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This paper introduces the paradigm of optimization under uncertainty for modelling and solving matrix
nearness problems. In particular, it considers the concrete problem of recovering correlation matrices
from uncertain observations by introducing two different approaches to tackling uncertainty. The first
approach invokes the framework of robust optimization to construct low error solutions that are immune
to worst-case uncertainty in the input. The second approach takes a less pessimistic view on uncertainty,
and considers a situation where instead of the worst one, it suffices to use any matrix in the uncertainty set.
We formulate both our approaches as convex (possibly nonsmooth) optimization problems. Thereafter,
we show how to exploit problem structure to obtain efficient iterative first-order algorithms. We present
several numerical results on both nearness and completion versions of the optimization problem; our
results highlight the effectiveness of our proposed algorithmic techniques.
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1. Introduction

Real applications never have access to perfect data: noise, imprecision and incompleteness invariably
complicate matters. Since uncertainty is unavoidable, it is important to design models and algorithms
that account for it, preferably without being too sensitive to minor variations in data. This pragmatic
viewpoint rings particularly true for matrix nearness and completion problems because they involve
a noisy, possibly incomplete matrix of uncertain observations that must be processed to fulfil desired
properties such as symmetry, semidefiniteness, etc.—see, e.g., the eminent survey by Higham (1989).

A classical way to model uncertainty is via probability theory, as is notably done in stochastic pro-
gramming (Dantzig, 1955; Shapiro et al., 2009), which deals with uncertainty by modelling input data
as random variables. Although attractive and elegant, such probabilistic approaches can be imprac-
tical: precise knowledge of probability distributions is rare, and even when we have access to such
distributions, the associated mathematical models may be computationally prohibitive. This view-
point is developed more deeply by Bertsimas & Thiele (2006), who advocate Robust Optimization
(Bertsimas & Thiele, 2006; Ben-Tal et al., 2009) as an alternative approach to cope with uncertainty.
Indeed, robust optimization offers a powerful framework that accounts for observation uncertainty and
strives to obtains solutions that are ‘worst-case’ optimal.

In light of the above background, our paper makes four key contributions: (i) it introduces robust
optimization to the field of matrix nearness; (ii) it illustrates the robust paradigm by applying it to
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the concrete problem of correlation matrix nearness; (iii) it goes beyond robust optimization and offers
practitioners an alternative model of uncertainty that is based on an ‘explorative’ rather than a worst-case
view; and (iv) it formulates the resulting matrix nearness problems as convex optimization problems,
for which it subsequently develops efficient iterative algorithms.

As our presentation readily suggests, tackling uncertainty via robust or explorative approaches
applies to any matrix nearness problem. But a concrete example will illustrate our ideas better; we
use the ‘nearest correlation matrix’ (NCM) problem (Higham, 2002; Gentle, 2007, Section 9.4.6) as our
example problem. NCM is not only important in many applications (see, e.g., Bhansali & Wise, 2001;
Higham, 2002), but it also admits fairly nontrivial yet tractable uncertainty models.

Note added in revision. This paper is one of the first to formally introduce robust optimization for
matrix nearness problems. We thank a referee for bringing to our attention the preprint (Li et al., 2013),
which studies robust least-squares SDP problems, and seems to have been written around the same time
(in 2012) when we were preparing our paper. Li et al. (2013) study robust SDP projection problems
whose constraints may have uncertainty; we consider robust SDP projection problems where the point
being projected has uncertain entries. In addition, to standard worst-case uncertainty, we also introduce
and study an alternative ‘explorative’ notion.

Notation. Before we begin, let us fix basic notation. Without loss of generality, all matrices consid-
ered are real. The operator [x]+ =max{x, 0} denotes the non-negative part of x. We denote by S n the
set of n× n real symmetric matrices, and by S n

+ := {X ∈S n | X � 0} the convex cone of symmetric
positive semidefinite matrices. Let Sn

D := {X ∈S n | xii = 1, i= 1, . . . n} be the set of matrices with unit
diagonal. Using this notation, the set of correlation matrices is Cn :=S n

+ ∩ Sn
D. We also use the Frobe-

nius norm ‖X‖F =
√∑

ij x2
ij, the operator 2-norm ‖X‖2 = σmax(X ) (largest singular value) and the vec-

tor �1-norm ‖X‖1 =
∑

ij |xij|. Finally, for matrices A and B of the same dimension, we use A ◦ B to
denote their Schur (elementwise) product.

