.5) and (2.6) are coupled — so we need some way to decide
whether to solve g(1/2, p/2; κ̂) = λ1 or to solve g(1/2, p/2; κ̂) = λp instead. An easy choice is to solve both equations,
and select the solution that yields a higher log-likelihood. Solving these equations is much harder.

One could solve (2.6) using a root-findingmethod (e.g. Newton–Raphson). But, the situation is not that simple. For reasons
that will soon become clear, an out-of-the-box root-finding approach can be unduly slow or even fraught with numerical
peril, effects that become more pronounced with increasing data dimensionality. Let us, therefore, consider a slightly more
general equation (we also drop the accent on κ):

g(a, c; κ) :=
M ′(a, c; κ)
M(a, c; κ)

= r

c > a > 0, 0 ≤ r ≤ 1.
(2.7)

3. Solving for κ

In this section we present two different solutions to (2.7). The first is the ‘‘obvious’’ method based on a Newton–Raphson
root-finder. The second method is the key numerical contribution of this paper: a method that computes a closed-form
approximate solution to (2.7), thereby requiring merely a few floating-point operations!

3.1. Newton–Raphson

Although we establish this fact not until Section 3.2, suppose for the moment that (2.7) does have a solution. Further,
assume that by bisection or otherwise, we have bracketed the root κ to be within an interval and are thus ready to invoke
the Newton–Raphson method.

Starting at κ0, Newton–Raphson solves the equation g(a, c; κ)− r = 0 by iterating

κn+1 = κn −
g(a, c; κn)− r
g ′(a, c; κn)

, n = 0, 1, . . . . (3.1)

This iteration may be simplified by rewriting g ′(a, c; κ). First note that

g ′(a, c; κ) =
M ′′(a, c; κ)
M(a, b; κ)

−


M ′(a, c; κ)
M(a, c; κ)

2

, (3.2)

then, recall the following two identities

M ′′(a, c; κ) =
a(a+ 1)
c(c + 1)

M(a+ 2, c + 2; κ); (3.3)

M(a+ 2, c + 2; κ) =
(c + 1)(−c + κ)

(a+ 1)κ
M(a+ 1, c + 1; κ)+

(c + 1)c
(a+ 1)κ

M(a, c; κ). (3.4)

Now, use both (3.3) and (3.4) to rewrite the derivative (3.2) as

g ′(a, c; κ) = (1− c/κ)g(a, c; κ)+ (a/κ)− (g(a, c; κ))2. (3.5)

The main consequence of these simplifications is that iteration (3.1) can be implemented with only one evaluation of the
ratio g(a, c; κn) = M ′(a, c; κn)/M(a, c; κn). Efficiently computing this ratio is a non-trivial task in itself; an insight into this
difficulty is offered by observations in [9,10]. In the worst case, one may have to compute the numerator and denominator
separately (using multi-precision floating point arithmetic), and then divide. Doing so can require several million extended
precision floating point operations, which is very undesirable.

3.2. Closed-form approximation for (2.7)

We now derive two-sided bounds which will lead to a closed-form approximation to the solution of (2.7). This
approximation, while marginally less accurate than the one via Newton–Raphson, should suffice for most uses. Moreover,
it is incomparably faster to compute as it is in closed-form.
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Before proceeding to the details, let us look at a little history. For 2–3 dimensional data, or under very restrictive
assumptions on κ or r , some approximations had been previously obtained [16]. Due to their restrictive assumptions,
these approximations have limited applicability, especially for high-dimensional data, where these assumptions are often
violated [3]. Recently Bijral et al. [4] followed the technique of [3] to essentially obtain the ad-hoc approximation (actually
particularly for the case a = 1/2)

BBG(r) :=
cr − a
r(1− r)

+
r

2c(1− r)
, (3.6)

which they observed to be quite accurate. However, (3.6) lacks theoretical justification; other approximations were
presented in [18], though again only ad-hoc.

Below we present new approximations for κ that are theoretically well-motivated and also numerically more accurate.
Key to obtaining these approximations are a set of bounds localising κ , and we present these in a series of theorems below.
However, space restrictions have forced us to omit some proofs as they are quite technically involved. The included proofs
have also been trimmed. The reader is referred to the accompanying arXiv report [19] for complete proofs.

3.2.1. Existence and uniqueness
The following theorem shows that the function g(a, c; κ) is strictly increasing.

Theorem 3.1. Let c > a > 0, and κ ∈ R. Then the function κ → g(a, c; κ) is monotone increasing from g(a, c;−∞) = 0 to
g(a, c;∞) = 1.

Proof. Since g(a, c; κ) = (a/c)f1(κ), where fµ is defined in (A.7), this theorem is a direct consequence of Theorem A.4. �

Hence the equation g(a, c; κ) = r has a unique solution for each 0 < r < 1. This solution is negative if 0 < r < a/c and
positive if a/c < r < 1. Let us now localise this solution to a narrow interval by deriving tight bounds on it.