2. Background: observation uncertainty

The basic NCM problem of Higham (2002) starts with an n× n real symmetric matrix C, which may
fail to be a correlation matrix (i.e., a symmetric positive semidefinite matrix with ones on the diagonal)
due to measurement errors, noise or otherwise. To fix this deficiency, NCM seeks the ‘nearest’ matrix
in the set Cn. Higham (2002) casts NCM as the following orthogonal projection task:

minimize ‖X − C‖2
F , s.t. X ∈Cn. (2.1)

This formulation, however, has a limitation: it requires the observation matrix C to be available exactly.
But C contains measurements that might have different levels of uncertainty; in fact, some of its entries
might be even missing. One way to deal with such uncertain C is to consider a W -weighted version of
NCM (Higham, 2002)

minimize ‖W ◦ (X − C)‖2
F , (2.2)

where W is a matrix of non-negative weights that expresses our confidence in the measurements. From
a practical standpoint, however, it is not always clear how to set the weights W in a principled manner,
because obtaining these weights may itself be a difficult estimation problem.

The concern here is that the observation matrix C might be an arbitrary sample from some uncer-
tainty set U . It seems therefore improvident to find the NCM to an arbitrary C that we happened to
pick. What we rather want is a solution that works well for the entire uncertainty set U . The robust
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optimization paradigm (Bertsimas & Thiele, 2006; Ben-Tal et al., 2009) translates this wish into a
problem designed to protect against the ‘worst-case’, namely,

min
X∈Cn

max
C∈U

‖X − C‖2
F . (2.3)

If we had the luxury of exact observations, then the uncertainty set U would be the singleton {C},
whereby the inner maximization in (2.3) would disappear, yielding the original NCM problem (2.1).
More realistically, U |={C}, and in this case, unless U has a convenient structure, the inner maxi-
mization in (2.3) may be intractable. Thus, we must balance faithful modelling of uncertainty with
computational practicality. We introduce one such practical choice of U in Section 3.

Complementary to the robust paradigm, we introduce another model for incorporating uncertainty:
instead of a worst-case optimal solution, we seek a ‘best-case’ solution by solving the problem

min
X∈Cn

min
C∈U

‖X − C‖2
F . (2.4)

Problem (2.4) uses what we call an explorative uncertainty model. The key idea behind this model is
that sometimes we might not know exactly which uncertainty set to use. We might, therefore, start with
a crude uncertainty set U , obtain the best-case solution under it, and perhaps use this solution to refine
our uncertainty set. Thus, we call this approach to handling uncertainty an ‘explorative’ approach. Such
exploration is also helpful if we expect the (uncertain) observation matrix to lie in the uncertainty set.

3. Problem formulation

We are now ready to present a more precise formulation of the uncertainty models for both the robust
(Section 3.1) and explorative (Section 3.2) versions of the NCM problem.

3.1 Robust correlation matrix nearness

A convenient and easy to interpret model of uncertainty is a collection of intervals. More precisely, we
assume that the observation matrix C lies in the uncertainty set given by the box

U =B := {Y ∈S n | L � Y � U}, (3.1)

where L, U ∈S n specify lower and upper bounds on entries of C (inequalities are to be understood
elementwise). Under this interval-based uncertainty model, problem (2.3) becomes

min
X∈Cn

max
C∈B

‖X − C‖2
F , (3.2)

and, henceforth, we refer to (3.2) as the Robust Nearest Correlation Matrix (R-NCM) problem.

Remark 3.1 Other possible uncertainty sets may include the spectral ball

U = {Y ∈S n | ‖Y‖2 � γ } for some γ > 0.

More generally, one may consider uncertainties in the spectrum of the observation matrix, although such
models might be somehow less interpretable than the box.

Albeit convex, (3.2) is not in a form conducive to efficient optimization. Lemma 3.2 shows how to
transform it into an equivalent, but more convenient convex optimization problem.
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Lemma 3.2 (R-NCM–convex formulation) Let B be as given by (3.1). Let M and D be matrices that
denote the midpoints and radii of the uncertainty intervals, respectively, that is

M := [mij]
n
i,j=1 :=

[
lij + uij

2

]n

i,j=1

, D := [dij]
n
i,j=1 :=

[
uij − lij

2

]n

i,j=1

.

Then, (3.2) has a unique optimal solution X ∗, obtainable by solving the convex optimization problem

min
X∈Cn

‖X −M‖2
F + 2‖D ◦ (X −M )‖1. (3.3)

Proof. We begin by eliminating the inner maximization in (3.2). Since ‖X − C‖2
F =

∑
ij(xij − cij)

2, this
maximization separates into scalar problems of the form

max
cij

(xij − cij)
2, s.t. lij � cij � uij for 1 � i, j � n.

A brief calculation shows that the optimal value of cij is given by

cij =
{

uij if xij < mij,

lij if xij � mij.

This solution can also be compactly written as

cij =mij − sgn(xij − mij)dij,

using which the value of the objective function becomes∑
ij

(xij − cij)
2 =

∑
ij

[(xij − mij)
2 + 2|xij − mij|dij + d2

ij].

Dropping constant terms and using matrix notation, we obtain problem (3.3). �

Problem (3.3) is convex, and well solvable by a variety of techniques. But unlike the ordinary NCM
problem, it is nondifferentiable, which makes it harder to solve. Therefore, in Section 4, we present an
efficient iterative technique to solve this problem.

3.2 Exploratory correlation matrix nearness

While in general we might prefer conservative robust models, when exploring different uncertainty
models (different boxes B in our case) it may be more natural to first compute the ‘best’ matrices in the
intersection of B and Cn. If this intersection is empty, then we would like to find the point in B closest
to Cn. To compute these matrices we may solve

min
X∈Cn

min
C∈B

‖X − C‖2
F . (3.4)

Typically, (3.4) admits multiple solutions: there can be several pairs (X ∗, C∗) that minimize the objective
functional. To ensure uniqueness, we regularize (3.4) by adding a penalty based on departure from an
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initial guess G and solve
min
X∈Cn

min
C∈B

‖X − C‖2
F + λ‖X − G‖2

F . (3.5)

We refer to (3.5) as the Exploratory Nearest Correlation Matrix (E-NCM) problem.
The penalty term in (3.5) has the following impact. As λ→∞, it turns the problem into the projec-

tion of G onto Cn, i.e., to the original NCM problem. If λ= 0, the problem may have multiple solutions,
while for λ > 0, the problem has a unique ‘explorative’ solution nearest to the input guess G. This
means that λ controls the region of exploration. If no initial guess G is available, we can set G= 0, so
the penalty term reduces to classical Tikhonov regularization.

The solution of (3.4) is independent of the order of minimization, which can be swapped, as we
are finding the two nearest points of both sets Cn and B. Nevertheless, this formulation allows us to
recast (3.5) into a form that is easier to analyse, by eliminating the inner minimization.

Lemma 3.3 (E-NCM–convex formulation) Let M and D be defined as in Lemma 3.2. Then, (3.5) is
equivalent to the following convex optimization problem

min
X∈Cn

‖[|X −M | − D]+‖2
F + λ‖X − G‖2

F , (3.6)

where the projection [·]+ and absolute value | · | operators are applied elementwise.

Proof. As the inner minimization in (3.5) is separable, it suffices to consider

min
cij

(xij − cij)
2, s.t. lij � cij � uij, for 1 � i, j � n,

for which the optimal cij is easily seen to be

cij =max{lij, min{uij, xij}}.
Substituting this value into the objective and simplifying, the objective over C becomes∑

ij

(xij − cij)
2 =

∑
ij

[|xij − mij| − dij]
2
+,

which combined with (3.5) immediately yields the convex formulation (3.6). Moreover, if λ > 0, the
problem is strictly convex, which ensures uniqueness. �

3.2.1 Matrix completion The E-NCM framework also allows us to consider matrix completion prob-
lems as a special case. Suppose that we are given a matrix C with missing entries and we are required to
fill-in these entries to complete C to a correlation matrix. In general, such a completion might not exist
because the entries of C might enforce constraints that do not intersect with Cn. However, we can still
solve E-NCM to tackle this case in a natural way: we set the uncertainty bounds lij = uij = cij for the
observed entries, and set lij =−1 and uij = 1 for the unknown entries.