3.2.2. Bounds on the solution κ
Deriving tight bounds for κ is key to obtaining our new theoretically well-defined numerical approximations; moreover,

these approximations are easy to compute because the bounds are given in closed form.

Theorem 3.2. Let the solution to g(a, c; κ) = r be denoted by κ(r). Consider the following three bounds:

(lower bound) L(r) =
rc − a
r(1− r)


1+

1− r
c − a


, (3.7)

(bound) B(r) =
rc − a

2r(1− r)


1+


1+

4(c + 1)r(1− r)
a(c − a)


, (3.8)

(upper bound) U(r) =
rc − a
r(1− r)


1+

r
a


. (3.9)

Let c > a > 0, and κ(r) be the solution (2.7). Then, we have

1. for a/c < r < 1,

L(r) < κ(r) < B(r) < U(r), (3.10)

2. for 0 < r < a/c,

L(r) < B(r) < κ(r) < U(r). (3.11)

3. and if r = a/c, then κ(r) = L(a/c) = B(a/c) = U(a/c) = 0.

All three bounds (L, B, and U) are also asymptotically precise at r = 0 and r = 1.

Proof. The proofs of parts 1 and 2 are given in Theorems A.5 and A.6 (see the Appendix), respectively. Part 3 is trivial. It is
easy to see that limr→0,1 U(r)/L(r) = 1, so from inequalities (3.10) and (3.11), it follows that

lim
r→0,1

L(r)
κ(r)
= lim

r→0,1

B(r)
κ(r)
= lim

r→0,1

U(r)
κ(r)
= 1. �

More precise asymptotic characterisations of the approximations L, B and U are given in Section 3.2.4.
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Table 1
Summary of various approximations.

Point Approx.
L(r) B(r) U(r) BBG(r)

r = 0 Correct of order 1 Correct of order 2 Correct of order 3 Correct of order 2
r = a/c Correct of order 2 Correct of order 3 Correct of order 2 Incorrect
r = 1 Correct of order 3 Correct of order 2 Correct of order 1 Correct of order 1

3.2.3. BBG approximation
Our bounds above also provide some insight into the previous approximation BBG(r) of [4] given by (3.6). Specifically,

we check whether BBG(r) satisfies the lower and upper bounds from Theorem 3.2.
To see when BBG(r) violates the lower bound, solve L(r) > BBG(r) for r to obtain

2c2 + a−

(2c2 − a)(2c2 − a− 8ac)
2(2c2 − a+ c)

< r <
2c2 + a+


(2c2 − a)(2c2 − a− 8ac)
2(2c2 − a+ c)

.

For the Watson case a = 1/2; this means that BBG(r) violates the lower bound and underestimates the solution for
r ∈ (0.11, 0.81) if c = 5; for r ∈ (0.0528, 0.904) if c = 10; for r ∈ (0.00503, 0.99) if c = 100; for r ∈ (0.00050025, 0.999)
if c = 1000. This fact is also reflected in Fig. 2.

To see when BBG(r) violates the upper bound, solve BBG(r) > U(r) for r to obtain

r <
2ac

2c2 − a
.

For theWatson case a = 1/2; thismeans that BBG(r) violates the upper bound and overestimates the solution for r ∈ (0, 0.1)
if c = 5; for r ∈ (0, 0.05) if c = 10; for r ∈ (0, 0.005) if c = 100; for r ∈ (0, 0.0005) if c = 1000.

What do these violations imply? They show that a combination of L(r) and U(r) is guaranteed to give a better
approximation than BBG(r) for nearly all r ∈ (0, 1) except for a very small neighbourhood of the point where BBG(r)
intersects κ(r).

3.2.4. Asymptotic precision of the approximations
Let us now look more precisely at how the various approximations behave at limiting values of r . There are three points

where we can compute asymptotics: r = 0, r = a/c , and r = 1. First, we assess how κ(r) itself behaves.

Theorem 3.3. Let c > a > 0, r ∈ (0, 1); let κ(r) be the solution to g(a, c; κ) = r. Then,

κ(r) = −
a
r
+ (c − a− 1)+

(c − a− 1)(1+ a)
a

r + O(r2), r → 0, (3.12)

κ(r) =

r −

a
c

 c2(1+ c)
a(c − a)

+
c3(1+ c)2(2a− c)
a2(c − a)2(c + 2)


r −

a
c


+ O


r −

a
c

2
, r →

a
c

(3.13)

κ(r) =
c − a
1− r

+ 1− a+
(a− 1)(a− c − 1)

c − a
(1− r)+ O((1− r)2), r → 1. (3.14)

Proof. The proof hinges on Lagrange inversion and its guises for unbounded values. Details can be found in [19]. �

We can compute asymptotic expansions for the various approximations by standard Laurent expansion. We summarise
the results in Table 1 below; the formulae for the associated approximations are omitted due to space concerns, andmay be
found in [19].

Table 1 uses the following terminology: (i) we call an approximation f (r) to be incorrect around r = α, if f (r)/κ(r)→
0,∞ as r → α; (ii) we say f (r) is correct of order 1 around r = α, if f (r)/κ(r)→ C such that C ≠ 0,∞ as r → α; (iii) we
say f (r) is correct of order 2 around r = α if f (r)/κ(r) = 1 + O(r − α) as r → α; and (iv) f (r) is correct of order 3 around
r = α if f (r)/κ(r) = 1+ O((r − α)2) as r → α.

No matter how we count the total ‘‘order of correctness’’ it is clear from Table 1 that our approximations are superior to
that of [4].

The table shows that actually L(r) and U(r) can be viewed as three-point 2/2] Padé approximations to κ(r) at r = 0 and
r = a/c and r = 1 with different orders at different points, while B(r) is a special non-rational three point approximation
with even higher total order of contact.

Moreover, since we not only give the order of correctness but also prove the inequalities, we always know exactly
which approximation underestimates κ(r) and which overestimates κ(r). Such information might be important to some
applications. The approximation of [4] is less precise and does not satisfy such inequalities. Also, note that all the above facts
are equally true in the Watson case a = 1/2.
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4. Application to mixture modelling and clustering

Now thatwehave shownhow to computemaximum-likelihoodparameter estimates,weproceed ontomixture-modelling
for mW distributions.

Suppose we observe the set X = {x1, . . . , xn ∈ Pp−1
} of i.i.d. samples. We wish to model this set using a mixture of K

mW distributions. Let Wp(x|µj, κj) be the density of the j-th mixture component, and πj its prior (1 ≤ j ≤ K) — then, for
observation xi we have the density

f (xi|µ1, κ1, . . . ,µK , κK ) =

K
j=1

πjWp(xi|µj, κj).

The corresponding log-likelihood for the entire dataset X is given by

L(X;µ1, κ1, . . . ,µK , κK ) =

n
i=1

ln


K

j=1

πjWp(xi|µj, κj)


. (4.1)

Tomaximise the log-likelihood, we follow a standard ExpectationMaximisation (EM) procedure [6]. To that end, first bound
L from below as

L(X;µ1, κ1, . . . ,µK , κK ) ≥

ij

βij ln
πjWp(xi|µj, κj)

βij
, (4.2)

where βij is the posterior probability (for xi, given component j), and it is defined by the E-Step:

βij =
πjWp(xi|µj, κj)
l
πlWp(xi|µl, κl)

. (4.3)

Maximising the lower-bound (4.2) subject to µ⊤j µj = 1, yields theM-Step:

µj = sj1 if κj > 0, µj = sjp if κj < 0, (4.4)

κj = g−1(1/2, p/2, rj), where rj = µ⊤j S
jµj, (4.5)

πj =
1
n


i

βij,

where sji denotes the eigenvector corresponding to eigenvalue λi (where λ1 ≥ · · · ≥ λp) of the weighted-scatter matrix:

S j
=

1
i
βij


i

βijxix⊤i .

Now we can iterate between (4.3)–(4.5) to obtain an EM algorithm. Pseudo-code for such a procedure is shown below as
Algorithm 1.
Note: Hard assignments. We note that as usual, to reduce the computational burden, we can replace the E-step (4.3) by the
standard hard-assignment heuristic:

βij =


1, if j = argmax

j′
lnπj′ + lnWp(xi|µj′ , κj′),

0, otherwise.
(4.6)

The correspondingM-Step also simplifies considerably. Such hard-assignmentsmaximise a lower-bound on the incomplete
log-likelihood, and yield partitional-clustering algorithms (in fact, we show experimental results in Section 5.2 where we
cluster data using a partitional-clustering algorithm based on this hard-assignment heuristic).

4.1. Diametrical clustering

Wenow turn to the diametrical clustering algorithm of [7], and show that it is merely a special case of themixture-model
described above. Diametrical clustering ismotivated by theneed to group together correlated and anti-correlateddata points
(see Fig. 1 for an illustration). For data normalised to have unit euclidean norm, such clustering treats diametrically opposite
points equivalently. In other words, x lies on the projective plane. Therefore, a natural question is whether diametrical
clustering is related to Watson distributions, and if so, how?