If we insist on a unique solution, on one hand we can regularize towards G= 0 by choosing a trade-
off parameter λ > 0. Although this turns into classical Tikhonov regularization, it expresses a preference
towards correlation matrices with low �2 norms. This can be convenient or not, depending on the appli-
cation framework. On the other hand, if we have some actual meaningful initial guess G |= 0, and we
use a small enough λ, then E-NCM approximates the NCM problem with some fixed entries.
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(b)(a)

Fig. 1. Schematic representation of the two proposed variants for the NCM problem. In (a) the conservative R-NCM is preferable,
while in (b) E-NCM finds the solution that lies inside the box.

3.3 Discussion

Figure 1 shows a simplified illustration of R-NCM and E-NCM, where the set Cn is represented by a
plane. The projection of B over Cn, denoted PCn(B), is depicted as a shadow region (this projection
can be interpreted as the set of possible solutions, because for any observation matrix in B its NCM
belongs to this set). E-NCM minimizes the distance to the uncertainty set, and therefore yields the pair
of points X ∗E ∈Cn and C∗E ∈B whose distance is minimum. In contrast, R-NCM minimizes the worst-
case scenario, so the solution is given by the point X ∗R ∈Cn such that the distance to the furthest point
C∗R ∈B (the worst-case distance) is minimum.

In Fig. 1(a), the solution provided by E-NCM is close to the border of PCn(B), while R-NCM gives
a solution close to the centre. In contrast, Fig. 1(b) shows a situation where the solution of E-NCM and
R-NCM are at about the same distance to the border of PCn(B). In this case the sets B and Cn intersect,
therefore E-NCM finds a solution contained in B.

4. Optimization

In the previous sections, we have introduced two uncertainty-based versions of NCM, and formulated
them as convex optimization problems. Although a general-purpose convex optimization solver could
be used, it is valuable to derive customized algorithms for the new formulations. In fact, a carefully
designed optimization procedure is known to help significantly even for the standard NCM problem
(Higham, 2002; Qi & Sun, 2006, 2010; Borsdorf & Higham, 2010). In order to develop such customized
algorithms, we need to address two nontrivial issues: (i) we need to project onto the set Cn; and (ii) we
need to handle nondifferentiability of the objective functionals. We deal with both these concerns by
introducing a unified optimization framework.

We begin by recalling some convex analysis preliminaries; for more details, please refer to Bauschke
& Combettes (2011).

4.1 Background

Let X denote a subset of a Euclidean space E . A function f : X →R ∪ {−∞,+∞} is called lower
semicontinuous (lsc) if for every x ∈X , whenever a sequence (xk)→ x, it holds that

f (x) � lim inf
k

f (xk). (4.1)
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CORRELATION MATRIX NEARNESS UNDER UNCERTAINTY 7 of 16

We denote the set of lsc convex functions over X by Γ0(X ). An important example of an lsc convex
function is the indicator function of a closed convex set C , defined as the function δC : C →R ∪ {+∞}
such that

δC (x)=
{

0 if x ∈C ,

+∞ otherwise.
(4.2)

For two lsc convex functions f and g, the infimal convolution is defined as

(f � g)(x) := inf
y∈X

(f (y)+ g(x− y)), (4.3)

of which one of the most important special cases is the infimal convolution of a convex function with
the squared Euclidean norm, which yields the Moreau envelope (Moreau, 1962).

Proposition 4.1 Let f ∈ Γ0(X ) and let γ > 0. The Moreau envelope of f indexed by γ is defined as

Eγ

f (x) :=
(

f � 1

2γ
‖·‖2

)
(x). (4.4)

The Moreau envelope (4.4) is convex, real-valued and continuous.

Proof. See (Bauschke & Combettes, 2011, Prop. 12.15). �

The Moreau envelope leads us to an operator crucial to our algorithms.

Definition 4.2 (Proximity operator) Let f ∈ Γ0(X ) and y ∈ E . Then, proxf (y) is the unique point in
X that satisfies E1

f (y)=minx∈X (f (x)+ 1
2‖x− y‖2), that is,

proxf (y) := argmin
x∈X

f (x)+ 1

2
‖x− y‖2, (4.5)

and the operator proxf : X →X is called the proximity operator of f .

Proximity operators play a very important role in nonsmooth convex optimization, in part because
they greatly generalize orthogonal projection. Indeed, if f is the indicator function δC of a closed convex
set C , then proxf reduces to the orthogonal projection operator onto C . The importance of the proximity
operator in convex optimization partially stems from the following fact.

Proposition 4.3 For any f ∈ Γ0(X ) and γ > 0, a point x ∈X is a minimizer of f if and only if

x= proxγ f (x). (4.6)

The optimality condition (4.6) can be readily exploited to generate a sequence that approximates a
minimizer of f :

xk+1 = proxγ f (xk).

This iterative procedure is nothing, but Rockafellar’s famous proximal point algorithm (Rockafellar,
1976), which generates a sequence convergent to a minimizer of f under fairly mild conditions. Unfor-
tunately, in the form given above, the proximal point algorithm is often impractical, since computing the
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proximity operator of the objective functional is generally difficult. Let us therefore recall a powerful
optimization technique that is particularly effective in our case: Douglas–Rachford splitting.

4.2 Douglas–Rachford splitting

In general, computing proximity operators of generic objective functions can be difficult. But often
the objective function can be decomposed as a sum of two parts, and each of these parts admits effi-
cient proximity computation. The Douglas–Rachford (DR) splitting method takes advantage of such
a possibility by ‘splitting’ the optimization task into a series of proximity computations. DR splitting
dates back to a method for solving matrix equations of the form Ax+ Bx= y for positive definite A
and B (Douglas & Rachford, 1956). Since then, this method has been substantially generalized, and is
currently enjoying substantial renewed interest—see Combettes & Pesquet (2011) for more details and
numerous references.

The starting point for DR is the optimization problem

min
x∈Rn

f1(x)+ f2(x), (4.7)

where f1 and f2 ∈ Γ0(R
n) are functions that satisfy the conditions (which ensure existence of a solution):

relint(dom f1) ∩ relint(dom f2) |= ∅,
f1(x)+ f2(x)→∞ as ‖x‖2→∞.

For γ > 0, a solution x to (4.7) satisfies the following optimality conditions (Combettes & Pesquet,
2011)

x= proxγ f2 y, proxγ f2 y= proxγ f1(2 proxγ f2 y− y). (4.8)

These conditions lie at the heart of the DR algorithm, which is presented as Algorithm 1. Essentially,
the DR algorithm iteratively enforces the optimality conditions (joint fixed-point conditions) (4.8).
The sequence xt generated by Algorithm 1 is guaranteed to converge asymptotically to a solution of
problem (4.7) provided that such solution exists, see Bauschke & Combettes (2011).

Algorithm 1: Douglas-Rachford Splitting.
Input: f1, f2 ∈ Γ0(R

n) ;
Output: x∗ := limt→∞(xt)= argmin [f1(x)+ f2(x)] ;
Fix η ∈ (0, 1), γ > 0, y0 ∈R

n ;
for t= 0, 1, . . . do

% Prox f2.
xt← proxγ f2(y

t) ;
% Step-size.
Set λt ∈ [η, 2− η] ;
% Prox f1.
yt+1← yt + λt(proxγ f1(2xt − yt)− xt) ;

end
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4.3 DR for NCM with uncertainty

Now we turn to showing how to apply the DR idea to our robust NCM formulations. Recall that the
objective functionals for the R-NCM and E-NCM problems are given by

fR(X ) := ‖X −M‖2
F + 2‖D ◦ (X −M )‖1,

fE(X ) := λ‖X − G‖2
F + ‖[|X −M | − D]+‖2

F ,

where the subscripts R and E indicate ‘robust’ and ‘explorative’, respectively. By introducing the indi-
cator function of the correlation matrix set, problems (3.3) and (3.6) can be rewritten as

min
X

fR(X )+ δCn(X ), (4.9)

min
X

fE(X )+ δCn(X ). (4.10)

The key question now is: how should we split the objective functions of (4.9) and (4.10) before we
can invoke DR? Simply decomposing the task into proximity over fR (fE) and δCn is not practical: the
proximity operator for the indicator function requires solving the basic NCM projection problem, and
in the course of solving the overall problems (4.9) and (4.10) we might have to repeat this projection
many times. We wish to avoid this undue cost1 while specializing Algorithm 1 to solve (4.9) and (4.10).

In light of this discussion, we propose a more practical splitting. Let the first function be the indicator
of S n

+, and let the second be the sum of the appropriate convex function (fR or fE) and the indicator
function of Sn

D. Formally, we set

f1 = δS n+ ,

f2 =
{

fR + δSn
D

for R-NCM,

fE + δSn
D

for E-NCM.