The answer to this question will become apparent once we recall the diametrical clustering algorithm (shown as
Algorithm 2) of [7]. In Algorithm 2we have labelled the ‘‘E-Step’’ and the ‘‘M-Step’’. These two steps are simplified instances
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Input: X =

x1, . . . , xn : where each xi ∈ Pp−1


, K : number of components

Output: Parameter estimates πj, µj, and κj, for 1 ≤ j ≤ K
Initialise πj,µj, κj for 1 ≤ j ≤ K
while not converged do

{Perform the E-step of EM}
foreach i and j do

Compute βij using (4.3) (or via (4.6) if using hard-assignments)
end
{Perform the M-step of EM}
for j = 1 to K do

πj ←
1
n

n
i=1 βij

Compute µj using (4.4)
Compute κj using (4.5)

end
end

Algorithm 1: EM Algorithm for mixture of Watson (moW)

Input: X = {x1, . . . , xn : xi ∈ Pp−1
}, K : number of clusters

Output: A partition {Xj : 1 ≤ j ≤ K} of X, and centroids µj
Initialise µj for 1 ≤ j ≤ K
while not converged do

E-step:
Set Xj ← ∅ for 1 ≤ j ≤ K
for i = 1 to n do

Xj ← Xj ∪ {xi}where j = argmax1≤h≤K (x⊤i µh)
2

end
M-step:
for j = 1 to K do

Aj =


xi∈Xj
xix⊤i

µj ← Ajµj/∥Ajµj∥

end
end

Algorithm 2: Diametrical Clustering

Fig. 1. The left panel shows axially symmetric data that has two clusters (centroids are indicated by ‘+’ and ‘×’). The middle and right panels show
clustering yielded by (Euclidean) K -means (note that the centroids fail to lie on the circle in this case) with K = 2 and K = 4, respectively. Diametrical
clustering recovers the true clusters in the left panel.

of the E-step (4.3) (alternatively (4.6)) and M-step (4.4). To see why, consider the E-step (4.3). If κj → ∞, then for each
i, the corresponding posterior probabilities βij → {0, 1}; the particular βij that tends to 1 is the one for which (µ⊤j xi)

2 is
maximised — this is precisely the choice used in the E-step of Algorithm 2. With binary values for βij, the M-Step (4.4) also
reduces to the version followed by Algorithm 2.

An alternative, perhaps better view is obtained by regarding diametrical clustering as a special case ofmixture-modelling
where a hard-assignment rule is used. Now, if all mixture components have the same, positive concentration parameter κ ,
then while computing βij via (4.6) we may ignore κ altogether, which reduces Algorithm 1 to Algorithm 2.

Given this interpretation of diametrical clustering, it is natural to expect that the additional modelling power offered
by mixtures of Watson distributions might lead to better clustering. This is indeed the case, as indicated by some of our
experiments in Section 5.2 below,wherewe show thatmerely including the concentration parameter κ can lead to improved
clustering accuracies, or to clusters with higher quality (in a sense that will be made more precise below).
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Fig. 2. Relative errors |κ̂ − κ∗|/|κ∗| of BBG(r), L(r), B(r), and U(r) for c ∈ {10, 100, 1000} as r varies between (0, 1). The left column shows errors for
‘‘small’’ r (i.e., r close to 0), the middle column shows errors for ‘‘mid-range’’ r , and the last column shows errors for the ‘‘high’’ range (r ≈ 1).

5. Experiments

We now come to numerical results to assess the methods presented. We divide our experiments into two groups. The
first group comprises numerical results that illustrate accuracy of our approximation to κ . The second group supports our
claim that the extra modelling power offered by moWs also translates into better clustering results.

5.1. Estimating κ

We show two representative experiments to illustrate the accuracy of our approximations. The first set (Section 5.1.1)
compares our approximation with that of [4], as given by (3.6). This set considers the Watson case, namely a = 1/2 and
varying dimensionality c = p/2. The second set (Section 5.1.2) of experiments shows a sampling of results for a few values
of c and κ as the parameter a is varied. This set illustrates how well our approximations behave for the general nonlinear
equation (2.7).

5.1.1. Comparison with the BBG approximation for the Watson case
Here we fix a = 1/2, and vary c on an exponentially spaced grid ranging from c = 10 to c = 104. For each value of c ,

we generate geometrically spaced values of the ‘‘true’’ κ∗ in the range [−200c, 200c]. For each choice of κ∗ picked within
this range, we compute the ratio r = g(1/2, c, κ∗) (using Mathematica for high precision). Then, given a = 1/2, c , and
r , we estimate κ∗ by solving κ ≈ g−1(1/2, c, r) using BBG(r), L(r), B(r), and U(r), given by (3.6), (3.7), (3.8), and (3.9),
respectively.

Fig. 2 shows the results of computing these approximations. From the plots we see that although approximation BBG(r)
is quite good and more accurate than B(r) and U(r) for r ≈ 1, approximation L(r) is more accurate across almost the whole
range of dimensions and r values. In contrast, for small r, BBG(r) can be more accurate than L(r), but in this case both U(r)
and B(r) are much more accurate.
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Fig. 3. Relative errors of BBG(r), L(r), B(r), and U(r) for different sets of c and κ values, as a is varied from 0.01c to 0.99c .

5.1.2. Comparisons of the approximation for fixed c and varying a
In our next set of experiments, we chose a few values of c and κ (see Fig. 3), and varied a linearly to lie in the range

[0.01c, 0.99c]. Fig. 3 reports the relative errors of approximation incurred by the various approximations.
From the plots it is clear that one of L(r), B(r), or U(r) always yields results more accurate than BBG(r). The various

results suggest the following rough rule-of-thumb: prefer U(r) for 0 < r < a/(2c), prefer B(r) for a/(2c) ≤ r < 2a/
√
c

and prefer L(r) for 2a/
√
c ≤ r < 1.

5.2. Clustering using mW distributions

Nowwe turn to our second set of experiments. Belowwe show results of two experiments: (i) with synthetic data, where
a desired ‘‘true-clustering’’ is known; and (ii)with gene expression data forwhich previously axially symmetric clusters have
been considered.

For both our experiments, we compare moW (Algorithm 1 with (4.6) for the E-step) against the diametrical clustering
procedure of [7]. The key aim of the experiments is to show that the extra modelling power offered by a mixture of mW
distributions can provide clustering results better than plain diametrical clustering.

5.2.1. Synthetic data
We generated data that merely exhibit axial symmetry and have varying degrees of concentration around given mean

directions. Since both the diametrical method as well as moW model axial symmetry they can be fairly compared on this
data. The distinction comes, however, where moW further models concentration (via κ), and in case the generated data
is sufficiently concentrated, this modelling translates into empirically superior performance. Naturally, to avoid unfairly
skewing results in favour of moW, we do not compare it against diametrical clustering on synthetic data sampled from a
mixture of mW distributions as moW explicitly optimises such a model.

For our data generationweneed to sample points fromWp(κ,µ), forwhichwe invoke a simplified version of the powerful
Gibbs sampler of [11] that can simulate Bingham–von Mises–Fisher distributions. We note here that Bingham distribution
is parametrised by a matrix A, and to use it for sampling Watson distributions, we merely need to realise that A = κµµ⊤.

With the sampling code in hand, we generate synthetic datasets with varying concentration as follows. First, two random
unit vectors µ1,µ2 ∈ P29 are selected. Then, we fix κ1 = 3 and sample 200 points fromW3(κ1,µ1). Next, we vary κ2 in the
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Table 2
Percentages of accurately clustered points for diametrical clustering vs. moW (over 10 runs). Since this is simulated data, we knew the cluster labels. The
accuracy is then computed by matching the predicted labels with the known ones. In line with the theory, with increasing concentration the modelling
power offered by moW shows a clear advantage over ordinary diametrical clustering.

κ2 Diametrical (avg/best/worst)—% moW (avg/best/worst)—%

3 52.65 / 56.50 / 51.50 51.65 / 53.50 / 50.50
10 52.75 / 56.00 / 50.50 54.10 / 57.00 / 50.00
20 57.60 / 64.00 / 51.50 74.45 / 87.00 / 63.50
50 66.00 / 78.50 / 50.00 99.50 / 99.50 / 99.50

100 71.20 / 81.00 / 55.00 100.00 / 100.00 / 100.00

set {3, 10, 20, 50, 100}, and generate 200 points for each value of κ2 by sampling fromWp(κ2,µ2). Finally, by mixing the κ1
component with each of the five κ2 components we obtain five datasets Xt (1 ≤ t ≤ 5).

Each of these five datasets is then clustered into two clusters, usingmoW and diametrical clustering. Both algorithms are
run ten times each to smooth out the effect of random initialisations. Table 2 shows the results of clustering by displaying the
accuracy which measures the percentage of data points that were assigned to the ‘‘true’’ clusters (i.e., the true components
in the mixture). The accuracies strongly indicate that explicit modelling of concentration leads to better clustering as κ2
increases. In other words, larger κ2 makes points from the second cluster more concentrated around±µ2, thereby allowing
easier separation between the clusters.

5.2.2. Real data
We now compare clustering results of moWwith those of diametrical clustering on three gene microarray datasets that

were also used in the original diametrical clustering paper [7]. These datasets are: (i) Human Fibroblasts [13]; (ii) Yeast Cell
Cycle [17]; and (iii) Rosetta yeast [12]. The respective matrix sizes that we used were: (i) 517 × 12; (ii) 696 × 82; and (iii)
900× 300 (these 900 genes were randomly selected from the original 5245).

Since we do not have ground-truth clusterings for these datasets, we validate our results using internal measures.
Specifically, we compute two scores: homogeneity and separation, which are defined below by Havg and Savg, respectively.
Let Xj ⊂ X denote cluster j; then we define

Havg =
1
n

K
j=1


xi∈Xj

(x⊤i µj)
2, (5.1)

Savg =
1

j≠l
|Xj||Xl|


j≠l

|Xj||Xl|min(µ⊤j µl,−µ⊤j µl). (5.2)

We note a slight departure from the standard in our definitions above. In (5.1), instead of summing over x⊤i µj, we sum over
their squares, while in (5.2), instead of µ⊤j µl, we use min(µ⊤j µl,−µ⊤j µl) because for us +µj and −µj represent the same
cluster.