This splitting is valid since Cn =S n
+ ∩ Sn

D, whereby

δCn = δS n+ + δSn
D
.

The proximity operator of f1 is nothing, but the orthogonal projection onto S n
+. Such projection can

be performed by using the eigenvector decomposition X =QX ΛX Q−1
X , truncating the negative eigen-

values to 0, and then recomposing the matrix with the non-negative eigenvalues, namely

ProjS n+(X )=QX [ΛX ]+Q−1
X .

The proximity operator of f2 can be computed by first evaluating the proximity operator of fR or fE,
and then projecting the result onto Sn

D. Expressions for the proximity operator of fR or fE are provided
below; projection onto Sn

D can be computed by simply setting the diagonal entries to 1.

1 There is also a theoretical reason for this choice: the basic DR algorithm requires proximity operators to be exact, whereas
projection onto Cn can be computed only inexactly, as it lacks a closed-form solution.
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A brief calculation shows that the proximity operator of fR with parameter γ is given by

proxγ fR(x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x+ 2γ u

1+ 2γ
if x � m− 2γ d,

m if m− 2γ d � x � m+ 2γ d,
x+ 2γ l

1+ 2γ
if m+ 2γ d � x.

(4.11)

Similarly, a short derivation shows that the proximity operator of fE with parameter γ is given by

proxγ fE(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x+ 2γ l + 2γ λg

1+ 2γ + 2γ λ
if x � l + 2γ λ(l − g),

x+ 2γ λg

1+ 2γ λ
if l + 2γ λ(l − g) � x � u+ 2γ λ(u− g),

x+ 2γ u+ 2γ λg

1+ 2γ + 2γ λ
if u+ 2γ λ(u− g) � x.

(4.12)

The last remaining detail needed to complete our algorithm is the stopping criterion. For that, we
use absolute normalized change

1

n
‖X (t) − X (t−1)‖F < εStop,

where εStop is a small constant. This criterion coincides (up to a constant) with the residual of the
nonlinear fixed-point equation iterated by DR. The overall algorithms are described in Algorithm 2 for
R-NCM and in Algorithm 3 for E-NCM.

Both algorithms can be extended to a W -weighted version of problems (3.2) and (3.5) because the
proximity operators are applied elementwise. Thus, the weighted proximity operators of a component
xij with a weight wij and a step γ̂ can be computed using the unweighted proximity operators of (4.11)
and (4.12) with step γ = γ̂ wij. The rest of the algorithms will remain the same. However, an effect that
is similar to the presence of weights can be obtained by varying the widths of the box constraints.

5. Experiments

In this section, we present several experiments to illustrate the behaviour of our new NCM variants; we
also compare their computational costs with that of the original NCM problem.

5.1 Computational time

Figure 2 compares the computational time and the number of iterations for R-NCM, E-NCM and the
original NCM problem. Since E-NCM requires choosing a regularization parameter λ, we show results
with three values at different scales, namely 10−3, 10−2 and 10−1.

For the experiments, we generate random correlation matrices using the gallery function of
Matlab with some eigenvalues close to zero; these matrices are then perturbed with random noise and
truncated to ensure that their entries lie in [−1, 1]. More precisely, we generate2 the matrices in a manner
similar to Qi & Sun (2011).

2 The Matlab code is: G=10.ˆ[-4:4/(n-1):0]; G=gallery(’randcorr’,n*G/sum(G)); G=0.9*G+0.1*
(2*rand(size(G))-1); G=(G+G’)/2.
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Algorithm 2: Algorithm for solving R-NCM using DR.

Input: L, U ∈S n ; % Define B = {X : L � X � U}.
Output: X (t) �minX∈Cn maxC∈B ‖X − C‖2

F ;
M← L+U

2 ;
Set η ∈ (0, 1), γ > 0, Y (0) ∈S n ;
t← 0 ; ε←∞ ; X (0) = k1n, with k� 1 ; % Ensure first iterations.
while ε � εStop do

% Prox f2.
X (t)← ProxRobust(Y (t); L, U ; γ ) ; % Proximity operator (4.11).

X (t)
ii ← 1, i= 1, . . . , n ; % Projection over SD.