We note that diametrical clustering optimises precisely the criterion (5.1), and is thus favoured by our criterion. Higher
values ofHavg mean that the clusters have higher intra-cluster cohesiveness, and thus are ‘‘better’’ clusters. In contrast, lower
values of Savg mean that the inter-cluster dissimilarity is high, i.e., better separated clusters.

Table 3 shows results yielded by diametrical clustering and moW on the three different gene datasets. For each dataset,
we show results for two values of K . The Havg values indicate that moW yields clusters having approximately the same
intra-cluster cohesiveness as diametrical. However, moW attains better inter-cluster separation as it more frequently leads
to lower Savg values.

6. Conclusions

Westudied themultivariateWatson distribution, a fundamental tool formodelling axially symmetric data.We solved the
difficult nonlinear equations that arise in maximum-likelihood parameter estimation. In high-dimensions these equations
pose severe numerical challenges. We derived tight two-sided bounds that led to approximate solutions to these equations;
we also showed our solutions to be accurate. We applied our results to mixture-modelling with Watson distributions and
consequently uncovered a connection to the diametrical clustering algorithm of [7]. Our experiments showed that for
clustering axially symmetric data, the additional modelling power offered by mixtures of Watson distributions can lead
to better clustering. Further refinements to the clustering procedure, as well as other applications of Watson mixtures in
high-dimensional settings is left as a task for the future.
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Table 3
Clustering accuracy on gene-expression datasets (over 10 runs). Noticeable
differences (i.e.,>0.02) between the algorithms are highlighted in bold.

Method Diametrical (avg/best/worst) moW (avg/best/worst)

Yeast-4
Homogeneity 0.38 / 0.38 / 0.38 0.37 / 0.37 / 0.37
Separation −0.00 /−0.23 / 0.24 −0.04 /−0.23 / 0.20

Yeast-6
Homogeneity 0.41 / 0.41 / 0.40 0.41 / 0.41 / 0.40
Separation −0.06 /−0.15 / 0.14 −0.07 /−0.20 / 0.13

Rosetta-2
Homogeneity 0.16 / 0.17 / 0.16 0.16 / 0.17 / 0.16
Separation 0.24 / 0.08 / 0.28 −0.20 /−0.28 / 0.09

Rosetta-4
Homogeneity 0.23 / 0.23 / 0.23 0.23 / 0.23 / 0.23
Separation −0.01 /−0.08 / 0.16 −0.03 /−0.09 / 0.12

Fibroblast-2
Homogeneity 0.70 / 0.70 / 0.70 0.70 / 0.70 / 0.70
Separation 0.26 /−0.65 / 0.65 −0.01 /−0.65 / 0.65

Fibroblast-5
Homogeneity 0.78 / 0.78 / 0.78 0.76 / 0.76 / 0.75
Separation −0.05 /−0.28 / 0.40 −0.12 /−0.30 / 0.35

Appendix. Mathematical details

This appendix presents a few of the most relevant technical details omitted from the main text. Due to space limitations
we cannot present all the proofs and appurtenant details; these may be found in the longer version of the paper [19].

We list below some identities for M that we will need for our analysis. To ease the notational burden, we also use the
shorthandMi ≡ M(a+ i, c + i, x).

dn

dxn
M0 =

an

cn
Mn, (A.1)

M1 =
c(1− c + x)

ax
M0 +

c(c − 1)
ax

M−1, (A.2)

(c − a)xM(a+ 2, c + 3, x) = (c + 1)(c + 2)[M2 −M1], (A.3)
xM(a+ 2, c + 3, x) = (c + 2)[M2 −M(a+ 1, c + 2, x)]. (A.4)

Identity (A.1) follows inductively; (A.2) is from [5, 16.1.9c]; (A.3) is obtained by combining [8, formula 6.4(5)]with [8, formula
6.4(4)]; and (A.4) is from [8, formula 6.4(5)]. The following lemma has been derived by the second author in [14, Lemma 1].

Lemma A.1. The Kummer function satisfies the identity

M2
1 −M2M0 =

(c − a)x
c + 1


1

c + 1
M(a+ 1, c + 2, x)2 −

1
c + 2

M(a+ 2, c + 3, x)M(a, c + 1, x)

+
1

c(c + 1)
M(a+ 1, c + 2, x)M(a+ 2, c + 2, x)


. (A.5)

The central object of study in this paper is the Kummer-ratio:

g(x) = g(a, c; x) :=
M ′(a, c, x)
M(a, c, x)

=
a
c
M(a+ 1, c + 1, x)

M(a, c, x)
. (A.6)

In the sequel, it will be useful to use the slightly more general function

fµ(x) :=
M(a+ µ, c + µ, x)

M(a, c, x)
, µ > 0, (A.7)

so that g(x) = (a/c)f1(x).