% Step-size.
Set λ(t) ∈ [η, 2− η] ;
% Prox f1.
T← 2X (t) − Y (t) ;
QTΛT Q−1

T ← T ; % Eigen decomposition.

T←QT [ΛT ]+Q−1
T ; % Projection over S n

+.
Y (t+1)← Y (t) + λ(t)(T − X (t)) ; % Update.
% Stopping condition.

t← t + 1 ; ε← 1
n‖X (t) − X (t−1)‖2

F ;
end

Algorithm 3: Algorithm for solving E-NCM using DR.

Input: L, U , G ∈S n, λ ∈R ; % Define B = {X : L � X � U}.
Output: X (t) �minX∈Cn minC∈B ‖X − C‖2

F + λ‖X − G‖2
F ;

Set η ∈ (0, 1), γ > 0, Y (0) ∈S n ;
t← 0 ; ε←∞ ; X (0) = k1n, with k� 1 ; % Ensure first iterations.
while ε � εStop do

% Prox f2.
X (t)← ProxExploratory(Y (t); L, U , G; γ , λ) ; % Proximity operator (4.12).

X (t)
ii ← 1, i= 1, . . . , n ; % Projection over SD.

% Step-size.
Set λ(t) ∈ [η, 2− η] ;
% Prox f1.
T← 2X (t) − Y (t) ;
QTΛT Q−1

T ← T ; % Eigen decomposition.

T←QT [ΛT ]+Q−1
T ; % Projection over S n

+.
Y (t+1)← Y (t) + λ(t)(T − X (t)) ; % Update.
% Stopping condition.

t← t + 1 ; ε← 1
n‖X (t) − X (t−1)‖2

F ;
end
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Fig. 2. Computational time and number of iterations with respect to the size for the original NCM problem, R-NCM and E-NCM.

We centre the uncertainty box over the corresponding perturbed correlation matrix, so that its entry-
wise width is given by a uniformly distributed random uncertainty matrix, with about 20% of its entries
equal to zero (so 20% is considered fixed). The box is then truncated to lie into [−1, 1]n. For each size,
we generate 50 random examples. The stopping threshold is εStop = 10−4.

Unsurprisingly, the original NCM is the fastest problem to solve as it is the least restrictive. R-NCM
attains the middle position, while for E-NCM, the smaller the parameter λ, the slower it becomes. This
happens since, for small λ, the gradient of the regularization term contributes a small amount, which
makes the problem depend more on the nonsmooth part. When λ� 0, E-NCM tends to the original
NCM problem, which is much easier to solve. The same remarks apply to the number of iterations,
which seems to stabilize as the size grows, again with NCM requiring the fewest iterations and E-NCM
with small λ, the most.

5.2 Evolution of the residual

Recall that we use the DR residual as the stopping criterion of the algorithms. Figure 3 plots this residual
versus the number of iterations for two matrices of sizes 50× 50 and 250× 250.

As before, the easiest problem is NCM, whose residual achieves the machine epsilon limit in both
cases, while R-NCM lies between NCM and E-NCM in speed. Note that although there is no reason to
expect monotonic descent, the results show a fairly stable descent, except for R-NCM for the smaller
matrix. Nevertheless, there does not seem to be any severe ill effects of fluctuation.

5.3 Application to NCM with a few prescribed entries

Consider the following 5× 5 NCM problem from Qi & Sun (2010). This example requires computing
the NCM to the matrix

G=

⎛
⎜⎜⎜⎜⎝

1.00 −0.50 −0.30 −0.25 −0.70
1.00 0.90 0.30 0.70

1.00 0.25 0.20
1.00 0.75

1.00

⎞
⎟⎟⎟⎟⎠ ,
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Fig. 3. Evolution of the residual for a 50× 50 matrix (upper row) and a 250× 250 matrix (lower row).

such that the bold entries remain fixed. This is equivalent to the following NCM problem with additional
equality constraints

min
X∈Cn

‖X − G‖2
2

s.t. X12 =G12, X14 =G14, X15 =G15, X23 =G23.

We may also tackle this constrained NCM problem as an instance of E-NCM. The lower and upper
bound matrices L and U are set to −1 and 1 for the unknown (uncertain) entries, and to the correspond-
ing values of G for the fixed (prescribed) ones. Thus,

L=

⎛
⎜⎜⎜⎜⎝

1.00 −0.50 −1.00 −0.25 −0.70
1.00 0.90 −1.00 −1.00

1.00 −1.00 −1.00
1.00 −1.00

1.00

⎞
⎟⎟⎟⎟⎠ , U =

⎛
⎜⎜⎜⎜⎝

1.00 −0.50 +1.00 −0.25 −0.70
1.00 0.90 +1.00 +1.00

1.00 +1.00 +1.00
1.00 +1.00

1.00

⎞
⎟⎟⎟⎟⎠ .

The corresponding solution obtained with parameters λ= 10−4 and εStop = 10−10 is

X ∗ =

⎛
⎜⎜⎜⎜⎝

1.0000 −0.5000 −0.2830 −0.2500 −0.7000
1.0000 0.9000 0.3391 0.6134

1.0000 0.2179 0.2710
1.0000 0.7198

1.0000

⎞
⎟⎟⎟⎟⎠ .
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Fig. 4. Completion error and maximum (robust) error as functions of the uncertainty (width of B).

This solution is the same as the one reported in Qi & Sun (2010). But the point worth noting here is that
our algorithm does not impose any hard constraints on the problem. That is, if there were no correlation
matrix with the prescribed fixed entries (as it would happen if intersection between the box and Cn is
empty), our algorithm would still find a correlation matrix near to the box.

5.4 Experiments with matrix completion

Figure 4 depicts the error obtained when tackling the problem of completing matrices.
A random matrix is generated as the centre of an uncertainty box, whose width is varied from zero

to two (at its maximum width, the box covers all the possible correlation matrices). Inside each box, a
random matrix C∗ is generated as the ‘real’ unknown observation matrix. The original NCM problem
is solved by projecting the medium point of the box. It is compared with the solution of R-NCM. Two
different error measures are presented. First, the distance to the observation matrix C∗ and second, the
maximum distance to any point of the box. Note that the latter is just the objective functional of R-NCM
(the error in the worst-case scenario).

Obviously, R-NCM achieves the best worst-case error, as it is precisely the objective of the R-NCM
minimization problem. Moreover, considering the distance to the observation matrix into the box C∗,
R-NCM also performs better than mere projection of the middle point when the uncertainty is almost
maximum. When the level of uncertainty is moderate, R-NCM is only slightly worse. Therefore,
R-NCM appears to provide the most reasonable estimation of an unknown matrix into a known set
of uncertainty intervals (box), while also protecting against the worst-case scenario.

6. Discussion and extensions

We presented two major extensions of the original NCM problem of Higham (2002) by allowing uncer-
tainty in the input data. Specifically, we considered an uncertainty model specified by a box (set of
intervals) that contain the data matrix.

Within this model of uncertainty, our first new NCM variant is based on the theory of robust opti-
mization, which involves optimization of the worst-case scenario. That is, it seeks to minimize the
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maximum distance of the solution to any possible data matrix from within the uncertainty region. Our
experiments support the robust approach, showing it to be useful even when minimizing the distance to
an unknown data matrix; this setup also allows us to apply the method to correlation matrix completion.

Our second variant of NCM looks for the minimum distance between the box and the set of corre-
lation matrices. This problem can be used as an approximation to the NCM problem with fixed entries,
and it can solve the NCM problem using an ε-insensitive error induced by the box.

We formulate both variants as convex optimization problems, which we subsequently solve effi-
ciently by designing an iterative method based on DR operator splitting. Several inexact second-order
methods (usually generalizations of the Newton projection method) have been designed for the original
NCM problem. A possible extension of this work would be to define such second-order methods for the
presented variants.

A more theoretical investigation might entail studying different models of uncertainty that would
further enrich the setting introduced in this paper. In fact, the only requirement would be to compute
the proximity operator of the maximum distance to the uncertainty set for the robust approach, and of
the minimum distance in the case of the exploratory one. Nevertheless, even for simple uncertainty sets
such as the ellipsoid (which is thoroughly used in robust optimization), these operations do not have a
closed-form solution, and thus they would require an inner optimization algorithm.

We close by mentioning that the robust variants that we presented, yield as special cases many of the
previously studied variants of NCM problems. Also, since the new variants are easy to interpret, they
might prove helpful to an end user. In particular, E-NCM can be used to tackle the problem of matrix
completion, or NCM with fixed entries, as shown in Section 5.3. The key consequence of our proposal
is that it imposes the constraints in a soft manner.
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