Lemma A.2 (Log-convexity). Let c > a > 0 and x ≥ 0. Then the function

µ →
Γ (a+ µ)
Γ (c + µ)

M(a+ µ, c + µ, x) =
∞
k=0

Γ (a+ µ+ k)
Γ (c + µ+ k)

xk

k!
=: ha,c(µ; x)

is strictly log-convex on [0,∞) (note that h is a function of µ).
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Proof. Write the power-series expansion in x for ha,c(µ; x) as

ha,c(µ; x) =
∞
k=0

hk(a, c, µ)
xk

k!
, hk(a, c, µ) =

Γ (a+ µ+ k)
Γ (c + µ+ k)

.

Since log-convexity is additive, it is sufficient to prove thatµ → hk(a, c, µ) is log-convex. For this we compute the second-
derivative

∂2

∂µ2
ln hk(a, c, µ) = ψ ′(a+ µ+ k)− ψ ′(c + µ+ k),

where ψ is the logarithmic derivative of the gamma function. We need to show that this expression is positive when
c > a > 0, k ≥ 0 and µ ≥ 0. Differentiating the Gauss formula [1, Theorem 1.6.1] twice we get

ψ ′′(x) = −

∞

0

t2e−tx

1− e−t
dt < 0.

Hence the function ψ ′(x) is decreasing and our claim follows. �

Lemma A.3. Let c > a > 0, and x ≥ 0. Then the function

µ →
Γ (a+ µ)
Γ (c + µ)

M(c − a, c + µ, x) =: ĥa,c(µ; x)

is strictly log-convex on [0,∞).

Proof. Using precisely the same argument as in the proof of Lemma A.2 we see thatµ → Γ (a+µ)/Γ (c+µ) is log-convex.
Next, the log-convexity ofµ → M(c−a; c+µ; x) has been proved by several authors (see, for instance, [15] and references
therein). Thus multiplicativity of log-convexity completes the proof. �

With the last two lemmas in hand we are ready to prove the following theorem.

Theorem A.4 (Monotonicity). Let c > a > 0. Then, the function x → fµ(x) is monotone increasing on (−∞,∞), with
fµ(−∞) = 0 and fµ(∞) = Γ (c + µ)Γ (a)/


Γ (c)Γ (a+ µ)


.

Proof. We divide the proof into two cases: (i) x ≥ 0, and (ii) x < 0.
Case (i). It follows from (A.1) that

M2
0 f
′

µ(x) =
a+ µ
c + µ

Mµ+1M0 −
a
c
MµM1.

We need to show that the above expression is positive, which amounts to showing

a+ µ
c + µ

Mµ+1

Mµ

>
a
c
M1

M0
⇔
[Γ (a+ µ+ 1)/Γ (c + µ+ 1)]Mµ+1

[Γ (a+ µ)/Γ (c + µ)]Mµ

>
[Γ (a+ 1)/Γ (c + 1)]M1

[Γ (a)/Γ (c)]M0
. (A.8)

The last inequality follows from Lemma A.2. To see how, recall that if µ → h(µ) is log-convex, then the function
µ → h(µ+ δ)/h(µ) is increasing for each fixed δ > 0, a fact that is easily verified by noting that when h is log-convex, its
logarithmic derivative h′(µ)/h(µ) is increasing, which immediately implies that the derivative of h(µ+δ)/h(µ) is positive.
Thus, in particular applying this property to ha,c(µ; x)with δ = 1 we have

ha,c(µ+ 1; x)
ha,c(µ; x)

>
ha,c(1; x)
ha,c(0; x)

,

which is precisely the required inequality. This establishes themonotonicity. The value of fµ(∞) follows from the asymptotic
formula given in [1, Corollary 4.2.3].
Case (ii). Let x < 0. Like in Case (i) we need to show that

[Γ (a+ µ+ 1)/Γ (c + µ+ 1)]Mµ+1

[Γ (a+ µ)/Γ (c + µ)]Mµ

>
[Γ (a+ 1)/Γ (c + 1)]M1

[Γ (a)/Γ (c)]M0
(A.9)

but this time for x < 0. Apply the Kummer transformationM(a; c; x) = exM(c − a; c;−x) and write y = −x > 0 to get

[Γ (a+ µ+ 1)/Γ (c + µ+ 1)]M(c − a; c + µ+ 1; y)
[Γ (a+ µ)/Γ (c + µ)]M(c − a; c + µ; y)

>
[Γ (a+ 1)/Γ (c + 1)]M(c − a; c + 1; y)

[Γ (a)/Γ (c)]M(c − a; c; y)
.
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Using the notation introduced in Lemma A.3 the last inequality becomes

ĥa,c(µ+ 1; x)

ĥa,c(µ; x)
>

ĥa,c(1; x)

ĥa,c(0; x)
,

which holds as a consequence of the log-convexity of µ → ĥa,c(µ; x). Finally, combining the Kummer transformation
with [1, Corollary 4.2.3] we get the value of fµ(−∞). �

Let us remind the reader that the functions L(r), B(r) and U(r) are defined in (3.7), (3.8), (3.9), respectively.

Theorem A.5 (Positive κ). Let κ(r) be the solution to (2.7); c > a > 0, and r ∈ (a/c, 1). Then, we have the bounds

L(r) < κ(r) < B(r) < U(r) (A.10)

Proof. Lower-bound. To simplify notation we use x = κ(r) below. Set r1 = g(a+ 1, c+ 1; x); then replace a← a+ 1, c ←
c + 1 and divide byM1 in identity (A.2) to obtain

x =
cr − a

r(1− r1)
, (A.11)

where as before r = g(a, c, x). The lower bound in (A.10) is equivalent to

cr − a
r(1− r1)

>
cr − a
r(1− r)

+
cr − a
r(c − a)

or
(c − a− 1)r + 1
c − a+ 1− r

< r1,

once we account for cr − a > 0 by our hypothesis. Plugging in the definitions of r and r1 we get:

(c − a− 1)aM1 + cM0

(c − a+ 1)cM0 − aM1
<
(a+ 1)M2

(c + 1)M1
,

where as before we useMi = M(a+ i, c + i, x). Cross-multiplying, we obtain

h(x) := c(c − a+ 1)(a+ 1)M2M0 − (c + 1)(c − a− 1)aM2
1 − c(c + 1)M1M0 − a(a+ 1)M2M1 > 0.

Now on noticing that c(c − a+ 1)(a+ 1) = ac(c − a)+ c(c + 1) and (c − a− 1)(c + 1)a = ac(c − a)− a(a+ 1), we can
regroup h(x) to get

h(x) = ac(c − a)[M2M0 −M2
1 ] + (M2 −M1)[c(c + 1)M0 − a(a+ 1)M1].

Next, using identity (A.3) forM2 −M1, formula (A.5) forM2M0 −M2
1 , the easily verifiable identity

c(c + 1)M0 − a(a+ 1)M1 =
ax(c − a)
c + 1

M(a+ 1, c + 2, x)+ (c − a)(c + a+ 1)M(a, c + 1, x)

and the contiguous relation (A.4), h(x) can be brought into the form

(c + 1)h(x)
(c − a)2x

=
(a+ 1)(c + 1)

c + 2
M(a, c + 1, x)M(a+ 2, c + 3, x)− aM(a+ 1, c + 2, x)2.

Therefore, the condition h(x) > 0 is equivalent to (upon using the notation c ′ = c + 1)

(a+ 1)
(c ′ + 1)

M(a+ 2, c ′ + 2, x)
M(a+ 1, c ′ + 1, x)

>
a
c ′

M(a+ 1, c ′ + 1, x)
M(a, c ′, x)

.

But this final inequality follows from Theorem A.4 by using µ = 1 in (A.8).
Upper-bound for κ(r). The lower-bound in (A.10) can be then rewritten as

cr − a
r(1− r)


1+

1− r
c − a


< x⇔ (1− r)2(x− c/(c − a))− (1− r)(x+ c − 1)+ c − a < 0.

The last inequality can be shown to imply

(c − a)(x+ c − 1)− (c − a)

(1− x+ c)2 + 4ax

2((c − a)x− c)
< 1− r.

Changing a→ a+ 1 and c → c + 1 here (recall that b = c − a) we get

0 <
b(x+ c)− b


(x+ c)2 − 4(bx− c − 1)

2(bx− c − 1)
< 1− r1, (A.12)
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where as before r1 = g(a+ 1, c + 1, x). The expression under square root is positive on inspection for both bx− c − 1 > 0
and bx− c − 1 < 0. Next, after suitably rewriting (A.11), we have

x =
b− cq

(1− q)(1− r1)
.

Applying inequality (A.12) here, we obtain

x <
2(b− cq)(bx− c − 1)

(1− q)b

x+ c −


(x+ c)2 − 4(bx− c − 1)

 .
Carefully solving this inequality for xwe get the upper bound in (A.10).
The rightmost inequality. Verifying the inequality B(r) < U(r) for a/c < r < 1 is a straightforward exercise. �

Theorem A.6 (Negative κ). Let κ(r) be the solution to (2.7), c > a > 0, and r ∈ (0, a/c). Then, we have the following bounds:

L(r) < B(r) < κ(r) < U(r) (A.13)

Proof. The proof goes along the lines similar to those in the proof of Theorem A.5 but with many differences in technical
details. For complete version see [19]. �
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